Estimation of Silage Maize Plant Moisture Content Based on UAV Multispectral Data and Ensemble Learning Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area and Experimental Design
2.2. Data Collection and Processing
2.2.1. UAV Data Acquisition
2.2.2. Plant Moisture Content Measurement
2.2.3. UAV Image Preprocessing
2.3. Spectral Index Construction
2.4. Model Development
2.5. Model Accuracy Evaluation Parameters
3. Results and Analysis
3.1. Correlation Analysis Between Plant Moisture Content and Spectral Indices
3.2. Comprehensive Evaluation of the Models
3.3. Spatial Distribution Map of Plant Moisture Content
4. Discussion
4.1. Analysis of Spectral Indices
4.2. The Importance of Machine Learning Models in PMC Prediction
4.3. Spatial Variability and Its Implications for Precision Agriculture
4.4. Uncertainty Analysis and Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, A.; Kaul, H.P. Monitoring Yield and Quality of Forages and Grassland in the View of Precision Agriculture Applications—A Review. Remote Sens. 2025, 17, 279. [Google Scholar] [CrossRef]
- Cai, X.; Zhang, X.; Noël, P.H.; Shafiee-Jood, M. Impacts of climate change on agricultural water management: A review. Agriculture 2015, 2, 439–455. [Google Scholar]
- Fakhar, M.S.; Nazari, B. Estimating Soil Moisture Using Vegetation Cover Indices and Soil Surface Temperature in Agricultural and Saline Fields of Qazvin Plain. Water Soil Manag. Model. 2024. [Google Scholar] [CrossRef]
- Fan, X.; Zhang, H.; Zhou, L.; Bian, L.; Jin, X.; Tang, L.; Ge, Y. Evaluating Drought Stress Response of Poplar Seedlings Using a Proximal Sensing Platform via Multi-Parameter Phenotyping and Two-Stage Machine Learning. Comput. Electron. Agric. 2024, 225, 109261. [Google Scholar]
- Singla, M.; Gupta, D.; Goyal, D.; Dang, R.K. Integrating Smart Farming with AI Techniques for Crop Disease Prediction. In Proceedings of the 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kamand, India, 24–28 June 2024; pp. 1–6. [Google Scholar]
- Mandal, D.; Yilma, W.; Atreya, M.; Kauzya, J.B.; Smock, N.; Khosla, R.; Whiting, G.L. Evaluation of Hybrid Biodegradable Sensor Node for Monitoring Soil Moisture. In Harnessing Data Science for Sustainable Agriculture and Natural Resource Management; Springer Nature: Singapore, 2024; pp. 271–298. [Google Scholar]
- Zhang, S.; Zhang, C.; Yang, C.; Liu, B. Artificial Intelligence and Internet of Things for Smart Agriculture. Front. Plant Sci. 2025, 14, 1494279. [Google Scholar]
- Franz, A.; Sowiński, J.; Głogowski, A.; Fiałkiewicz, W. A Preliminary Study on the Use of Remote Sensing Techniques to Determine the Nutritional Status and Productivity of Oats on Spatially Variable Sandy Soils. Agronomy 2025, 15, 616. [Google Scholar] [CrossRef]
- Liu, H.; Wu, X.; Li, D.; Zhang, F.; Zhang, D.; Huang, H. Study on the Moisture Content of Tobacco Leaves during the Picking Period Based on Hyperspectral Technology. J. Chin. Agric. Mech. 2021, 42, 157–163. [Google Scholar]
- Zhang, J.; Song, Z.; Han, W.; Shang, X.; Liu, Z. Nondestructive Testing of Tobacco Leaf Water Status by Using Digital RGB Images. J. Chin. Agric. Mech. 2019, 40, 62–68. [Google Scholar]
- Sun, G.; Xing, T.; Xing, Y.; Huang, J. Inversion of Vegetation Canopy Water Content in Jingyuetan Park Based on Remote Sensing Data. For. Eng. 2019, 35, 32–38. [Google Scholar]
- Jiang, H.; Chai, L.; Jia, K.; Liu, J.; Yang, S.; Zheng, J. Estimation of Water Content for Short Vegetation Based on PROSAIL Model and Vegetation Water Indices. Natl. Remote Sens. Bull. 2021, 25, 1025–1036. [Google Scholar]
- Rao, Y.; Liu, K.; Huang, H.; Lin, Q.; Wang, C. Inversion of Canopy Water Content of Fire Scars in Genhe County Based on INFORM Model and Google Earth Engine. J. Cent. South Univ. For. Technol. 2021, 41, 80–91. [Google Scholar]
- Cheng, X.-J.; Yang, G.-J.; Xu, X.-G.; Chen, T.-E.; Li, Z.-H.; Feng, H.-K.; Wang, D. Estimating Canopy Water Content in Wheat Based on New Vegetation Water Index. Spectrosc. Spect. Anal. 2014, 34, 3391–3396. [Google Scholar]
- Berni, J.A.J.; Zarco-Tejada, P.J.; Suárez, L.; Fereres, E. Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring from an Unmanned Aerial Vehicle. IEEE Trans. Geosci. Remote Sens. 2009, 47, 722–738. [Google Scholar]
- Hassan-Esfahani, L.; Torres-Rua, A.; Jensen, A.; McKee, M. Assessment of Surface Soil Moisture Using High-Resolution Multi-Spectral Imagery and Artificial Neural Networks. Remote Sens. 2015, 7, 2627–2646. [Google Scholar] [CrossRef]
- Han, W.; Tang, J.; Zhang, L.; Niu, Y.; Wang, T. Maize Water Use Efficiency and Biomass Estimation Based on Unmanned Aerial Vehicle Remote Sensing. Trans. Chin. Soc. Agric. Mach. 2021, 52, 129–141. [Google Scholar]
- Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine Learning Approaches for Crop Yield Prediction and Nitrogen Status Estimation in Precision Agriculture: A Review. Comput. Electron. Agric. 2018, 151, 61–69. [Google Scholar]
- Akkem, Y.; Biswas, S.K.; Varanasi, A. Smart Farming Using Artificial Intelligence: A Review. Eng. Appl. Artif. Intell. 2023, 120, 105899. [Google Scholar]
- Reddy, D.J.; Kumar, M.R. Crop Yield Prediction Using Machine Learning Algorithm. In Proceedings of the 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 6–8 May 2021; pp. 1466–1470. [Google Scholar]
- Hamrani, A.; Akbarzadeh, A.; Madramootoo, C.A. Machine Learning for Predicting Greenhouse Gas Emissions from Agricultural Soils. Sci. Total Environ. 2020, 741, 140338. [Google Scholar]
- Lin, G.; Huang, P.; Wang, M.; Xu, Y.; Zhang, R.; Zhu, L. An Inverse Kinematics Solution for a Series-Parallel Hybrid Banana-Harvesting Robot Based on Deep Reinforcement Learning. Agronomy 2022, 12, 2157. [Google Scholar] [CrossRef]
- Bu, F.; Wang, X. A Smart Agriculture IoT System Based on Deep Reinforcement Learning. Future Gener. Comput. Syst. 2019, 99, 500–507. [Google Scholar]
- Moghadas, D. One-Dimensional Deep Learning Inversion of Electromagnetic Induction Data Using Convolutional Neural Network. Geophys. J. Int. 2020, 222, 247–259. [Google Scholar] [CrossRef]
- Xie, M.; Li, G.; Ma, W.; Liu, S.; Chang, H.; Du, J.; Ding, N. Effects of water treatment on stoichiometric ratio and homeostasis of silage corn soil in Hexi. Arid Zone Res. 2022, 39, 1312–1321. [Google Scholar]
- Zhang, H. Uncrewed Aircraft Systems (UAS)-Based Detection of Organic Carbon with Hyper- and Multispectral Sensors in Cropland Soils. Ph.D. Thesis, Université Catholique de Louvain, Louvain-la-Neuve, Belgium, 2022. [Google Scholar]
- Wang, Y.; Kootstra, G.; Yang, Z.; Khan, H. UAV Multispectral Remote Sensing for Agriculture: A Comparative Study of Radiometric Correction Methods Under Varying Illumination Conditions. Biosyst. Eng. 2024, 248, 240–254. [Google Scholar] [CrossRef]
- Stott, E.; Williams, R.D.; Hoey, T.B. Ground Control Point Distribution for Accurate Kilometre-Scale Topographic Mapping Using an RTK-GNSS Unmanned Aerial Vehicle and SfM Photogrammetry. Drones 2020, 4, 55. [Google Scholar] [CrossRef]
- Chi, J.; Kim, J.I.; Lee, S.; Jeong, Y.; Kim, H.C.; Lee, J.; Chung, C. Geometric and Radiometric Quality Assessments of UAV-Borne Multi-Sensor Systems: Can UAVs Replace Terrestrial Surveys? Drones 2023, 7, 411. [Google Scholar] [CrossRef]
- IDB. Index DataBase. A Database for Remote Sensing Indices. The IDB Project, 2011–2024. Available online: https://www.indexdatabase.de/ (accessed on 8 September 2024).
- Fernandez-Buces, N.; Siebe, C.; Cram, S.; Palacio, J.L. Mapping soil salinity using a combined spectral response index for bare soil and vegetation: A case study in the former lake Texcoco, Mexic. J. Arid Environ. 2006, 65, 644–667. [Google Scholar]
- Datt, B.; McVicar, T.R.; Van Niel, T.G.; Jupp, D.L.; Pearlman, J.S. Preprocessing EO-1 Hyperion hyperspectral data to support the application of agricultural indexes. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1246–1259. [Google Scholar] [CrossRef]
- Roujean, J.L.; Breon, F.M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Wang, F.M.; Huang, J.F.; Tang, Y.L.; Wang, X.Z. New vegetation index and its application in estimating leaf area index of rice. Rice Sci. 2007, 14, 195–203. [Google Scholar] [CrossRef]
- Hoffmann, H.; Jensen, R.; Thomsen, A.; Nieto, H.; Rasmussen, J.; Friborg, T. Crop water stress maps for an entire growing season from visible and thermal UAV imagery. Biogeosciences 2016, 13, 6545–6563. [Google Scholar] [CrossRef]
- Underwood, E.; Ustin, S.; DiPietro, D. Mapping nonnative plants using hyperspectral imagery. Remote Sens. Environ. 2003, 86, 150–161. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol. B 1994, 22, 247–252. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, X.; Cheng, Q.; Fei, S.; Chen, Z. A Machine-Learning Model Based on the Fusion of Spectral and Textural Features from UAV Multi-Sensors to Analyse the Total Nitrogen Content in Winter Wheat. Remote Sens. 2023, 15, 2152. [Google Scholar] [CrossRef]
- Ni, G.; Guan, Y.; Zhang, X.; Yang, Y.; Li, Y.; Liu, X.; Rong, Z. Selection of Landsat 8 OLI Levels, Monthly Phases, and Spectral Variables on Identifying Soil Salinity: A Study in the Yellow River Delta. Appl. Sci. 2025, 15, 2747. [Google Scholar] [CrossRef]
- Da, Q.; Yan, J.; Li, G.; Guo, Z.; Li, H.; Wang, W.; Li, J.; Ma, W.; Li, X.; Cheng, K. Inversion of Soil Moisture Content in Silage Corn Root Zones Based on UAV Remote Sensing. Agriculture 2025, 15, 331. [Google Scholar] [CrossRef]
- Jin, Z.; Liu, H.; Cao, H.; Li, S.; Yu, F.; Xu, T. Hyperspectral Remote Sensing Estimation of Rice Canopy LAI and LCC by UAV Coupled RTM and Machine Learning. Agriculture 2024, 15, 11. [Google Scholar] [CrossRef]
- Guo, F.; Huang, Z.; Su, X.; Li, Y.; Luo, L.; Ba, Y. Soil Moisture Content Inversion Model on the Basis of Sentinel Multispectral and Radar Satellite Remote Sensing Data. J. Soil Sci. 2024, 24, 7919–7933. [Google Scholar] [CrossRef]
- Yang, J.; Li, X.; Ma, X.; Ge, X. Potential of Hyperspectral Data Combined With Optimal Band Combination Algorithm for Estimating Soil Organic Carbon Content in Lakeside Oasis. Land Degrad. Dev. 2024, 35, 5874–5885. [Google Scholar] [CrossRef]
- Cheng, J.K.; Feng, X.L.; Chen, L.B.; Gao, T.Y.; Mei-Jin, D.U.; Liu, Z.Y. Optimal Inversion Model for Cultivated Land Soil Salinity Based on UAV Hyperspectral Data. Ying Yong Sheng Tai Xue Bao 2024, 35, 3085–3094. [Google Scholar]
- He, W.; Yao, Y.; Li, Y.; Yu, L.; Ni, L.; Fu, B.; Huang, J.; Li, D. Accurately Estimating and Revealing the Patterns of Leaf C:N:P Stoichiometry with Remote Sensing and Neural Network Methods in a Karst Area. Comput. Electron. Agric. 2025, 231, 110006. [Google Scholar]
- Liu, L.; Wei, G.; Zhou, P. Prediction and Mapping of Soil Total Nitrogen Using GF-5 Image Based on Machine Learning Optimization Modeling. Smart Agric. 2024, 6, 61. [Google Scholar]
- Ramírez, P.B.; Calderón, F.J.; Jastrow, J.D.; Ping, C.L.; Matamala, R. Applying NIR and MIR Spectroscopy for C and Soil Property Prediction in Northern Cold-Region Ecosystems. Which Approach Works Better? Geoderma Reg. 2023, 32, e00617. [Google Scholar]
- Serrano, J.; Shahidian, S.; Paixão, L.; Marques da Silva, J.; Paniágua, L.L. Pasture Quality Assessment Through NDVI Obtained by Remote Sensing: A Validation Study in the Mediterranean Silvo-Pastoral Ecosystem. Agriculture 2024, 14, 1350. [Google Scholar] [CrossRef]
- Yang, N.; Zhang, Z.; Ding, B.; Wang, T.; Zhang, J.; Liu, C.; Zhang, Q.; Zuo, X.; Chen, J.; Cui, N.; et al. Evaluation of Winter-Wheat Water Stress with UAV-Based Multispectral Data and Ensemble Learning Method. Plant Soil 2024, 491, 647–668. [Google Scholar]
- Joiner, J.; Yoshida, Y.; Anderson, M.; Holmes, T.; Hain, C.; Reichle, R.; Koster, R.; Middleton, E.; Zeng, F.W. Global Relationships Among Traditional Reflectance Vegetation Indices (NDVI and NDII), Evapotranspiration (ET), and Soil Moisture Variability on Weekly Time-scales. Remote Sens. Environ. 2018, 219, 339–352. [Google Scholar]
- Elshikha, D.E.M.; Hunsaker, D.; Bronson, K.; Sanchez, P. Using RGB-Based Vegetation Indices for Monitoring Guayule Biomass, Moisture Content, and Rubber. In Proceedings of the 2016 ASABE Annual International Meeting, Orlando, FL, USA, 17–20 July 2016. [Google Scholar]
- Deng, B.; Yang, W.N.; Mu, N.; Zhang, C. The Research of Vegetation Water Content Based on Spectrum Analysis and Angle Slope Index. Guang Pu Xue Yu Guang Pu Fen Xi 2016, 36, 2546–2552. [Google Scholar]
- Harris, A.; Bryant, R.G.; Baird, A.J. Detecting Near-Surface Moisture Stress in Sphagnum spp. Remote Sens. Environ. 2005, 97, 371–381. [Google Scholar]
- Serrano, J.; Shahidian, S.; Marques da Silva, J.; Paixão, L.; Carreira, E.; Carmona-Cabezas, R.; Nogales-Bueno, J.; Rato, A.E. Evaluation of Near Infrared Spectroscopy (NIRS) and Remote Sensing (RS) for Estimating Pasture Quality in Mediterranean Montado Ecosystem. Appl. Sci. 2020, 10, 4463. [Google Scholar] [CrossRef]
- Klemas, V.; Smart, R.; Klemas, V. The Influence of Soil Salinity, Growth Form, and Leaf Moisture on the Spectral Radiance of Vegetation. Photogramm. Eng. Remote Sens. 1983, 49, 77–83. [Google Scholar]
- Wu, Q.; Zhu, Z.; Ma, J.; Liu, S.; Chai, L.; Xu, Z. Soil Moisture Retrieval Based on Ensemble Learning Models Using Landsat8 Data in Areas of High Heterogeneity. Preprints 2024, 2024120464. [Google Scholar] [CrossRef]
- Sharma, S.; Khanal, P. Predicting Above-Ground Biomass of Forest in South Carolina: Integrating Remote Sensing, Machine Learning, and Interpolation Techniques. Preprints 2024, 2024091867. [Google Scholar] [CrossRef]
- Belloli, T.F.; de Arruda, D.C.; Guasselli, L.A.; Cunha, C.S.; Korb, C.C. Modeling Wetland Biomass and Aboveground Carbon: Influence of Plot Size and Data Treatment Using Remote Sensing and Random Forest. Land 2025, 14, 616. [Google Scholar] [CrossRef]
- Kim, Y.I.; Park, W.H.; Shin, Y.; Park, J.-W.; Engel, B.; Yun, Y.-J.; Jang, W.S. Applications of Machine Learning and Remote Sensing in Soil and Water Conservation. Hydrology 2024, 11, 183. [Google Scholar] [CrossRef]
- Sarkar, S.; Leyton, J.M.O.; Noa-Yarasca, E.; Adhikari, K.; Hajda, C.B.; Smith, D.R. Integrating Remote Sensing and Soil Features for Enhanced Machine Learning-Based Corn Yield Prediction in the Southern US. Sensors 2025, 25, 543. [Google Scholar] [CrossRef]
- Nadeem, A.A.; Zha, Y.; Shi, L.; Ali, S.; Wang, X.; Zafar, Z.; Afzal, Z.; Tariq, M.A.U.R. Spatial Downscaling and Gap-Filling of SMAP Soil Moisture to High Resolution Using MODIS Surface Variables and Machine Learning Approaches over ShanDian River Basin, China. Remote Sens. 2023, 15, 812. [Google Scholar] [CrossRef]
- Vinci, A.; Baiocchi, V.; Brigante, R.; Traini, C.; Farinelli, D. Use of Drones with Multispectral and Thermal Cameras to Assess the Biometric Characteristics and Water Status of Different Hazelnut Cultivars. Preprints 2024, 2024031201. [Google Scholar] [CrossRef]
- Dong, H.; Dong, J.; Sun, S.; Bai, T.; Zhao, D.; Yin, Y.; Shen, X.; Wang, Y.; Zhang, Z.; Wang, Y. Crop Water Stress Detection Based on UAV Remote Sensing Systems. Agric. Water Manag. 2024, 303, 109059. [Google Scholar]
- Yang, S.; Li, L.; Fei, S.; Yang, M.; Tao, Z.; Meng, Y.; Xiao, Y. Wheat Yield Prediction Using Machine Learning Method Based on UAV Remote Sensing Data. Drones 2024, 8, 284. [Google Scholar] [CrossRef]
- Liu, J.; Xiang, J.; Jin, Y.; Liu, R.; Yan, J.; Wang, L. Boost Precision Agriculture with Unmanned Aerial Vehicle Remote Sensing and Edge Intelligence: A Survey. Remote Sens. 2021, 13, 4387. [Google Scholar] [CrossRef]
Parameter | Specification |
---|---|
UAV type | Rotary wing |
Size | 0.81 (width) × 0.67 (length) × 0.43 (height) m |
Flight duration | 55.00 min |
Maximum speed | 17.00 m/s |
Maximum altitude | 7.00 km |
Maximum take-off weight | 9.00 kg |
Maximum flight range | 15.00 km |
Payload capacity | 0.93 kg |
MS600 Pro camera weight | 0.66 kg |
Index | Full Name | Formula | References |
---|---|---|---|
COSRI | Combine spectroscopy index | (B + G)/(R + NIR) × NDVI | [31] |
CVI | Chlorophyll vegetation index | (NIR × R)/G2 | [32] |
DVI | Difference vegetation index | NIR − R | [33] |
GNDVI | Green normalized difference vegetation index | (N − G)/(N + G) | [34] |
NDREI | Normalized difference red edge index | (N − RE1)/(N + RE1) | [35] |
NDVI | Normalized difference vegetation index | (NIR − R)/(NIR + R) | [36] |
NGRDI | Normalized difference green/red index | (G − R)/(G + R) | [37] |
RENDVI | Red edge normalized difference vegetation index | (RE2 − RE1)/(RE2 + RE1) | [38] |
Rblue | Blue | B | / |
Rgreen | Green | G | / |
Rnir | Nir | N | / |
RRE1 | RedEdge720 | RE1 | / |
RRE2 | RedEdge750 | RE2 | / |
Rred | Red | R | / |
Category | Observations | Min | Max | Mean | SD | R | CV |
---|---|---|---|---|---|---|---|
All datasets | 180 | 0.65 | 0.83 | 0.74 | 0.06 | 0.177 | 0.075 |
Tasseling stage | 60 | 0.75 | 0.83 | 0.78 | 0.02 | 0.072 | 0.020 |
Silking period | 60 | 0.73 | 0.78 | 0.77 | 0.01 | 0.053 | 0.014 |
Maturity | 60 | 0.65 | 0.69 | 0.66 | 0.02 | 0.040 | 0.027 |
Growth Stages | Feature Type | Metrics | BPNN | RFR | SVR | Stacking (PLSR) |
---|---|---|---|---|---|---|
Tasseling stage | Band | R2 | 0.50 | 0.54 | 0.51 | 0.66 |
RMSE (%) | 1.30 | 1.19 | 1.27 | 1.30 | ||
RPD | 1.45 | 1.49 | 1.59 | 1.54 | ||
VI | R2 | 0.54 | 0.60 | 0.59 | 0.78 | |
RMSE (%) | 1.33 | 1.17 | 1.29 | 1.24 | ||
RPD | 1.50 | 1.70 | 1.55 | 1.61 | ||
Band + VI | R2 | 0.63 | 0.69 | 0.67 | 0.87 | |
RMSE (%) | 1.08 | 1.12 | 1.05 | 1.04 | ||
RPD | 1.87 | 1.79 | 1.90 | 1.93 | ||
Silking period | Band | R2 | 0.46 | 0.53 | 0.49 | 0.65 |
RMSE (%) | 0.63 | 0.68 | 0.67 | 0.66 | ||
RPD | 1.59 | 1.47 | 1.48 | 1.51 | ||
VI | R2 | 0.49 | 0.54 | 0.52 | 0.76 | |
RMSE (%) | 0.66 | 0.65 | 0.67 | 0.60 | ||
RPD | 1.51 | 1.52 | 1.49 | 1.67 | ||
Band + VI | R2 | 0.59 | 0.62 | 0.61 | 0.85 | |
RMSE (%) | 0.62 | 0.61 | 0.62 | 0.54 | ||
RPD | 1.62 | 1.62 | 1.61 | 1.85 | ||
Maturity | Band | R2 | 0.43 | 0.49 | 0.46 | 0.61 |
RMSE (%) | 1.35 | 1.43 | 1.34 | 1.38 | ||
RPD | 1.48 | 1.40 | 1.49 | 1.45 | ||
VI | R2 | 0.53 | 0.57 | 0.56 | 0.64 | |
RMSE (%) | 1.24 | 1.24 | 1.08 | 1.29 | ||
RPD | 1.61 | 1.18 | 1.30 | 1.55 | ||
Band + VI | R2 | 0.61 | 0.65 | 0.63 | 0.75 | |
RMSE (%) | 1.24 | 1.18 | 1.19 | 1.15 | ||
RPD | 1.61 | 1.69 | 1.68 | 1.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Yan, J.; Huang, C.; Ma, W.; Guo, Z.; Li, J.; Yao, X.; Da, Q.; Cheng, K.; Yang, H. Estimation of Silage Maize Plant Moisture Content Based on UAV Multispectral Data and Ensemble Learning Methods. Agriculture 2025, 15, 746. https://doi.org/10.3390/agriculture15070746
Li X, Yan J, Huang C, Ma W, Guo Z, Li J, Yao X, Da Q, Cheng K, Yang H. Estimation of Silage Maize Plant Moisture Content Based on UAV Multispectral Data and Ensemble Learning Methods. Agriculture. 2025; 15(7):746. https://doi.org/10.3390/agriculture15070746
Chicago/Turabian StyleLi, Xuchun, Jixuan Yan, Caixia Huang, Weiwei Ma, Zichen Guo, Jie Li, Xiangdong Yao, Qihong Da, Kejing Cheng, and Hongyan Yang. 2025. "Estimation of Silage Maize Plant Moisture Content Based on UAV Multispectral Data and Ensemble Learning Methods" Agriculture 15, no. 7: 746. https://doi.org/10.3390/agriculture15070746
APA StyleLi, X., Yan, J., Huang, C., Ma, W., Guo, Z., Li, J., Yao, X., Da, Q., Cheng, K., & Yang, H. (2025). Estimation of Silage Maize Plant Moisture Content Based on UAV Multispectral Data and Ensemble Learning Methods. Agriculture, 15(7), 746. https://doi.org/10.3390/agriculture15070746