Big Data Analytics and Machine Learning for Smart Agriculture
Author Contributions
Funding
Conflicts of Interest
References
- Shaikh, T.A.; Rasool, T.; Lone, F.R. Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming. Comput. Electron. Agric. 2022, 198, 107119. [Google Scholar]
- Frankowski, J.; Zaborowicz, M.; Sieracka, D.; Łochyńska, M.; Czeszak, W. Prediction of the hemp yield using artificial intelligence methods. J. Nat. Fibers 2022, 19, 13725–13735. [Google Scholar]
- Osinga, S.A.; Paudel, D.; Mouzakitis, S.A.; Athanasiadis, I.N. Big data in agriculture: Between opportunity and solution. Agric. Syst. 2022, 195, 103298. [Google Scholar]
- Pinna, D.; Pezzuolo, A.; Cogato, A.; Pornaro, C.; Macolino, S.; Marinello, F. Applications of satellite platforms and machine learning for mapping and monitoring grasslands and pastures: A systematic and comprehensive review. Smart Agric. Technol. 2024, 9, 100571. [Google Scholar]
- Huang, Q.; Wang, X.; Gao, Q.; Carraro, A.; Pezzuolo, A.; Marinello, F. How to assess the digitization and digital effort: A framework for Digitization Footprint (Part 1). Comput. Electron. Agric. 2025, 230, 109875. [Google Scholar] [CrossRef]
- Carraro, A.; Saurio, G.; Marinello, F. Towards rigorous dataset quality standards for deep learning tasks in precision agriculture: A case study exploration. Smart Agric. Technol. 2025, 10, 100721. [Google Scholar]
- Parenti, O.; Guerrini, L.; Zanoni, B. Techniques and technologies for the breadmaking process with unrefined wheat flours. Trends Food Sci. Technol. 2020, 99, 152–166. [Google Scholar]
- He, C.; Wan, F.; Ma, G.; Mou, X.; Zhang, K.; Wu, X.; Huang, X. Analysis of the Impact of Different Improvement Methods Based on YOLOV8 for Weed Detection. Agriculture 2024, 14, 674. [Google Scholar] [CrossRef]
- Aguilera, C.A.; Figueroa-Flores, C.; Aguilera, C.; Navarrete, C. Comprehensive Analysis of Model Errors in Blueberry Detection and Maturity Classification: Identifying Limitations and Proposing Future Improvements in Agricultural Monitoring. Agriculture 2024, 14, 18. [Google Scholar] [CrossRef]
- Musanase, C.; Vodacek, A.; Hanyurwimfura, D.; Uwitonze, A.; Kabandana, I. Data-Driven Analysis and Machine Learning-Based Crop and Fertilizer Recommendation System for Revolutionizing Farming Practices. Agriculture 2023, 13, 2141. [Google Scholar] [CrossRef]
- Sieracka, D.; Zaborowicz, M.; Frankowski, J. Identification of Characteristic Parameters in Seed Yielding of Selected Varieties of Industrial Hemp (Cannabis sativa L.) Using Artificial Intelligence Methods. Agriculture 2023, 13, 1097. [Google Scholar] [CrossRef]
- Xie, B.; Su, Q.; Tang, B.; Li, Y.; Yang, Z.; Wang, J.; Wang, C.; Lin, J.; Li, L. Combining Neural Architecture Search with Knowledge Graphs in Transformer: Advancing Chili Disease Detection. Agriculture 2023, 13, 2025. [Google Scholar] [CrossRef]
- Bai, Y.; Hou, F.; Fan, X.; Lin, W.; Lu, J.; Zhou, J.; Fan, D.; Li, L. A Lightweight Pest Detection Model for Drones Based on Transformer and Super-Resolution Sampling Techniques. Agriculture 2023, 13, 1812. [Google Scholar] [CrossRef]
- Amin, J.; Anjum, M.A.; Zahra, R.; Sharif, M.I.; Kadry, S.; Sevcik, L. Pest Localization Using YOLOv5 and Classification Based on Quantum Convolutional Network. Agriculture 2023, 13, 662. [Google Scholar] [CrossRef]
- Nazir, T.; Iqbal, M.M.; Jabbar, S.; Hussain, A.; Albathan, M. EfficientPNet—An Optimized and Efficient Deep Learning Approach for Classifying Disease of Potato Plant Leaves. Agriculture 2023, 13, 841. [Google Scholar] [CrossRef]
- Ullah, Z.; Alsubaie, N.; Jamjoom, M.; Alajmani, S.H.; Saleem, F. EffiMob-Net: A Deep Learning-Based Hybrid Model for Detection and Identification of Tomato Diseases Using Leaf Images. Agriculture 2023, 13, 737. [Google Scholar] [CrossRef]
- Mumtaz, S.; Raza, M.; Okon, O.D.; Rehman, S.U.; Ragab, A.E.; Rauf, H.T. A Hybrid Framework for Detection and Analysis of Leaf Blight Using Guava Leaves Imaging. Agriculture 2023, 13, 667. [Google Scholar] [CrossRef]
- Shahare, Y.; Singh, M.P.; Singh, P.; Diwakar, M.; Singh, V.; Kadry, S.; Sevcik, L. A Comprehensive Analysis of Machine Learning-Based Assessment and Prediction of Soil Enzyme Activity. Agriculture 2023, 13, 1323. [Google Scholar] [CrossRef]
- Addis, A.H.; Blair, H.T.; Kenyon, P.R.; Morris, S.T.; Schreurs, N.M.; Garrick, D.J. Agent-Based Modelling to Improve Beef Production from Dairy Cattle: Young Beef Production. Agriculture 2023, 13, 898. [Google Scholar] [CrossRef]
- Choe, H.O.; Lee, M.-H. Artificial Intelligence-Based Fault Diagnosis and Prediction for Smart Farm Information and Communication Technology Equipment. Agriculture 2023, 13, 2124. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaborowicz, M.; Frankowski, J. Big Data Analytics and Machine Learning for Smart Agriculture. Agriculture 2025, 15, 757. https://doi.org/10.3390/agriculture15070757
Zaborowicz M, Frankowski J. Big Data Analytics and Machine Learning for Smart Agriculture. Agriculture. 2025; 15(7):757. https://doi.org/10.3390/agriculture15070757
Chicago/Turabian StyleZaborowicz, Maciej, and Jakub Frankowski. 2025. "Big Data Analytics and Machine Learning for Smart Agriculture" Agriculture 15, no. 7: 757. https://doi.org/10.3390/agriculture15070757
APA StyleZaborowicz, M., & Frankowski, J. (2025). Big Data Analytics and Machine Learning for Smart Agriculture. Agriculture, 15(7), 757. https://doi.org/10.3390/agriculture15070757