Research Progress on the Improvement of Farmland Soil Quality by Green Manure
Abstract
:1. Introduction
2. Types and Characteristics of Green Manure
3. Effects of Green Manure on Soil Quality
3.1. Effects of Green Manure on Soil Physicochemical Properties
3.2. Effects of Green Manure on Soil Biological Properties
3.3. Effects of Green Manure on Soil Nutrient Cycling
4. Comprehensive Effects of Green Manure on Improving Farmland Soil Quality
4.1. Synergistic Effects of Green Manure with Other Agronomic Practices
4.2. Adaptive Performance in Different Planting Regions and Conditions
4.3. The Feedback Effect of Soil Quality Improvement on Crop Yield and Quality
5. Limitations and Challenges in Current Research
5.1. Limitations in Research Regions
5.2. Insufficient Depth in Mechanism Research
5.3. Challenges in Promotion and Application
6. Future Research Directions
6.1. Strengthening Fundamental Mechanism Research on Green Manure
6.2. Enhancing Regionalized and Precision Management Technologies for Green Manure
6.3. Promoting Green Manure Adoption and Policy Support
7. Summary and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, B.J.; Li, R.C.; Liu, K.C.; Oladele, O.P.; Xu, Z.Y.; Lal, R.; Zhao, X.; Zhang, H.L. Management-induced changes in soil organic carbon and related crop yield dynamics in China’s cropland. Glob. Change Biol. 2023, 29, 3575–3590. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.G.; Huggins, D.R.; Reganold, J.P. Linking soil health and ecological resilience to achieve agricultural sustainability. Front. Ecol. Environ. 2023, 21, 131–139. [Google Scholar] [CrossRef]
- Schiefer, J.; Lair, G.J.; Blum, W.E.H. Potential and limits of land and soil for sustainable intensification of European agriculture. Agric. Ecosyst. Environ. 2016, 155, 283–293. [Google Scholar] [CrossRef]
- Xue, R.; Wang, C.; Zhao, L.; Sun, B.R.; Wang, B.L. Agricultural intensification weakens the soil health index and stability of microbial networks. Agric. Ecosyst. Environ. 2022, 339, 108118. [Google Scholar] [CrossRef]
- Li, R.; Hu, W.Y.; Jia, Z.J.; Liu, H.Q.; Zhang, C.; Huang, B.; Yang, S.H.; Zhao, Y.G.; Zhao, Y.C.; Shukla, M.K.; et al. Soil degradation: A global threat to sustainable use of black soils. Pedosphere 2025, 35, 264–279. [Google Scholar]
- Yao, Z.Y.; Xu, Q.; Chen, Y.P.; Liu, N.; Li, Y.Y.; Zhang, S.Q.; Cao, W.D.; Zhai, B.N.; Wang, Z.H.; Zhang, D.B.; et al. Leguminous green manure enhances the soil organic nitrogen pool of cropland via disproportionate increase of nitrogen in particulate organic matter fractions. Catena 2021, 207, 105574. [Google Scholar] [CrossRef]
- Wei, J.G.; Fan, Z.L.; Hu, F.L.; Mao, S.F.; Yin, F.; Wang, Q.M.; Chai, Q.; Yin, W. Legume green manure can intensify the function of chemical nitrogen fertilizer substitution via increasing nitrogen supply and uptake of wheat. Crop J. 2024, 12, 1222–1232. [Google Scholar]
- Ablimit, R.; Li, W.K.; Zhang, J.D.; Gao, H.N.; Zhao, Y.M.; Cheng, M.M.; Meng, X.Q.; An, L.Z.; Chen, Y. Altering microbial community for improving soil properties and agricultural sustainability during a 10-year maize-green manure intercropping in Northwest China. J. Environ. Manag. 2022, 321, 115859. [Google Scholar] [CrossRef]
- Ren, H.L.; Lv, H.S.; Xu, Q.; Yao, Z.Y.; Yao, P.W.; Zhao, N.; Wang, Z.H.; Huang, D.L.; Cao, W.D.; Gao, Y.J.; et al. Green manure provides growth benefits for soil mesofauna by promoting soil fertility in agroecosystems. Soil Tillage Res. 2024, 238, 106006. [Google Scholar]
- Singh, H.; Northup, B.K.; Prasad, P.V. Water storage and use efficiencies of rainfed winter wheat-summer green manure systems of the US Southern Great Plains. Eur. J. Agron. 2023, 146, 126818. [Google Scholar]
- Ma, L.; Wang, D.T.; Zhang, L.; Ge, Y.; Liu, Y.Q.; Cheng, Y.X.; Jiang, X.F. Green manure application improves insect resistance of subsequent crops through the optimization of soil nutrients and rhizosphere microbiota. iScience 2024, 27, 110320. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.D.; Zhou, G.P.; Gao, S.J. Effects and mechanisms of green manure on endogenous improving soil health. J. Plant Nutr. Fertil. 2024, 30, 1274–1283. [Google Scholar]
- Lyu, H.Q.; Li, Y.; Wang, Y.L.; Wang, F.; Fan, Z.L.; Hu, F.L.; Yin, W.; Zhao, C.; Yu, A.Z.; Chai, Q. No-tillage with total green manure mulching: A strategy to lower N2O emissions. Field Crops Res. 2024, 306, 109238. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Nie, J.; Liang, H.; Wei, C.L.; Wang, Y.; Liao, Y.L.; Lu, Y.H.; Zhou, G.P.; Gao, S.J.; Cao, W.D. The effects of co-utilizing green manure and rice straw on soil aggregates and soil carbon stability in a paddy soil in South China. J. Integr. Agric. 2023, 22, 1529–1545. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Y.L.; Lyu, H.Q.; Fan, Z.L.; Hu, F.L.; He, W.; Yin, W.; Zhao, C.; Chai, Q.; Yu, A.Z. No-tillage mulch with leguminous green manure retention reduces soil evaporation and increases yield and water productivity of maize. Agric. Water Manag. 2024, 290, 108573. [Google Scholar] [CrossRef]
- Yang, R.; Song, S.J.; Chen, S.Y.; Du, Z.Y.; Kong, J.Q. Adaptive evaluation of green manure rotation for a low fertility farmland system: Impacts on crop yield, soil nutrients, and soil microbial community. Catena 2023, 222, 106873. [Google Scholar] [CrossRef]
- Chang, F.D.; Zhang, H.Y.; Zhao, N.; Zhao, P.Y.; Song, J.S.; Yu, R.; Kan, Z.R.; Wang, X.Q.; Wang, J.; Liu, H.J.; et al. Green manure removal with reduced nitrogen improves saline-alkali soil organic carbon storage in a wheat-green manure cropping system. Sci. Total Environ. 2024, 926, 171827. [Google Scholar] [CrossRef]
- Zhou, G.P.; Fan, K.K.; Gao, S.J.; Chang, D.N.; Li, G.L.; Liang, T.; Liang, H.; Li, S.; Zhang, J.D.; Che, Z.X.; et al. Green manuring relocates microbiomes in driving the soil functionality of nitrogen cycling to obtain preferable grain yields in thirty years. Sci. China Life Sci. 2023, 67, 596–610. [Google Scholar] [CrossRef]
- Wang, G.C.; Hu, F.L.; Li, H.T.; Yin, F.Z.L.; Fan, H.; Chai, Q.; Cao, W.D. Research advances on the effect and mechanism of green manure on improving soil carbon sequestration in cropland. J. Plant Nutr. Fertil. 2024, 30, 1185–1198. [Google Scholar]
- Zhou, G.P.; Fan, K.K.; Li, G.L.; Gao, S.J.; Chang, D.N.; Liang, T.; Li, S.; Liang, H.; Zhang, J.D.; Che, Z.X.; et al. Synergistic effects of diazotrophs and arbuscular mycorrhizal fungi on soil biological nitrogen fixation after three decades of fertilization. iMeta 2023, 2, e81. [Google Scholar] [CrossRef]
- Liu, R.; Zhou, G.P.; Chang, D.N.; Gao, S.J.; Han, M.; Zhang, J.D.; Sun, X.F.; Cao, W.D. Transfer characteristics of nitrogen fixed by leguminous green manure crops when intercropped with maize in northwestern China. J. Integr. Agric. 2022, 21, 1177–1187. [Google Scholar]
- Fan, Q.Y.; Xu, C.X.; Zhang, L.; Xie, J.C.; Zhou, G.P.; Liu, J.; Hu, F.; Gao, S.J.; Cao, W.D. Application of milk vetch (Astragalus sinicus L.) with reduced chemical fertilizer improves rice yield and nitrogen, phosphorus, and potassium use efficiency in southern China. Eur. J. Agron. 2023, 144, 126762. [Google Scholar]
- Lou, R.; Li, Y.; Liu, Y.; Jiang, Q.J.; Wu, Q.J.; He, Y.; Liu, J. Is green manure a viable substitute for inorganic fertilizer to improve grain yields and advance carbon neutrality in paddy agriculture? Agric. Ecosyst. Environ. 2024, 359, 108762. [Google Scholar] [CrossRef]
- Ma, D.K.; Yin, L.N.; Ju, W.L.; Li, X.K.; Liu, X.X.; Deng, X.P. Meta-analysis of green manure effects on soil properties and crop yield in northern China. Field Crops Res. 2021, 266, 108146. [Google Scholar]
- Duan, X.J.; Jin, K.M.; Mao, Z.; Liu, L.; He, Y.B.; Xia, S.W.; Hammond, J.P.; White, P.J.; Xu, F.S.; Shi, L. Compacted soil adaptability of Brassica napus driven by root mechanical traits. Soil Tillage Res. 2023, 233, 105785. [Google Scholar] [CrossRef]
- Lamichhane, J.R.; Alletto, L. Ecosystem services of cover crops: A research roadmap. Trend Plant Sci. 2022, 27, 758–768. [Google Scholar]
- Li, P.; Jia, L.; Chen, Q.Q.; Zhang, H.J.; Deng, J.J.; Lu, J.Y.; Xu, L.; Li, H.X.; Hu, F.; Jiao, J.G. Adaptive evaluation for agricultural sustainability of different fertilizer management options for a green manure-maize rotation system: Impacts on crop yield, soil biochemical properties and organic carbon fractions. Sci. Total Environ. 2024, 908, 168170. [Google Scholar] [CrossRef]
- Xu, Q.; Yao, Z.Y.; Chen, Y.P.; Liu, N.; Teng, Z.R.; Huang, D.L.; Cao, W.D.; Kuzyakov, Y.; Shah, T.; Zhao, N.; et al. Priming and balance of soil organic carbon differ with additive C:N ratios and long-term green manuring. Appl. Soil Ecol. 2024, 201, 105495. [Google Scholar]
- Hu, Y.X.; Zhan, P.J.; Thomas, B.W.; Zhao, J.K.; Zhang, X.L.; Yan, H.; Zhang, Z.B.; Chen, S.; Shi, X.J.; Zhang, Y.T. Organic carbon and nitrogen accumulation in orchard soil with organic fertilization and cover crop management: A global meta-analysis. Sci. Total Environ. 2022, 852, 158402. [Google Scholar]
- Li, Z.Q.; Wang, J.H.; Zhang, X. A review on the research of decomposition and nutrients release of green manure. Soil Fertil. Sci. China 2017, 240, 331–342. [Google Scholar]
- Zhang, C.Z.; Xue, W.F.; Xue, J.R.; Zhang, J.; Qiu, L.J.; Chen, X.Y.; Hu, F.; Kardol, P.; Liu, M.Q. Leveraging functional traits of cover crops to coordinate crop productivity and soil health. J. Appl. Ecol. 2022, 59, 2627–2641. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Chang, D.N.; Zhou, G.P.; Gao, S.J.; Zeng, N.H.; Nie, L.P.; Lyu, Y.H.; Cao, W.D. Nutrient absorption and transport characteristics of rice under different nitrogen reduction ratios in a Chinese milk vetch and rice rotation system in southern Henan Province, China. J. Plant Nutr. Fertil. 2022, 28, 1194–1207. [Google Scholar]
- Zhang, J.L.; Nie, J.; Cao, W.D.; Gao, Y.J.; Lu, Y.H.; Liao, Y.L. Long-term green manuring to substitute partial chemical fertilizer simultaneously improving crop productivity and soil quality in a double-rice cropping system. Eur. J. Agron. 2023, 142, 126641. [Google Scholar] [CrossRef]
- Zou, C.M.; Liu, Y.; Yang, J.; Wang, Y.Q.; Zhang, X.H.; Tang, B.; Cai, H.B. Comparative study on nutrient accumulation capacity of leguminous green manure varieties. Crops 2013, 75–79. [Google Scholar]
- Feng, H.M.; Xiao, Y.Y.; Guo, X.L.; Wei, X.; Zhang, M.; Huo, Y.X.; Liu, J.J.; Li, H.B. Effects of adding rapes with purple and green leaves on soil fertility and microorganisms. Chin. J. Soil Sci. 2024, 55, 1429–1439. [Google Scholar]
- Wang, K.K.; Ren, T.; Cong, R.H.; Lu, Z.F.; Li, X.K.; Lu, J.W. Reduction of chemical phosphate fertilizer application in a rice–rapeseed cropping system through continuous straw return. Field Crops Res. 2024, 312, 109399. [Google Scholar] [CrossRef]
- Yu, R.; Zhang, H.Y.; Chang, F.D.; Song, J.S.; Wang, J.; Wang, X.Q.; Kan, Z.R.; Zhao, N.; Li, X.H.; Ma, J.; et al. Mixed sowing of Feed rape and Vicia villosa can substitute nitrogen fertilizer to improve soil multifunctionality in the Hetao irrigation District. Catena 2024, 235, 107617. [Google Scholar] [CrossRef]
- Vieites-Alvarez, Y.; Reigosa, M.J.; Sánchez-Moreiras, A.M. A decade of advances in the study of buckwheat for organic farming and agroecology (2013–2023). Front. Plant Sci. 2024, 15, 1354672. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Liu, H.F.; Ai, Z.M.; Wu, H.M.; Zhang, Z.; Chen, B.D.; Zhu, Y.G.; Liu, G.B.; Xue, S. Impact of long-term fertilization on agroecosystem multifunctionality and yield in Loess Plateau, China. J. Soil Sci. Plant Nutr. 2024, 24, 1121–1133. [Google Scholar] [CrossRef]
- Zhang, S.Z.; Xia, Z.L.; Wu, S.J. Effects of barnyard grass on soil fertility and fertilization efficiency. Soil Fertil. Sci. China 1991, 35–37. [Google Scholar]
- Liu, Z.K.; Feng, W.; Qin, W.L.; Liu, Z.Y.; Xie, N.; Zhi, J.F.; Wei, L.F. Research progress on soil fertility effects of green manure cultivation. J. Grassl. Forage Sci. 2017, 1–6+17. [Google Scholar]
- Ming, Y.F.; Zhu, T.C.; Zhang, J.H.; Li, C.F.; Gao, S.; Xu, J.L.; Li, Y.Q.; Jiao, S.Y. Effect of long-term alfalfa cultivation on soil carbon, nitrogen and phosphorus nutrient transformation in reclaimed lands. J. Ecol. Rural Environ. 2024, 40, 78–86. [Google Scholar]
- Lu, J.Y.; Cai, J.P.; Dijkstra, F.A.; Yin, L.M.; Wang, P.; Cheng, W.X. Rhizosphere priming and effects on mobilization and immobilization of multiple soil nutrients. Soil Biol. Biochem. 2024, 199, 109615. [Google Scholar]
- Baral, R.; Jagadish, S.V.K.; Hein, N.; Lollato, R.P.; Shanoyan, A.; Giri, A.K.; Kim, J.Y.; Kin, M.; Min, D. Exploring the impact of soil water variability and varietal diversity on alfalfa yield, nutritional quality, and farm profitability. Grassl. Res. 2023, 2, 266–278. [Google Scholar]
- Yang, Y.H.; Zhang, S.; Wang, S.; Liu, Z.L.; Fang, L.F.; Zhang, X.L.; Liu, R.; Zhang, J.W.; Zhang, Y.T.; Shi, X.J. Characteristics of yield and nutrient content of common green manures across chinese regions and their potential for nitrogen fertilizer substitution. Acta 2020, 29, 39–55. [Google Scholar]
- Jian, S.L.; Li, S.X.; Liu, S.Q.; Li, X.N. Research advances of cover crops and their important roles. Acta Agron. Sin. 2022, 48, 1–14. [Google Scholar]
- Wang, Y.J.; Liu, L.; Tian, Y.L.; Wu, X.P.; Yang, J.F.; Luo, Y.; Li, H.K.; Awasthi, M.K.; Zhao, Z.Y. Temporal and spatial variation of soil microorganisms and nutrient under white clover cover. Soil Tillage Res. 2020, 202, 104666. [Google Scholar]
- Lu, J.Y.; Yang, J.F.; Keitel, C.; Yin, L.M.; Wang, P.; Cheng, W.X.; Dijkstra, F. Belowground carbon efficiency for nitrogen and phosphorus acquisition varies between lolium perenne and trifolium repens and depends on phosphorus fertilization. Front. Plant Sci. 2022, 13, 927435. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Wang, J.; Condron, L.M.; Guo, B.; Liu, J.; Li, H. Impact of ryegrass cover crop inclusion on soil phosphorus and pqqC-and phoD-harboring bacterial communities. Soil Tillage Res. 2023, 234, 105823. [Google Scholar]
- Dong, M.H.; Zhou, H.J.; Wang, J.; Yang, J.H.; Lai, J.Z.; Chen, Y.L.; Sun, F.; Ye, X.F.; Wu, Y.J. Responses of soil microbial metabolism, function and soil quality to long-term addition of organic materials with different carbon sources. Biochar 2024, 6, 80. [Google Scholar]
- Schärer, M.L.; Fuchslueger, L.; Canarini, A.; Richter, A.; Lüscher, A.; Kahmen, A. Post-drought organic carbon mineralization leads to high productivity and nutrient uptake efficiency of perennial grassland after rewetting. Soil Biol. Biochem. 2025, 204, 109744. [Google Scholar] [CrossRef]
- Cerecetto, V.; Leoni, C.; Jurburg, S.D.; Kampouris, I.D.; Smalla, K.; Babin, D. Pasture-crop rotations modulate the soil and rhizosphere microbiota and preserve soil structure supporting oat cultivation in the Pampa biome. Soil Biol. Biochem. 2024, 195, 109451. [Google Scholar] [CrossRef]
- Xue, Y.F.; Xia, H.Y.; Christie, P.; Zhang, Z. Crop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: A critical review. Ann. Bot. 2016, 117, mcv182. [Google Scholar] [CrossRef]
- Gabhane, V.V.; Ramteke, P.; Chary, G.R.; Patode, R.S.; Ganvir, M.M.; Chorey, A.; Tupe, A.R. Effects of long-term nutrient management in semi-arid Vertisols on soil quality and crop productivity in a cotton-greengram intercropping system. Field Crops Res. 2023, 303, 109115. [Google Scholar] [CrossRef]
- Liu, C.Y.; Zhang, L.Y.; Zhou, J.; Xu, Y.; Yang, Y.D.; Zeng, Z.H.; Zang, H.D. Research progress on the intensification of agroecosystem functions through legume-based crop rotation. Acta Agron. Sin. 2024, 50, 1885–1895. [Google Scholar] [CrossRef]
- Song, J.J.; Zhang, D.D.; Wang, C.Y.; Song, J.H.; Haider, S.; Chang, S.; Shi, X.L.; Bai, J.Z.; Hao, J.Q.; Yang, G.H.; et al. Enhancing soybean yield stability and soil health through long-term mulching strategies: Insights from a 13-year study. Eur. J. Agron. 2024, 161, 127383. [Google Scholar] [CrossRef]
- Yan, Z.J.; Chu, J.C.; Nie, J.W.; Qu, X.Y.; Sánchez-Rodríguez, A.R.; Yang, Y.D.; Pavinato, P.S.; Zeng, Z.H.; Zang, H.D. Legume-based crop diversification with optimal nitrogen fertilization benefits subsequent wheat yield and soil quality. Agric. Ecosyst. Environ. 2024, 374, 109171. [Google Scholar] [CrossRef]
- Mori Alvez, C.; Perdomo Varela, C.; González Barrios, P.; Bentos Guimaraes, A.; del Pino Machado, A. Lupine Cultivation Affects Soil’s P Availability and Nutrient Uptake in Four Contrasting Soils. Agronomy 2024, 14, 389. [Google Scholar] [CrossRef]
- Xu, W.F.; Zhang, Q.; Yuan, W.; Xu, F.Y.; Aslam, M.M.; Miao, R.; Li, Y.; Wang, Q.W.; Li, X.; Zhang, X.; et al. The genome evolution and low-phosphorus adaptation in white lupin. Nature 2020, 11, 1069. [Google Scholar] [CrossRef]
- Lyu, H.Q.; Yu, A.Z.; Chai, Q.; Wang, F.; Wang, Y.L.; Wang, P.F.; Shang, Y.P.; Yang, X.H. No-tillage with total green manure incorporation: A better strategy to higher maize yield and nitrogen uptake in arid irrigation areas. J. Integr. Agric. 2025, in press. [Google Scholar] [CrossRef]
- Liu, R.; Yang, L.; Zhang, J.D.; Zhou, G.P.; Chang, D.N.; Chai, Q.; Cao, W.D. Maize and legume intercropping enhanced crop growth and soil carbon and nutrient cycling through regulating soil enzyme activities. Eur. J. Agron. 2024, 159, 127237. [Google Scholar] [CrossRef]
- Li, A.P.; Zheng, K.B.; Lin, B.Y.; Chen, X.X. Research on the enhancement of soil fertility and soil efficacy by faba bean. Agric. Technol. 2007, 61–63. [Google Scholar]
- Wang, L.H.; Li, C.B.; Wan, S.P.; Liu, Y.C.; Zhang, X.Z.; Huang, M.; Dai, L.L. Effects of nitrogen application rate on nutrient utilization efficiency of vicia faba. J. Southwest For. Univ. 2024, 44, 208–213. [Google Scholar]
- Qin, J.H.; Wen, Y.; Li, J.F.; Xu, C.; Huang, L.Y.; Zheng, J.K.; Cao, Q.Y.; Li, H.S. Allelopathic effects of green manure plant sesbania and Its impact on soil fertility. Soils 2015, 47, 524–529. [Google Scholar]
- Luo, H.F.; Wang, X.F.; You, C.Q.; Wu, X.D.; Pan, D.F.; Lyu, Z.Y.; Li, T.; Zhang, D.M.; Shen, Z.B.; Zhang, X.D.; et al. Telomere-to-telomere genome of the allotetraploid legume Sesbania cannabina reveals transposon-driven subgenome divergence and mechanisms of alkaline stress tolerance. Sci. China Life Sci. 2024, 67, 149–160. [Google Scholar] [CrossRef]
- Jing, C.M.; Liu, H.; Xi, L.Q.; Ma, C.H. Research progress of Melilotus—An excellent forage and green manure. Acta Pratacult. Sci. 2014, 31, 2308–2315. [Google Scholar]
- Liu, J.L.; Dong, Z.; Cao, X.Q.; Wang, Z.Z.; Liu, Q.Q.; Cao, R. Effects of different mulching and tillage practices on soil nutrient temporal and spatial characteristics and crop yield of sloping farmland in black soil areas. Agric. Res. Arid Areas 2024, 189–198. [Google Scholar]
- Zhang, C.L.; Liu, C.Z.; Li, B.Y.; Zhang, M.; Lyu, Y.H.; Chen, X.Q.; Cao, W.D. The characteristics of decomposition and nutrient release of Vicia villosa under different fertilization treatments. Chin. J. Appl. Ecol. 2019, 30, 2275–2283. [Google Scholar]
- Prikhodko, A.V.; Cherkashyna, A.V.; Zubochenko, A.A.; Svyatyuk, Y.V.; Gongalo, A.A.; Pikhtereva, A.V.; Moreva, T.B. Influence of composition species of green manure crops on soil fertility. IOP Conf. Ser. Earth Environ. Sci. 2021, 937, 032022. [Google Scholar] [CrossRef]
- Mao, X.H.; Li, Z.P.; Yan, Q.B.; Han, M. Decomposition law and nutrient release characteristics of green manure Vicia villosa L. in Qinghai Plateau. Agric. Res. Arid Areas 2022, 40, 139–202. [Google Scholar]
- Tang, X.; Chen, Y.; Wu, C.Y.; Yang, S.M.; Liu, Y.X.; Lv, H.H.; Ma, Y.B.; Li, J.M. Fertilizer efficiency and soil apparent nutrient balance for barley under long-term fertilization. Acta Agron. Sin. 2013, 39, 665–672. [Google Scholar] [CrossRef]
- Xie, Z.J.; Zhou, C.H.; He, Y.Q.; Song, T.; Yu, Y.; Wu, J. A review of Astragalus sinicus in paddy field in south China since 2000s. Acta Pratacult. Sin. 2018, 27, 185–196. [Google Scholar]
- Dong, Z.H.; Zhang, Y.L.; Wang, H.; Zhao, L.F.; Sui, S.X.; Li, Z.S.; Wang, Y.T.; Zhu, Q.Z. Research progress and development prospect of green manure rape in China. J. Hebei Agric. Sci. 2021, 25, 67–70. [Google Scholar]
- Ahmed, D.A.; Khalld, N.; Ahmad, A.N.; Abbasl, N. Phytochemicals and biofunctional properties of buckwheat: A review. J. Agric. Sci. 2013, 152, 166. [Google Scholar]
- Wu, S.G.; Wang, Q.; Zhao, X.P.; Wu, C.X.; Chen, L.P.; Shen, J.L. Biological characteristics of barnyard grass in paddy fields and its integrated management strategies. J. Weed Sci. 2006, 1–6. [Google Scholar]
- Zhang, Y.Y.; Zhao, H.J.; Xiang, H.X.; Zhang, J.S.; Wang, L. Seasonal and diurnal transcriptome atlas in natural environment reveals flowering time regulatory network in Alfalfa. Plant Cell Environ. 2025. early view. [Google Scholar] [CrossRef]
- Haughey, E.; McElwain, J.C.; Finn, J.A. Annual yields of multispecies grassland mesocosms outperformed monocultures across a drought gradient due to complementarity effects and rapid recovery. Grassl. Res. 2023, 2, 309–321. [Google Scholar]
- Shi, Z.H.; Bao, F.J. Biological characteristics, application value and cultivation techniques of haifa white clover. Anhui Agric. Sci. Bull. 2013, 19, 111–112. [Google Scholar]
- Lan, J.; Zhang, L.X.; Shao, S.R.; Yao, A.X. Study on characteristics of growth and development of turf-type perennial ryegrass. Acta Pratacult. Sin. 2003, 20, 43–45. [Google Scholar]
- Yang, J.K.; Wang, Y.X.; Liu, Y.J. Characteristics and high-yield cultivation techniques of oat. Chin. Hortic. Abstr. 2009, 25, 168–169. [Google Scholar]
- Zhao, T.Y.; Zhang, Y.H.; Kang, Y.F. Study on screening mung bean varieties and the changes of growth characteristics and nutritional components during germination. Food Res. Dev. 2018, 39, 170–175. [Google Scholar]
- Zhu, B.B.; Sun, S.; Han, T.F.; Wu, C.X. Comparison of growth period and its structure traits between wild and cultivated soybeans in China. Soybean Sci. 2012, 31, 84–898. [Google Scholar]
- Wang, X.L.; Zeng, D.Q.; Gao, Z.; Liu, T.Y.; Zhu, Q.; Zhou, H.; Wang, H.R.; Wang, B.Q.; Yu, F.X. Research progress on lupinus spp. and Its developmental strategies in China. Jiangxi Sci. 2007, 442–445+499. [Google Scholar]
- Sun, L.Q.; Li, L.; Han, X.S.; Chen, H.W.; Liu, L.J.; Liu, C.Y. Analysis on the progress of nutritional value and utilization about the pea. Hubei Agric. Sci. 2022, 61, 111–116. [Google Scholar]
- Long, Y.C.; Zhang, J.J.; Wang, P.; Wu, Y.X.; Du, C.Z. Genetic analysis of determinate growth habit in faba bean and germplasm screening. South China Agric. 2023, 17, 50–55. [Google Scholar]
- He, T.T.; Xing, J.C.; Liu, C.; Dong, J.; Zhu, X.M.; Zhao, B.Q.; Wen, Z.G.; Zhao, X.H.; Hong, L.Z. Research Progress and Application Status of Sesbania. Jiangsu Agric. Sci. 2021, 49, 43–49. [Google Scholar]
- Zhong, J.; Lan, S.C.; Yang, J.Q.; Liu, G.W.; Hu, H.L.; Zhou, B. Study on characteristics of reproductive structures and seed germination of invasive plant melilotus offcinalis. Seed 2022, 41, 38–43. [Google Scholar]
- Chai, J.; Yu, A.Z.; Li, Y.; Wang, Y.L.; Wang, F.; Wang, P.F.; Lyu, H.Q.; Yang, X.H.; Shang, Y.P. Effects of green manure incorporation combined with nitrogen fertilizer reduction on wheat yield and nitrogen utilization in oasis irrigated area. Acta Agron. Sin. 2023, 49, 3131–3140. [Google Scholar]
- Xu, Q.F. Research progress on characteristics and applications of triticale. Grassl. Turf 2008, 80–86. [Google Scholar]
- Jiang, C.C.; Kan, J.H.; Gao, G.Q.; Dockter, C.; Li, C.D.; Wu, W.X.; Yang, P.; Stein, N. Barley2035: A decadal vision for barley research and breeding. Mol. Plant 2025, 18, 195–218. [Google Scholar] [CrossRef]
- Ai, C.; Zhao, Y.Z.; Zhang, L.Y.; Zhang, M.L.; Huang, S.Y.; Wang, S.Y.; Zhou, W. Research progress on associative nitrogen fixation of gramineous crops. J. Plant Nutr. Fertil. 2024, 30, 1307–1321. [Google Scholar]
- Yang, L.; Luo, Y.; Lu, B.L.; Zhou, G.P.; Chang, D.N.; Gao, S.J.; Zhang, J.D.; Che, Z.X.; Cao, W.D. Long-term maize and pea intercropping improved subsoil carbon storage while reduced greenhouse gas emissions. Agric. Ecosyst. Environ. 2023, 349, 108444. [Google Scholar]
- Duval, M.E.; Galantini, J.A.; Capurro, J.E.; Martinez, J.M. Winter cover crops in soybean monoculture: Effects on soil organic carbon and its fractions. Soil Tillage Res. 2016, 161, 95–105. [Google Scholar]
- Al-Shammary, A.A.G.; Al-Shihmani, S.S.; Fernández-Gálvez, J.; Caballero-Calvo, A. Optimizing sustainable agriculture: A comprehensive review of agronomic practices and their impacts on soil attributes. J. Environ. Manag. 2024, 364, 121487. [Google Scholar]
- Liu, Y.; Wang, P.X.; Yu, T.B.; Zang, H.D.; Zeng, Z.H.; Yang, Y.D. Manure replacement of chemical fertilizers can improve soil quality in the wheat-maize system. Appl. Soil Ecol. 2024, 200, 105453. [Google Scholar]
- Wang, P.F.; Yu, A.Z.; Li, Y.; Wang, Y.L.; Lyu, H.Q.; Wang, F.; Shang, Y.P.; Yang, X.H.; Chai, Q. Reducing nitrogen application by 20% under the condition of multiple cropping using green manure after wheat harvesting can mitigate carbon emission without sacrificing maize yield in arid areas. Field Crops Res. 2024, 306, 109232. [Google Scholar] [CrossRef]
- Fan, Z.L.; Chai, Q.; Cao, W.D.; Yu, A.Z.; Zhao, C.; Xie, J.H.; Yin, W.; Hu, F.L. Ecosystem service function of green manure and its application in dryland agriculture of China. Chin. J. Appl. Ecol. 2020, 31, 1389–1402. [Google Scholar]
- Si, A.; Xiao, Y.X.; Chen, J.; Du, M.L.; Hu, J.X.; Zou, X.C.; Wan, R.P.; Jiang, M.Z.; Li, Z.; Zhou, S.X.; et al. Effects of nitrogen addition on soil aggregate stability and nutrient contents in an evergreen broad-leaved forest in the Rainy Area of Western China. Chin. J. Appl. Environ. 2024, 30, 879–885. [Google Scholar]
- Yang, Y.; Zhang, Y.G.; Yu, X.X.; Jia, G.D. Soil microorganism regulated aggregate stability and rill erosion resistance under different land uses. Catena 2023, 228, 107176. [Google Scholar]
- Xing, J.; Li, X.Y.; Li, Z.Q.; Wang, X.T.; Hou, N.; Li, D.P. Remediation of soda-saline-alkali soil through soil amendments: Microbially mediated carbon and nitrogen cycles and remediation mechanisms. Sci. Total Environ. 2024, 924, 171641. [Google Scholar]
- Zhang, T.Y.; Yang, F.; Wang, Z.C.; Shao, X.W.; Zhou, J.; Miao, Y.; Nie, Z.Y.; Zhang, L.; Ma, L.; Guo, L.Y.; et al. Effects of planting and overturning green manure crops on improvement of saline-sodic soils. Agric. Res. Arid Areas 2024, 42, 225–233+243. [Google Scholar]
- Lian, X.D.; Zhang, L.; Liu, S.R.; Cai, Z.J.; Zheng, L.; Zhang, Q.; Zhou, J.L.; Xu, M.G. Response of crop yield to soil pH and the influencing factors. J. Plant Nutr. Fertil. 2023, 29, 1618–1629. [Google Scholar]
- Rasmussen, C.; Heckman, K.; Wieder, W.R.; Keiluweit, M.; Lawrence, C.R.; Berhe, A.A.; Blankinship, J.C.; Crow, S.E.; Druhan, J.L.; Pries, C.E.H.; et al. Beyond clay: Towards an improved set of variables for predicting soil organic matter content. Biogeochemistry 2018, 137, 297–306. [Google Scholar] [CrossRef]
- Hu, Q.J.; Thomas, B.W.; Powlson, D.; Hu, Y.X.; Zhang, Y.; Jun, X.; Shi, X.J.; Zhang, Y.T. Soil organic carbon fractions in response to soil, environmental and agronomic factors under cover cropping systems: A global meta-analysis. Agric. Ecosyst. Environ. 2023, 355, 108591. [Google Scholar] [CrossRef]
- Li, Z.; Kravchenko, A.N.; Cupples, A.; Cupples, A.K.; Kuzyakov, Y.; Robertson, G.P.; Blagodatskaya, E. Composition and metabolism of microbial communities in soil pores. Nat. Commun. 2024, 15, 3578. [Google Scholar] [CrossRef]
- Philippot, L.; Chenu, C.; Kappler, A.; Rilling, M.C.; Fierer, N. The interplay between microbial communities and soil properties. Nat. Rev. Microbiol. 2024, 22, 226–239. [Google Scholar] [CrossRef]
- Whalen, E.D.; Grandy, A.S.; Geyer, K.M.; Morrison, E.W.; Frey, S.D. Microbial trait multifunctionality drives soil organic matter formation potential. Nat. Commun. 2024, 15, 10209. [Google Scholar] [CrossRef]
- Lyu, H.Q.; Yu, A.Z.; Chai, Q.; Wang, F.; Wang, Y.L.; Wang, P.F.; Shang, Y.P.; Yang, X.H. Enhancing soil quality and crop yield by increasing dominant bacterial abundance and reducing bacterial diversity under no-tillage with total green manure incorporation. Agric. Ecosyst. Environ. 2025, 378, 109303. [Google Scholar] [CrossRef]
- McNichol, S.M.; Sanchez-Quete, F.; Loeb, S.K.; Teske, A.P.; Walter, S.R.S.; Mahmoudi, N. Dynamics of carbon substrate competition among heterotrophic microorganisms. ISME J. 2024, 18, wrae018. [Google Scholar] [CrossRef]
- Chang, D.N.; Song, Y.R.; Liang, H.; Liu, R.; Cai, C.; Lv, S.L.; Liao, Y.L.; Nie, J.; Duan, T.Y.; Cao, W.D. Planting Chinese milk vetch with phosphate-solubilizing bacteria inoculation enhances phosphorus turnover by altering the structure of the phoD-harboring bacteria community. Eur. J. Soil Biol. 2024, 123, 103678. [Google Scholar] [CrossRef]
- Li, Z.L.; Qiu, L.X.; Zhang, T.J.; Gaoyang, E.; Zhang, L.L.; Wang, L.L.; Wu, L.; Wang, Y.F.; Zhang, Y.F.; Dong, J.; et al. Long-term application of controlled-release potassium chloride increases maize yield by affecting soil bacterial ecology, enzymatic activity and nutrient supply. Field Crops Res. 2023, 297, 108946. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, Y.; Cao, W.; Yang, Y.; Hu, Y.; He, T.; Li, Z.; Wang, P.; Chen, X.; Chen, J.; et al. Legume cover crops sequester more soil organic carbon than non-legume cover crops by stimulating microbial transformations. Geoderma 2024, 450, 117024. [Google Scholar] [CrossRef]
- Che, T.; Xu, Y.Z.; Li, Y.J.; Wei, Z.M.; Zang, X.Y.; Xiao, Z.L.; Hu, F.; Jiao, J.G.; Zhang, X.J.; Xu, L.; et al. Mixed planting reduces the shaping ability of legume cover crop on soil microbial community structure. Appl. Soil Ecol. 2022, 178, 104581. [Google Scholar] [CrossRef]
- Pang, Z.Q.; Chen, J.; Wang, T.H.; Gao, C.S.; Li, Z.M.; Guo, L.T.; Xu, J.P.; Cheng, Y. Linking Plant Secondary Metabolites and Plant Microbiomes: A Review. Front. Plant Sci. 2021, 12, 621276. [Google Scholar] [CrossRef]
- Wang, Y.L.; Yu, A.Z.; Lyu, H.Q.; Shang, Y.P.; Wang, P.F.; Wang, F.; Yang, X.H.; Yin, B.; Liu, Y.L.; Zhang, D.L.; et al. No-tillage mulch with green manure retention improves maize yield by increasing the net photosynthetic rate. Eur. J. Agron. 2024, 159, 127275. [Google Scholar] [CrossRef]
- Chang, D.N.; Gao, S.J.; Zhou, G.P.; Deng, S.H.; Jia, J.Z.; Wang, E.; Cao, W.D. The chromosome-level genome assembly of Astragalus sinicus and comparative genomic analyses provide new resources and insights for understanding legume-rhizobial interactions. Plant Commun. 2022, 3, 100263. [Google Scholar] [CrossRef]
- Jiang, S.Y.; Jardinaud, M.F.; Gao, J.P.; Pecrix, Y.; Wen, J.; Mysore, K.; Xu, P.; Sanchez-canizares, C.; Ruan, Y.T.; Li, Q.J.; et al. NIN-like protein transcription factors regulate leghemoglobin genes in legume nodules. Science 2021, 374, 625–628. [Google Scholar] [CrossRef]
- Yang, J.; Lan, L.Y.; Jin, Y.; Yu, N.; Wang, D.; Wang, E. Mechanisms underlying legume-rhizobium symbioses. J. Integr. Plant Biol. 2022, 64, 244–267. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.L.; Wang, Z.; Chen, Z.H. The contribution of organic and chemical fertilizers on the pools and availability of phosphorus in agricultural soils based on a meta-analysis. Eur. J. Agron. 2024, 156, 127144. [Google Scholar] [CrossRef]
- Wang, H.; Tang, S.; Han, S.; Li, M.; Cheng, W.L.; Bu, R.Y.; Cao, W.D.; Wu, J. Effects of long-term substitution of chemical fertilizer with Chinese milk vetch on soil phosphorus availability and leaching risk in the double rice systems of Eastern China. Field Crops Res. 2023, 302, 109047. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Wang, L.; Guo, Z.H.; Xu, L.; Zhao, H.Y.; Zhao, P.; Ma, C.H.; Yi, K.K.; Jia, X.Q. Revealing the underlying molecular basis of phosphorus recycling in the green manure crop Astragalus sinicus. J. Clean. Prod. 2022, 341, 130924. [Google Scholar] [CrossRef]
- Fang, C.Y.; Li, P.; Zhang, J.L.; Lu, Y.H.; Tang, Y.Y.; Tu, N.M.; Liao, Y.L.; Nie, J. Soil Cd bioavailability response characteristics to microbes in paddy fields with co-incorporation of milk vetch, rice straw and amendments. Sci. Total Environ. 2024, 935, 173306. [Google Scholar] [CrossRef] [PubMed]
- Nazir, M.J.; Li, G.L.; Nazir, M.M.; Zulfiqar, F.; Siddique, K.H.M.; Iqbal, B.; Du, D.L. Harnessing soil carbon sequestration to address climate change challenges in agriculture. Soil Tillage Res. 2024, 237, 105959. [Google Scholar]
- Gou, Z.W.; Yin, W.; Asibi, A.E.; Fan, Z.L.; Chai, Q.; Cao, W.D. Improving the sustainability of cropping systems via diversified planting in arid irrigation areas. Agron. Sustain. Dev. 2022, 42, 88. [Google Scholar] [CrossRef]
- Liu, C.; Plaza-Bonilla, D.; Coulter, J.A.; Kutcher, H.R.; Beckie, H.; Wang, L.; Floc’h, J.B.; Hamel, C.; Siddique, K.H.M.; Li, L.L.; et al. Chapter Six—Diversifying crop rotations enhances agroecosystem services and resilience. Adv. Agron. 2022, 173, 299–335. [Google Scholar]
- Liu, W.X.; He, C.; Han, S.W.; Lin, B.J.; Liu, W.S.; Dang, Y.P.; Zhao, X.; Zhang, H.L. Enhancing soil ecosystem multifunctionality through combined conservation tillage and legume-based crop rotation in the North China Plain. Agric. Ecosyst. Environ. 2025, 379, 109355. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, J.; Beillouin, D.; Lambers, H.; Yang, Y.D.; Smith, P.; Zeng, Z.H.; Olesen, J.E.; Zang, H.D. Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers. Nat. Commun. 2022, 13, 4926. [Google Scholar] [CrossRef]
- Zhou, W.; Ma, Q.X.; Wu, L.; Hu, R.G.; Jones, D.L.; Chadwick, D.R.; Jiang, Y.B.; Wu, Y.P.; Xia, X.G.; Yang, L.; et al. The effect of organic manure or green manure incorporation withreductions in chemical fertilizer on yield-scaled N2O emissions in a citrus orchard. Agric. Ecosyst. Environ. 2022, 326, 107806. [Google Scholar]
- Zhao, N.; Wang, X.Q.; Ma, J.; Li, X.H.; Cao, J.F.; Zhou, J.; Wu, L.M.; Zhao, P.Y.; Cao, W.D. Co-incorporating green manure and crop straw increases crop productivity and improves soil quality with low greenhouse-gas emissions in a crop rotation. Crop J. 2024, 12, 1233–1241. [Google Scholar]
- Zhang, D.K.; Yin, W.; Chai, Q.; Fan, Z.L.; Hu, F.L.; Zhao, L.H.; Fan, H.; He, W.; Cao, W.D. Enhancing crop production and carbon sequestration of wheat in arid areas by green manure with reduced nitrogen fertilizer. J. Environ. Manag. 2024, 365, 121571. [Google Scholar]
- Wang, Y.; Yao, Z.S.; Zhan, Y.; Zheng, X.H.; Zhou, M.H.; Yan, G.X.; Wang, L.; Werner, C.; Butterbach-Bahl, K. Potential benefits of liming to acid soils on climate change mitigation and food security. Glob. Change Biol. 2021, 27, 2807–2821. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.X.; Fang, C.Y.; Yu, Z.Y.; Gao, Y.J.; Zhang, J.L.; Lu, Y.H.; Liao, Y.L.; Cao, W.D.; Nie, J.; Tu, N.M. Effects of green manure, rice straw return and lime combination on soil acidity and rice yield. Acta Pedol. Sin. 2024, 61, 1616–1627. [Google Scholar]
- Guo, Y.D.; Cheng, M.; Zhao, X.F.; Hao, B.P.; Zhang, Y.F.; Cao, W.D.; Zheng, J.S. Effects of green manure rotation on soil properties and yield and quality of silage maize in saline-alkali soils. Chin. J. Eco-Agric. 2018, 26, 856–864. [Google Scholar]
- Jing, X.X. Research progress on amendments for saline-alkali soil remediation. Agric. Henan 2020, 17–19. [Google Scholar]
- Wang, Y.L.; Yu, A.Z.; Lyu, H.Q.; Shang, Y.P.; Wang, P.F.; Wang, F.; Yang, X.H.; Yin, B.; Liu, Y.L.; Zhang, D.L.; et al. No-tillage mulch with green manure retention can mitigate carbon emissions, increase crop productivity, and promote agricultural sustainability. Eur. J. Agron. 2024, 161, 127351. [Google Scholar] [CrossRef]
- Marshall, C.B.; Lynch, D.H. Soil microbial and macrofauna dynamics under different green manure termination methods. Appl. Soil Ecol. 2020, 148, 103505. [Google Scholar] [CrossRef]
- Chen, Y.; Li, S.; Liu, N.; He, H.; Cao, X.Y.; Lyu, C.; Zhang, K.; Dai, J.L. Effects of different types of microbial inoculants on available nitrogen and phosphorus, soil microbial community, and wheat growth in high-P soil. Environ. Sci. Pollut. Res. 2021, 28, 23036–23047. [Google Scholar] [CrossRef]
- Knapp, S.; Heijden, M.G.A.V. A global meta-analysis of yield stability in organic and conservation agriculture. Nature 2018, 9, 3632. [Google Scholar] [CrossRef]
- Wang, Y.L.; Yu, A.Z.; Wang, P.F.; Shang, Y.P.; Wang, F.; Lyu, H.Q.; Pang, X.N.; Li, Y.; Liu, Y.L.; Yin, B.; et al. No-tillage with total green manure mulching can improve soil moisture and temperature environment, promote maize root structure and photosynthetic capacity to increase maize yield. J. Integr. Agric. 2025, in press. [Google Scholar]
- Waqas, M.A.; Li, Y.; Smith, P.; Wang, X.H.; Ashraf, M.N.; Noor, M.A.; Amou, M.; Shi, S.W.; Zhu, Y.C.; Li, J.L.; et al. The influence of nutrient management on soil organic carbon storage, crop production, and yield stability varies under different climates. J. Clean. Prod. 2020, 268, 121922. [Google Scholar] [CrossRef]
- Gandhamanagenahalli A, R.; Dass, A.; Venkatesh, P.; Choudhary, A.K.; Upadhyay, P.K.; Chandrashekar, A.B.; Francaviglia, R.; Sannagoudar, M.S.; Rangappa, U.M.; Singh, V.K.; et al. Soil moisture dynamics, rooting traits, crop and water productivity of wheat under different tillage, irrigation and nutrition conditions. Farming Syst. 2024, 2, 100087. [Google Scholar] [CrossRef]
- Yu, X.; Keitel, C.; Zhang, Y.; Wangeci, A.N.; Dijkstra, F.A. Global meta-analysis of nitrogen fertilizer use efficiency in rice, wheat and maize. Agric. Ecosyst. Environ. 2022, 338, 108089. [Google Scholar] [CrossRef]
- Wang, W.; Tian, T.; Li, M.Y.; Wang, B.Z.; Mei, F.J.; Li, J.Y.; Wang, N.; Yang, Y.M.; Zhang, Q.; Tao, H.Y.; et al. Carbon and nitrogen stoichiometry across plant–soil system accounts for the degradation of multi-year alfalfa grassland. Front. Plant Sci. 2024, 15, 1400261. [Google Scholar] [CrossRef]
- Renwick, L.L.R.; Deen, W.; Silva, L.; Gilbert, M.E.; Maxwell, T.; Bowles, T.M.; Gaudin, A.C.M. Long-term crop rotation diversification enhances maize drought resistance through soil organic matter. Environ. Res. Lett. 2021, 16, 084067. [Google Scholar] [CrossRef]
- Islam, M.D.; Price, A.H.; Hallett, P.D. Effects of root growth of deep and shallow rooting rice cultivars in compacted paddy soils on subsequent rice growth. Rice Sci. 2023, 30, 459–472. [Google Scholar] [CrossRef]
- Wang, X.L.; El-Badri, A.M.; Li, M.L.; Batool, M.; Wang, C.Y.; Shao, D.L.; Kuai, J.; Wang, B.; Wang, J.; Xu, Z.H.; et al. Micro-ridge-furrow soil moisture regulation technology improves seedling quality and yield of winter rapeseed. Soil Tillage Res. 2024, 237, 105960. [Google Scholar] [CrossRef]
- Liang, Q.; Zhang, T.B.; Liu, Z.Y.; Gao, W.Q.; Cheng, Y.; Feng, H. Effects of Different Green Manure Crops on Soil Water, Nitrogen, and Yield: Preliminary Results in an Apple Orchard on the Loess Plateau, China. Agronomy 2023, 13, 2009. [Google Scholar] [CrossRef]
- Zhang, S.T.; Lu, J.W.; Zhu, Y.; Fang, Y.T.; Cong, R.H.; Li, X.K.; Ren, T. Rapeseed as a previous crop reduces rice N fertilizer input by improving soil fertility. Field Crops Res. 2022, 281, 108487. [Google Scholar] [CrossRef]
- Li, H.Y.; Zhang, Y.H.; Sun, Y.G.; Liu, P.Z.; Zhang, Q.; Wang, X.L.; Wang, R.; Li, J. Long-term effects of optimized fertilization, tillage and crop rotation on soil fertility, crop yield and economic profit on the Loess Plateau. Eur. J. Agron. 2023, 143, 126731. [Google Scholar] [CrossRef]
- Zhou, D.J.; Mou, R.; Wang, L.H.; Liu, J.R.; Tang, Y.X.; Chen, J.; Heděnec, P.; Xu, Z.F.; Tan, B.; Cui, X.L.; et al. Fertilization effects on soil organic matter chemistry. Soil Tillage Res. 2025, 246, 106346. [Google Scholar] [CrossRef]
- Zhu, Y.C.; Zhang, M.; Han, X.Z.; Lu, X.C.; Chen, X.; Feng, H.L.; Wu, Z.M.; Liu, C.Z.; Yan, J.; Zou, W.X. Evaluation of the soil aggregate stability under long term manure and chemical fertilizer applications: Insights from organic carbon and humic acid structure in aggregates. Agric. Ecosyst. Environ. 2024, 376, 109217. [Google Scholar] [CrossRef]
- Wang, X.Y.; Yang, B.G.; Jiang, L.L.; Zhao, S.C.; Liu, M.J.; Xu, X.P.; Jiang, R.; Zhang, J.; Duan, Y.; He, P.; et al. Organic substitution regime with optimized irrigation improves potato water and nitrogen use efficiency by regulation soil chemical properties rather than microflora structure. Field Crops Res. 2024, 316, 109512. [Google Scholar]
- Yang, L.; Wang, L.H.; Chu, J.C.; Zhao, H.L.; Zhao, J.; Zang, H.D.; Yang, Y.D.; Zeng, Z.H. Improving soil quality and wheat yield through diversified crop rotation in the North Chain Plain. Soil Tillage Res. 2024, 244, 106231. [Google Scholar]
- Park, S.; Lee, J.G. Green manure improves humification and aggregate stability in paddy soils. Soil Biol. Biochem. 2025, 206, 109796. [Google Scholar]
- Li, C.; Yang, J.; Li, Z.M.; Wang, X.S.; Gao, Z.K.; Tian, Y.; Liu, J.S.; Siddique, K.H.M.; Wang, Z.H.; Zhang, D. Integrating crop and soil nutrient management for higher wheat grain yield and protein concentration in dryland areas. Eur. J. Agron. 2023, 147, 126827. [Google Scholar]
- Gao, S.J.; Zhou, G.P.; Chang, D.N.; Liang, H.; Nie, J.; Liao, Y.L.; Lu, Y.H.; Xu, C.X.; Liu, J.; Wu, J.; et al. Southern China can produce more high-quality rice with less N by green manuring. Resour. Conserv. Recycl. 2023, 196, 107025. [Google Scholar]
- Liu, Q.; Yao, W.; Zhou, J.; Peixoto, L.; Qi, Z.Q.; Mganga, K.Z.; Yang, Y.D.; Zeng, Z.H.; Zang, H.D. Winter green manure cultivation benefits soil quality and ecosystem multifunctionality under upland paddy rotations in tropics. Plant Soil 2024, 24, 69912. [Google Scholar] [CrossRef]
Green Manure Crop | Green Manure Type | Nutrient Contribution |
---|---|---|
Milk vetch | Legume | Nitrogen: 100–150 kg·ha−1, Phosphorus: 20–30 kg·ha−1, Potassium: 50–70 kg·ha−1 [32,33,34] |
Rapeseed (Brassica napus) | Non-legume | Nitrogen: 60–90 kg·ha−1, Phosphorus: 15–25 kg·ha−1, Potassium: 40–60 kg·ha−1 [35,36,37] |
Buckwheat (Fagopyrum esculentum) | Non-legume | Nitrogen: 40–60 kg·ha−1, Phosphorus: 10–20 kg·ha−1, Potassium: 50–80 kg·ha−1 [38,39] |
Barnyard grass (Echinochloa crus-galli) | Non-legume | Nitrogen: 30–50 kg·ha−1, Phosphorus: 10–15 kg·ha−1, Potassium: 30–50 kg·ha−1 [40,41] |
Alfalfa (Medicago sativa) | Legume | Nitrogen: 200–300 kg·ha−1, Phosphorus: 30–50 kg·ha−1, Potassium: 100–150 kg·ha−1 [42,43,44] |
Red clover (Trifolium pratense) | Legume | Nitrogen: 150–200 kg·ha−1, Phosphorus: 20–30 kg·ha−1, Potassium: 80–120 kg·ha−1 [45,46] |
White clover (Trifolium repens) | Legume | Nitrogen: 120–180 kg·ha−1, Phosphorus: 20–30 kg·ha−1, Potassium: 70–100 kg·ha−1 [47,48] |
Ryegrass (Lolium multiflorum) | Non-legume | Nitrogen: 50–80 kg·ha−1, Phosphorus: 15–25 kg·ha−1, Potassium: 40–60 kg·ha−1 [49,50,51] |
Oats (Avena sativa) | Non-legume | Nitrogen: 60–90 kg·ha−1, Phosphorus: 20–30 kg·ha−1, Potassium: 70–100 kg·ha−1 [52,53] |
Mung bean (Vigna radiata) | Legume | Nitrogen: 80–120 kg·ha−1, Phosphorus: 15–25 kg·ha−1, Potassium: 50–80 kg·ha−1 [54,55] |
Soybean (Glycine max) | Legume | Nitrogen: 150–200 kg·ha−1, Phosphorus: 30–40 kg·ha−1, Potassium: 100–150 kg·ha−1 [56,57] |
Lupin (Lupinus spp.) | Legume | Nitrogen: 100–150 kg·ha−1, Phosphorus: 20–30 kg·ha−1, Potassium: 60–90 kg·ha−1 [58,59] |
Pea (Pisum sativum) | Legume | Nitrogen: 90–130 kg·ha−1, Phosphorus: 20–30 kg·ha−1, Potassium: 50–80 kg·ha−1 [60,61] |
Faba bean (Vicia faba) | Legume | Nitrogen: 120–180 kg·ha−1, Phosphorus: 25–35 kg·ha−1, Potassium: 80–120 kg·ha−1 [62,63] |
Sesbania (Sesbania spp.) | Legume | Nitrogen: 100–150 kg·ha−1, Phosphorus: 20–30 kg·ha−1, Potassium: 60–90 kg·ha−1 [64,65] |
Sweet Clover (Melilotus spp.) | Legume | Nitrogen: 100–150 kg·ha−1, Phosphorus: 20–30 kg·ha−1, Potassium: 60–90 kg·ha−1 [66,67] |
Hairy vetch (Vicia villosa) | Legume | Nitrogen: 120–180 kg·ha−1, Phosphorus: 20–30 kg·ha−1, Potassium: 70–100 kg·ha−1 [68] |
Rye (Secale cereale) | Non-legume | Nitrogen: 50–80 kg·ha−1, Phosphorus: 15–25 kg·ha−1, Potassium: 60–90 kg·ha−1 [69,70] |
Barley (Hordeum vulgare) | Non-legume | Nitrogen: 60–90 kg·ha−1, Phosphorus: 20–30 kg·ha−1, Potassium: 70–100 kg·ha−1 [71] |
Green Manure Crop | Green Manure Type | Growth Cycle | Suitable Season | Key Characteristics |
---|---|---|---|---|
Milk vetch | Legume | Short (3–4 months) | Winter | Cold-tolerant, strong nitrogen fixation, improves soil structure [72] |
Rapeseed (Brassica napus) | Non-legume | Short (3–4 months) | Winter | Cold-tolerant, fast-growing, suppresses weeds, increases soil organic matter [73] |
Buckwheat (Fagopyrum esculentum) | Non-legume | Short (2–3 months) | Summer | Heat-tolerant, fast-growing, suitable for short-term rotation, improves soil aeration [74] |
Barnyard grass (Echinochloa crus-galli) | Non-legume | Short (2–3 months) | Summer | Heat and moisture-tolerant, fast-growing, suitable for wet environments, provides soil cover [75] |
Alfalfa (Medicago sativa) | Legume | Long (6–12 months) | Spring/Autumn | Perennial, strong nitrogen fixation, suitable for long-term rotation, improves soil fertility [76] |
Red clover (Trifolium pratense) | Legume | Medium (4–6 months) | Spring/Autumn | Cold and drought-tolerant, strong nitrogen fixation, suitable for rotation with grasses [77] |
White clover (Trifolium repens) | Legume | Medium (4–6 months) | Spring/Autumn | Cold and drought-tolerant, strong nitrogen fixation, suppresses weeds [78] |
Ryegrass (Lolium multiflorum) | Non-legume | Short (3–4 months) | Winter | Cold-tolerant, fast-growing, suitable as winter cover crop, prevents soil erosion [79] |
Oats (Avena sativa) | Non-legume | Short (3–4 months) | Winter | Cold-tolerant, fast-growing, increases soil organic matter [80] |
Mung bean (Vigna radiata) | Legume | Short (2–3 months) | Summer | Heat-tolerant, fast-growing, suitable for short-term rotation, fixes nitrogen [81] |
Soybean (Glycine max) | Legume | Medium (4–5 months) | Summer | Heat-tolerant, strong nitrogen fixation, significantly improves soil fertility [82] |
Lupin (Lupinus spp.) | Legume | Medium (4–6 months) | Spring/Autumn | Tolerates poor soils, strong nitrogen fixation, improves soil fertility [83] |
Pea (Pisum sativum) | Legume | Short (3–4 months) | Winter | Cold-tolerant, strong nitrogen fixation, increases soil organic matter [84] |
Faba bean (Vicia faba) | Legume | Medium (4–5 months) | Winter | Cold-tolerant, strong nitrogen fixation, improves soil structure [85] |
Sesbania (Sesbania spp.) | Legume | Short (2–3 months) | Summer | Heat and moisture-tolerant, fast-growing, fixes nitrogen, improves soil structure [86] |
Sweet clover (Melilotus spp.) | Legume | Medium (4–6 months) | Spring/Autumn | Drought and cold-tolerant, strong nitrogen fixation, improves soil fertility [87] |
Hairy vetch (Vicia villosa) | Legume | Medium (4–6 months) | Winter | Cold-tolerant, strong nitrogen fixation, increases soil organic matter [88] |
Rye (Secale cereale) | Non-legume | Short (3–4 months) | Winter | Cold-tolerant, fast-growing, suitable as winter cover crop, prevents soil erosion [89] |
Barley (Hordeum vulgare) | Non-legume | Short (3–4 months) | Winter | Cold-tolerant, fast-growing, increases soil organic matter [90] |
Soil Condition | Ideal Agronomic Combination | Rationale |
---|---|---|
Nutrient-Deficient Soils | Green manure + chemical fertilizers | Legumes fix nitrogen; chemical fertilizers provide immediate nutrients, improving fertility and yields [44,130]. |
Acidic Soils (Low pH) | Green manure + lime application | Green manure improves soil structure; lime neutralizes acidity, creating a better growth environment [131,132]. |
Saline or Alkaline Soils | Salt-tolerant green manure + gypsum application | Salt-tolerant green manure reduces salinity; gypsum improves soil structure and reduces sodium [133,134]. |
Compacted or Poorly Structured Soils | Deep-rooted green manure + reduced tillage | Deep roots break up compaction; reduced tillage minimizes disturbance, enhancing soil structure [108,135]. |
Soils with Low Microbial Activity | Green manure + microbial inoculants | Diverse green manure enhances biodiversity; microbial inoculants promote nutrient cycling [44,136,137]. |
Erosion-Prone Soils | Fast-growing green manure + conservation practices | Fast-growing green manure provides ground cover; conservation practices stabilize soil and reduce erosion [138,139]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yu, A.; Shang, Y.; Wang, P.; Wang, F.; Yin, B.; Liu, Y.; Zhang, D.; Chai, Q. Research Progress on the Improvement of Farmland Soil Quality by Green Manure. Agriculture 2025, 15, 768. https://doi.org/10.3390/agriculture15070768
Wang Y, Yu A, Shang Y, Wang P, Wang F, Yin B, Liu Y, Zhang D, Chai Q. Research Progress on the Improvement of Farmland Soil Quality by Green Manure. Agriculture. 2025; 15(7):768. https://doi.org/10.3390/agriculture15070768
Chicago/Turabian StyleWang, Yulong, Aizhong Yu, Yongpan Shang, Pengfei Wang, Feng Wang, Bo Yin, Yalong Liu, Dongling Zhang, and Qiang Chai. 2025. "Research Progress on the Improvement of Farmland Soil Quality by Green Manure" Agriculture 15, no. 7: 768. https://doi.org/10.3390/agriculture15070768
APA StyleWang, Y., Yu, A., Shang, Y., Wang, P., Wang, F., Yin, B., Liu, Y., Zhang, D., & Chai, Q. (2025). Research Progress on the Improvement of Farmland Soil Quality by Green Manure. Agriculture, 15(7), 768. https://doi.org/10.3390/agriculture15070768