Evaluating Soil Degradation in Agricultural Soil with Ground-Penetrating Radar: A Systematic Review of Applications and Challenges
Abstract
:1. Introduction
2. Soil Degradation Processes, Drivers, and Agricultural Implications
3. Principles and Use of Ground-Penetrating Radar
3.1. Fundamentals of Ground-Penetrating Radar
3.2. Data Visualization
3.3. Data Acquisition
4. Systematic Review Methodology
5. Applications of Ground-Penetrating Radar in Agricultural Soil
5.1. Assessment of Topsoil Disintegration
5.1.1. Standard Approaches
5.1.2. Multivariate Characterization
5.1.3. Advanced and Machine Learning Approaches
5.2. Assessment of Soil Compaction
5.2.1. Identification and Monitoring
5.2.2. Waterlogging
5.2.3. Soil Surface
5.3. Additional Findings
6. Discussion
6.1. Topsoil Disintegration
6.2. Soil Compaction
6.3. Other Applications
6.4. Methodological Approaches
6.5. Experimental Approaches
6.5.1. Antenna Setups
6.5.2. Central Frequency Selection and Trade-Offs
6.6. Integration of GPR with Other Geophysical and Laboratory Methods
6.7. Future Challenges
6.7.1. Enhancing Reproducibility
6.7.2. Future Research Directions and Standardization Needs
6.7.3. Limitations of the Review
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chigbu, E.; Elaydi, H.; Forster, T.; Karapinar, B.; Kemeh, S.; Namabiru, E.; Prakash, A.; Tabor, G. Land Restoration for Recovery and Resilience, 2nd ed.; United Nations: Geneva, Switzerland, 2022; ISBN 978-92-95118-53-9. [Google Scholar]
- Zsögön, A.; Peres, L.E.P.; Xiao, Y.; Yan, J.; Fernie, A.R. Enhancing Crop Diversity for Food Security in the Face of Climate Uncertainty. Plant J. 2022, 109, 402–414. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Teuling, A.J.; Chen, X.; Huang, N.; Wang, J.; Zhang, Z.; Gao, R.; Men, J.; Zhang, Z.; Wu, Y.; et al. Global Land Degradation Hotspots Based on Multiple Methods and Indicators. Ecol. Indic. 2024, 158, 111462. [Google Scholar] [CrossRef]
- Aleminew, A. Impacts of Land Degradation on Crop Yields and Its Management Options: A Review. Agric. Rev. 2023, 45, 127–131. [Google Scholar] [CrossRef]
- Gao, M.; Hu, W.; Zhang, X.; Li, M.; Yang, Y.; Che, R. Land Degradation Decreased Crop Productivity by Altering Soil Quality Index Generated by Network Analysis. Soil Tillage Res. 2025, 246, 106354. [Google Scholar] [CrossRef]
- Mojžiš, M.; Jobbágy, J.; Rataj, V.; Zsembeli, J. Impact of Machinery Passages on Soil Compaction in Field Conditions. Acta Technol. Agric. 2024, 27, 116–124. [Google Scholar] [CrossRef]
- Zhang, B.; Jia, Y.; Fan, H.; Guo, C.; Fu, J.; Li, S.; Li, M.; Liu, B.; Ma, R. Soil Compaction Due to Agricultural Machinery Impact: A Systematic Review. Land. Degrad. Dev. 2024, 35, 3256–3273. [Google Scholar] [CrossRef]
- Zhao, Y.; Song, J.; Cheng, K.; Liu, Z.; Yang, F. Migration and Remediation of Typical Contaminants in Soil and Groundwater: A State of Art Review. Land. Degrad. Dev. 2024, 35, 2700–2715. [Google Scholar] [CrossRef]
- Panagos, P.; Montanarella, L.; Barbero, M.; Schneegans, A.; Aguglia, L.; Jones, A. Soil Priorities in the European Union. Geoderma Reg. 2022, 29, e00510. [Google Scholar] [CrossRef]
- Schloss, C.A.; Cameron, D.R.; Franklin, B.; Nolte, C.; Morrison, S.A. An Approach to Designing Efficient Implementation of 30 × 30 Terrestrial Conservation Commitments. Conserv. Sci. Pract. 2024, 6, e13232. [Google Scholar] [CrossRef]
- Edrisi, S.A.; Bundela, A.K.; Verma, V.; Dubey, P.K.; Abhilash, P.C. Assessing the Impact of Global Initiatives on Current and Future Land Restoration Scenarios in India. Environ. Res. 2023, 216, 114413. [Google Scholar] [CrossRef]
- Sawarkar, A.D.; Shrimankar, D.D.; Manekar, S.C.; Kumar, M.; Garlapati, P.K.; Singh, L. Bamboo as a Sustainable Crop for Land Restoration in India: Challenges and Opportunities. Environ. Dev. Sustain. 2023, 27, 157–189. [Google Scholar] [CrossRef]
- Li, C.; Ji, Y.; Ma, N.; Zhang, J.; Zhang, H.; Ji, C.; Zhu, J.; Shao, J.; Li, Y. Positive Effects of Vegetation Restoration on the Soil Properties of Post-Mining Land. Plant Soil 2024, 497, 93–103. [Google Scholar] [CrossRef]
- Verhoeven, D.; Berkhout, E.; Sewell, A.; van der Esch, S. The Global Cost of International Commitments on Land Restoration. Land. Degrad. Dev. 2024, 35, 4864–4874. [Google Scholar] [CrossRef]
- Razzaq, A.; Kaur, P.; Akhter, N.; Wani, S.H.; Saleem, F. Next-Generation Breeding Strategies for Climate-Ready Crops. Front. Plant Sci. 2021, 12, 620420. [Google Scholar] [CrossRef]
- Kopeć, P. Climate Change—The Rise of Climate-Resilient Crops. Plants 2024, 13, 490. [Google Scholar] [CrossRef]
- Toromade, A.S.; Soyombo, D.A.; Kupa, E.; Ijomah, T.I. Reviewing the Impact of Climate Change on Global Food Security: Challenges and Solutions. Int. J. Appl. Res. Soc. Sci. 2024, 6, 1403–1416. [Google Scholar] [CrossRef]
- Parente, J.; Girona-García, A.; Lopes, A.R.; Keizer, J.J.; Vieira, D.C.S. Prediction, Validation, and Uncertainties of a Nation-Wide Post-Fire Soil Erosion Risk Assessment in Portugal. Sci. Rep. 2022, 12, 2945. [Google Scholar] [CrossRef]
- Furtak, K.; Wolińska, A. The Impact of Extreme Weather Events as a Consequence of Climate Change on the Soil Moisture and on the Quality of the Soil Environment and Agriculture—A Review. Catena 2023, 231, 107378. [Google Scholar] [CrossRef]
- Yan, Y.; Hu, Z.; Wang, L.; Jiang, J.; Dai, Q.; Gan, F.; Almaliki, A.H.; Hashim, M.A.; Hussein, E.E.; Ghoneim, S.S.M. Impact of Extreme Rainfall Events on Soil Erosion on Karst Slopes: A Study of Hydrodynamic Mechanisms. J. Hydrol. 2024, 638, 131532. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Sgubin, G.; Bois, B.; Ollat, N.; Swingedouw, D.; Zito, S.; Gambetta, G.A. Climate Change Impacts and Adaptations of Wine Production. Nat. Rev. Earth Environ. 2024, 5, 258–275. [Google Scholar] [CrossRef]
- Riefolo, C.; Belmonte, A.; Quarto, R.; Quarto, F.; Ruggieri, S.; Castrignanò, A. Potential of GPR Data Fusion with Hyperspectral Data for Precision Agriculture of the Future. Comput. Electron. Agric. 2022, 199, 107109. [Google Scholar] [CrossRef]
- Zajícová, K.; Chuman, T. Application of Ground Penetrating Radar Methods in Soil Studies: A Review. Geoderma 2019, 343, 116–129. [Google Scholar] [CrossRef]
- Romero-Ruiz, A.; Linde, N.; Keller, T.; Or, D. A Review of Geophysical Methods for Soil Structure Characterization. Rev. Geophys. 2018, 56, 672–697. [Google Scholar] [CrossRef]
- van Leeuwen, C.; de Rességuier, L.; Schmutz, M. The Contribution of near Surface Geophysics to Measure Soil Related Terroir Factors in Viticulture: A Review. Geoderma 2024, 449, 116983. [Google Scholar] [CrossRef]
- Allred, B.; Daniels, J.; Ehsani, M. Handbook of Agricultural Geophysics; Allred, B., Daniels, J.J., Ehsani, M.R., Eds.; CRC Press: Boca Raton, FL, USA, 2008; ISBN 9780429120213. [Google Scholar]
- Lunt, I.A.; Hubbard, S.S.; Rubin, Y. Soil Moisture Content Estimation Using Ground-Penetrating Radar Reflection Data. J. Hydrol. 2005, 307, 254–269. [Google Scholar] [CrossRef]
- Grote, K.; Hubbard, S.; Rubin, Y. Field-Scale Estimation of Volumetric Water Content Using Ground-Penetrating Radar Ground Wave Techniques. Water Resour. Res. 2003, 39, 1321. [Google Scholar] [CrossRef]
- Wu, K.; Rodriguez, G.A.; Zajc, M.; Jacquemin, E.; Clément, M.; De Coster, A.; Lambot, S. A New Drone-Borne GPR for Soil Moisture Mapping. Remote Sens. Environ. 2019, 235, 111456. [Google Scholar] [CrossRef]
- Liu, X.; Dong, X.; Xue, Q.; Leskovar, D.I.; Jifon, J.; Butnor, J.R.; Marek, T. Ground Penetrating Radar (GPR) Detects Fine Roots of Agricultural Crops in the Field. Plant Soil 2018, 423, 517–531. [Google Scholar] [CrossRef]
- Lombardi, F.; Ortuani, B.; Facchi, A.; Lualdi, M. Assessing the Perspectives of Ground Penetrating Radar for Precision Farming. Remote Sens. 2022, 14, 6066. [Google Scholar] [CrossRef]
- Pathirana, S.; Lambot, S.; Krishnapillai, M.; Cheema, M.; Smeaton, C.; Galagedara, L. Ground-Penetrating Radar and Electromagnetic Induction: Challenges and Opportunities in Agriculture. Remote Sens. 2023, 15, 2932. [Google Scholar] [CrossRef]
- Knödel, K.; Lange, G.; Voigt, H.-J. Environmental Geology; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 978-3-540-74669-0. [Google Scholar]
- Solla, M.; Laguela, S. (Eds.) Recent Advances in GPR Imaging; MDPI: Basel, Switzerland, 2019; ISBN 978-3-03921-811-0. [Google Scholar]
- Lombardi, F.; Podd, F.; Solla, M. From Its Core to the Niche: Insights from GPR Applications. Remote Sens. 2022, 14, 3033. [Google Scholar] [CrossRef]
- Zhang, M.; Feng, X.; Bano, M.; Xing, H.; Wang, T.; Liang, W.; Zhou, H.; Dong, Z.; An, Y.; Zhang, Y. Review of Ground Penetrating Radar Applications for Water Dynamics Studies in Unsaturated Zone. Remote Sens. 2022, 14, 5993. [Google Scholar] [CrossRef]
- Dahunsi, J.; Pathirana, S.; Cheema, M.; Krishnapillai, M.; Galagedara, L. Advances in Ground Penetrating Radar Application for Estimating Soil Hydraulic Properties: A Mini Review. Can. Biosyst. Eng. 2023, 65, 1.17–1.27. [Google Scholar] [CrossRef]
- Phan, H.T.; Vu, D.H.; Tran, H.D.; Nguyen, T.T. Applications of Geophysical Methods in Agriculture and Their Potential in Vietnam. J. Min. Earth Sci. 2024, 65, 86–95. [Google Scholar] [CrossRef]
- Molua, O.C.; Ukpene, A.O.; Ighrakpata, F.C.; Emagbetere, J.U.; Nwachuku, D.N. Review on nondestructive methods of detecting compacted soils and effects of compacted soil on crop production. Open J. Agric. Sci. 2023, 4, 1–16. [Google Scholar] [CrossRef]
- Visconti, F.; López, R.; Olego, M.Á. The Health of Vineyard Soils: Towards a Sustainable Viticulture. Horticulturae 2024, 10, 154. [Google Scholar] [CrossRef]
- Gonzalez-Maldonado, N.; Nocco, M.A.; Steenwerth, K.; Crump, A.; Lazcano, C. Wine Grape Grower Perceptions and Attitudes about Soil Health. J. Rural. Stud. 2024, 110, 103373. [Google Scholar] [CrossRef]
- Lazcano, C.; Decock, C.; Wilson, S.G. Defining and Managing for Healthy Vineyard Soils, Intersections With the Concept of Terroir. Front. Environ. Sci. 2020, 8, 68. [Google Scholar] [CrossRef]
- Yang, T.; Siddique, K.H.M.; Liu, K. Cropping Systems in Agriculture and Their Impact on Soil Health-A Review. Glob. Ecol. Conserv. 2020, 23, e01118. [Google Scholar] [CrossRef]
- Doran, J.W.; Zeiss, M.R. Soil Health and Sustainability: Managing the Biotic Component of Soil Quality. Appl. Soil Ecol. 2000, 15, 3–11. [Google Scholar] [CrossRef]
- Bagnall, D.K.; Rieke, E.L.; Morgan, C.L.S.; Liptzin, D.L.; Cappellazzi, S.B.; Honeycutt, C.W. A Minimum Suite of Soil Health Indicators for North American Agriculture. Soil Secur. 2023, 10, 100084. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Biklé, A. Soil Health and Nutrient Density: Beyond Organic vs. Conventional Farming. Front. Sustain. Food Syst. 2021, 5, 699147. [Google Scholar] [CrossRef]
- Fierer, N.; Wood, S.A.; Bueno de Mesquita, C.P. How Microbes Can, and Cannot, Be Used to Assess Soil Health. Soil Biol. Biochem. 2021, 153, 108111. [Google Scholar] [CrossRef]
- Cárceles Rodríguez, B.; Durán-Zuazo, V.H.; Soriano Rodríguez, M.; García-Tejero, I.F.; Gálvez Ruiz, B.; Cuadros Tavira, S. Conservation Agriculture as a Sustainable System for Soil Health: A Review. Soil Syst. 2022, 6, 87. [Google Scholar] [CrossRef]
- Murphy, B.W.; Wilson, B.R.; Koen, T. Mathematical Functions to Model the Depth Distribution of Soil Organic Carbon in a Range of Soils from New South Wales, Australia under Different Land Uses. Soil Syst. 2019, 3, 46. [Google Scholar] [CrossRef]
- Bai, J.; Zhang, G.; Zhao, Q.; Lu, Q.; Jia, J.; Cui, B.; Liu, X. Depth-Distribution Patterns and Control of Soil Organic Carbon in Coastal Salt Marshes with Different Plant Covers. Sci. Rep. 2016, 6, 34835. [Google Scholar] [CrossRef]
- Mishra, U.; Lal, R.; Slater, B.; Calhoun, F.; Liu, D.; Van Meirvenne, M. Predicting Soil Organic Carbon Stock Using Profile Depth Distribution Functions and Ordinary Kriging. Soil Sci. Soc. Am. J. 2009, 73, 614–621. [Google Scholar] [CrossRef]
- Blum, W.; Schad, N. Essentials of Soil Science; Schweizerbart Science Publishers: Stuttgart, Germany, 2017; ISBN 9783443010904. [Google Scholar]
- Singh, I.; Awasthi, O.; Singh, R.S.; More, T.A.; Meena, S.R. Changes in Soil Properties under Tree Species. Indian J. Agric. Sci. 2012, 82, 146–151. [Google Scholar] [CrossRef]
- Ayres, E.; Steltzer, H.; Berg, S.; Wallenstein, M.D.; Simmons, B.L.; Wall, D.H. Tree Species Traits Influence Soil Physical, Chemical, and Biological Properties in High Elevation Forests. PLoS ONE 2009, 4, e5964. [Google Scholar] [CrossRef]
- Rodrigues, P.M.S.; Schaefer, C.E.G.R.; Silva, J.d.O.; Ferreira Júnior, W.G.; dos Santos, R.M.; Neri, A.V. The Influence of Soil on Vegetation Structure and Plant Diversity in Different Tropical Savannic and Forest Habitats. J. Plant Ecol. 2016, 11, rtw135. [Google Scholar] [CrossRef]
- Passioura, J. Soil Structure and Plant Growth. Soil Res. 1991, 29, 717. [Google Scholar] [CrossRef]
- Or, D.; Keller, T.; Schlesinger, W.H. Natural and Managed Soil Structure: On the Fragile Scaffolding for Soil Functioning. Soil Tillage Res. 2021, 208, 104912. [Google Scholar] [CrossRef]
- Hartmann, M.; Six, J. Soil Structure and Microbiome Functions in Agroecosystems. Nat. Rev. Earth Environ. 2022, 4, 4–18. [Google Scholar] [CrossRef]
- Zhou, S.; Li, P.; Zhang, X.; Wang, Y.; Yu, K.; Shi, P.; Xiao, L.; Wang, T.; Chang, E. Runoff and Erosion Reduction Benefits of Vegetation during Natural Succession on Fallow Grassland Slopes. Sci. Total Environ. 2024, 954, 176211. [Google Scholar] [CrossRef]
- Proffitt, T. Assessing Soil Quality and Interpreting Soil Test Results. 2014. Available online: https://www.wineaustralia.com/getmedia/daf8d1d5-145e-4f44-9a18-aaf710abb2ee/Assessing-soil-quality-and-interpreting-soil-test-results.pdf (accessed on 9 April 2025).
- Tian, L.; Zhang, Y.; Chen, P.; Zhang, F.; Li, J.; Yan, F.; Dong, Y.; Feng, B. How Does the Waterlogging Regime Affect Crop Yield? A Global Meta-Analysis. Front. Plant Sci. 2021, 12, 634898. [Google Scholar] [CrossRef]
- Chenu, C.; Le Bissonnais, Y.; Arrouays, D. Organic Matter Influence on Clay Wettability and Soil Aggregate Stability. Soil Sci. Soc. Am. J. 2000, 64, 1479–1486. [Google Scholar] [CrossRef]
- Franzluebbers, A.J. Water Infiltration and Soil Structure Related to Organic Matter and Its Stratification with Depth. Soil Tillage Res. 2002, 66, 197–205. [Google Scholar] [CrossRef]
- Lipiec, J.; Kuś, J.; Słowińska-Jurkiewicz, A.; Nosalewicz, A. Soil Porosity and Water Infiltration as Influenced by Tillage Methods. Soil Tillage Res. 2006, 89, 210–220. [Google Scholar] [CrossRef]
- Le Bissonnais, Y.; Blavet, D.; De Noni, G.; Laurent, J.-Y.; Asseline, J.; Chenu, C. Erodibility of Mediterranean Vineyard Soils: Relevant Aggregate Stability Methods and Significant Soil Variables. Eur. J. Soil Sci. 2007, 58, 188–195. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, X.; Liu, Y. Pore-Scale Simulation of Gas Diffusion in Unsaturated Soil Aggregates: Accuracy of the Dusty-Gas Model and the Impact of Saturation. Geoderma 2017, 303, 196–203. [Google Scholar] [CrossRef]
- Rieke, E.L.; Bagnall, D.K.; Morgan, C.L.S.; Flynn, K.D.; Howe, J.A.; Greub, K.L.H.; Mac Bean, G.; Cappellazzi, S.B.; Cope, M.; Liptzin, D.; et al. Evaluation of Aggregate Stability Methods for Soil Health. Geoderma 2022, 428, 116156. [Google Scholar] [CrossRef]
- Weidhuner, A.; Hanauer, A.; Krausz, R.; Crittenden, S.J.; Gage, K.; Sadeghpour, A. Tillage Impacts on Soil Aggregation and Aggregate-Associated Carbon and Nitrogen after 49 Years. Soil Tillage Res. 2021, 208, 104878. [Google Scholar] [CrossRef]
- Abbott, L.; Murphy, D. Soil Biological Fertility; Abbott, L.K., Murphy, D.V., Eds.; Springer: Dordrecht, The Netherlands, 2007; ISBN 978-1-4020-6618-4. [Google Scholar]
- Hüberli, D. Soil Health, Soil Biology, Soilborne Diseases and Sustainable Agriculture: A Guide. Australas. Plant Pathol. 2017, 46, 387. [Google Scholar] [CrossRef]
- Wei, X.; Xie, B.; Wan, C.; Song, R.; Zhong, W.; Xin, S.; Song, K. Enhancing Soil Health and Plant Growth through Microbial Fertilizers: Mechanisms, Benefits, and Sustainable Agricultural Practices. Agronomy 2024, 14, 609. [Google Scholar] [CrossRef]
- Bogužas, V.; Skinulienė, L.; Butkevičienė, L.M.; Steponavičienė, V.; Petrauskas, E.; Maršalkienė, N. The Effect of Monoculture, Crop Rotation Combinations, and Continuous Bare Fallow on Soil CO2 Emissions, Earthworms, and Productivity of Winter Rye after a 50-Year Period. Plants 2022, 11, 431. [Google Scholar] [CrossRef] [PubMed]
- Mamontov, V.G. Classification and Causes of Soil Degradation by Irrigation in Russian Steppe Agrolandscapes. In Advances in Understanding Soil Degradation; Springer: Berlin/Heidelberg, Germany, 2022; pp. 125–140. [Google Scholar] [CrossRef]
- Rust, N.; Lunder, O.E.; Iversen, S.; Vella, S.; Oughton, E.A.; Breland, T.A.; Glass, J.H.; Maynard, C.M.; McMorran, R.; Reed, M.S. Perceived Causes and Solutions to Soil Degradation in the UK and Norway. Land 2022, 11, 131. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Seifollahi-Aghmiuni, S.; Destouni, G.; Ghajarnia, N.; Kalantari, Z. Soil Degradation in the European Mediterranean Region: Processes, Status and Consequences. Sci. Total Environ. 2022, 805, 150106. [Google Scholar] [CrossRef] [PubMed]
- Pascual, J.A.; Ros, M.; Hernandez, T.; Garcia, C. Effect of long-term monoculture on microbiological and biochemical properties in semiarid soils. Commun. Soil Sci. Plant Anal. 2001, 32, 537–552. [Google Scholar] [CrossRef]
- Li, C.; Li, X.; Kong, W.; Wu, Y.; Wang, J. Effect of Monoculture Soybean on Soil Microbial Community in the Northeast China. Plant Soil 2010, 330, 423–433. [Google Scholar] [CrossRef]
- Fu, H.; Zhang, G.; Zhang, F.; Sun, Z.; Geng, G.; Li, T. Effects of Continuous Tomato Monoculture on Soil Microbial Properties and Enzyme Activities in a Solar Greenhouse. Sustainability 2017, 9, 317. [Google Scholar] [CrossRef]
- Zhao, Q.; Xiong, W.; Xing, Y.; Sun, Y.; Lin, X.; Dong, Y. Long-Term Coffee Monoculture Alters Soil Chemical Properties and Microbial Communities. Sci. Rep. 2018, 8, 6116. [Google Scholar] [CrossRef] [PubMed]
- Gomiero, T.; Pimentel, D.; Paoletti, M.G. Environmental Impact of Different Agricultural Management Practices: Conventional vs. Organic Agriculture. CRC Crit. Rev. Plant Sci. 2011, 30, 95–124. [Google Scholar] [CrossRef]
- Osterholz, W.R.; Culman, S.W.; Herms, C.; Joaquim de Oliveira, F.; Robinson, A.; Doohan, D. Knowledge Gaps in Organic Research: Understanding Interactions of Cover Crops and Tillage for Weed Control and Soil Health. Org. Agric. 2021, 11, 13–25. [Google Scholar] [CrossRef]
- Schwartz, R.C.; Baumhardt, R.L.; Evett, S.R. Tillage Effects on Soil Water Redistribution and Bare Soil Evaporation throughout a Season. Soil Tillage Res. 2010, 110, 221–229. [Google Scholar] [CrossRef]
- Yang, C.; Geng, Y.; Fu, X.Z.; Coulter, J.A.; Chai, Q. The Effects of Wind Erosion Depending on Cropping System and Tillage Method in a Semi-Arid Region. Agronomy 2020, 10, 732. [Google Scholar] [CrossRef]
- Shaheb, M.R.; Venkatesh, R.; Shearer, S.A. A Review on the Effect of Soil Compaction and Its Management for Sustainable Crop Production. J. Biosyst. Eng. 2021, 46, 417–439. [Google Scholar] [CrossRef]
- Batey, T. Soil Compaction and Soil Management—A Review. Soil Use Manag. 2009, 25, 335–345. [Google Scholar] [CrossRef]
- Poesen, J.W.A.; Hooke, J.M. Erosion, Flooding and Channel Management in Mediterranean Environments of Southern Europe. Prog. Phys. Geogr. Earth Environ. 1997, 21, 157–199. [Google Scholar] [CrossRef]
- Cerdà, A.; Novara, A.; Moradi, E. Long-Term Non-Sustainable Soil Erosion Rates and Soil Compaction in Drip-Irrigated Citrus Plantation in Eastern Iberian Peninsula. Sci. Total Environ. 2021, 787, 147549. [Google Scholar] [CrossRef]
- Itsukushima, R.; Ideta, K.; Takata, H. Relationship Between Compaction and Infiltration Capacity of Amended Soil for Urban Flood Damage Mitigation. Soil Use Manag. 2022, 38, 1054–1068. [Google Scholar] [CrossRef]
- Kraut-Cohen, J.; Zolti, A.; Shaltiel-Harpaz, L.; Argaman, E.; Rabinovich, R.; Green, S.J.; Minz, D. Effects of Tillage Practices on Soil Microbiome and Agricultural Parameters. Sci. Total Environ. 2020, 705, 135791. [Google Scholar] [CrossRef] [PubMed]
- Ding, G.; Novak, J.M.; Amarasiriwardena, D.; Hunt, P.G.; Xing, B. Soil Organic Matter Characteristics as Affected by Tillage Management. Soil Sci. Soc. Am. J. 2002, 66, 421–429. [Google Scholar] [CrossRef]
- Hussain, S.; Hussain, S.; Guo, R.; Sarwar, M.; Ren, X.; Krstic, D.; Aslam, Z.; Zulifqar, U.; Rauf, A.; Hano, C.; et al. Carbon Sequestration to Avoid Soil Degradation: A Review on the Role of Conservation Tillage. Plants 2021, 10, 2001. [Google Scholar] [CrossRef] [PubMed]
- Souza, M.C.O.; Cruz, J.C.; Cesila, C.A.; Gonzalez, N.; Rocha, B.A.; Adeyemi, J.A.; Nadal, M.; Domingo, J.L.; Barbosa, F. Recent Trends in Pesticides in Crops: A Critical Review of the Duality of Risks-Benefits and the Brazilian Legislation Issue. Environ. Res. 2023, 228, 115811. [Google Scholar] [CrossRef]
- Kullaj, E.; Shahini, S.; Varaku, S.; Çakalli, M. Evaluation of the Efficacy for Reducing Copper Use against Downy Mildew Control in Organic Mediterranean Viticulture. Int. J. Pest. Manag. 2017, 63, 3–9. [Google Scholar] [CrossRef]
- Borkow, G.; Gabbay, J. Copper, An Ancient Remedy Returning to Fight Microbial, Fungal and Viral Infections. Curr. Chem. Biol. 2009, 3, 272–278. [Google Scholar] [CrossRef]
- Colautti, A.; Civilini, M.; Contin, M.; Celotti, E.; Iacumin, L. Organic vs. Conventional: Impact of Cultivation Treatments on the Soil Microbiota in the Vineyard. Front. Microbiol. 2023, 14, 1242267. [Google Scholar] [CrossRef]
- Beaumelle, L.; Tison, L.; Eisenhauer, N.; Hines, J.; Malladi, S.; Pelosi, C.; Thouvenot, L.; Phillips, H.R.P. Pesticide Effects on Soil Fauna Communities—A Meta-analysis. J. Appl. Ecol. 2023, 60, 1239–1253. [Google Scholar] [CrossRef]
- Gunstone, T.; Cornelisse, T.; Klein, K.; Dubey, A.; Donley, N. Pesticides and Soil Invertebrates: A Hazard Assessment. Front. Environ. Sci. 2021, 9, 643847. [Google Scholar] [CrossRef]
- Zamanian, K.; Taghizadeh-Mehrjardi, R.; Tao, J.; Fan, L.; Raza, S.; Guggenberger, G.; Kuzyakov, Y. Acidification of European Croplands by Nitrogen Fertilization: Consequences for Carbonate Losses, and Soil Health. Sci. Total Environ. 2024, 924, 171631. [Google Scholar] [CrossRef]
- Solangi, F.; Zhu, X.; Khan, S.; Rais, N.; Majeed, A.; Sabir, M.A.; Iqbal, R.; Ali, S.; Hafeez, A.; Ali, B.; et al. The Global Dilemma of Soil Legacy Phosphorus and Its Improvement Strategies under Recent Changes in Agro-Ecosystem Sustainability. ACS Omega 2023, 8, 23271–23282. [Google Scholar] [CrossRef]
- Islam, M.; Siddique, K.H.M.; Padhye, L.P.; Pang, J.; Solaiman, Z.M.; Hou, D.; Srinivasarao, C.; Zhang, T.; Chandana, P.; Venu, N.; et al. A Critical Review of Soil Phosphorus Dynamics and Biogeochemical Processes for Unlocking Soil Phosphorus Reserves. In Advances in Agronomy; Springer: Berlin/Heidelberg, Germany, 2024; pp. 153–249. [Google Scholar] [CrossRef]
- Ramos, T.B.; Gonçalves, M.C.; van Genuchten, M.T. Soil Salinization in Portugal: An In-depth Exploration of Impact, Advancements, and Future Considerations. Vadose Zone J. 2024, 23, e20314. [Google Scholar] [CrossRef]
- Nikolskii, Y.N.; Aidarov, I.P.; Landeros-Sanchez, C.; Pchyolkin, V.V. Impact of long-term freshwater irrigation on soil fertility. Irrig. Drain. 2019, 68, 993–1001. [Google Scholar] [CrossRef]
- Getahun, M.; Adgo, E.; Atalay, A. Impacts of Irrigation on Soil Characteristics in Selected Irrigation Schemes in the Upper Blue Nile Basin. In Nile River Basin; Springer: Dordrecht, The Netherlands, 2011; pp. 383–399. [Google Scholar] [CrossRef]
- Mohanavelu, A.; Naganna, S.R.; Al-Ansari, N. Irrigation Induced Salinity and Sodicity Hazards on Soil and Groundwater: An Overview of Its Causes, Impacts and Mitigation Strategies. Agriculture 2021, 11, 983. [Google Scholar] [CrossRef]
- Blindow, N.; Eisenburger, D.; Illich, B.; Petzold, H.; Richter, T. Ground Penetrating Radar. In Environmental Geology; Springer: Berlin/Heidelberg, Germany, 2007; pp. 283–335. [Google Scholar] [CrossRef]
- Annan, A.P. GPR—History, Trends, and Future Developments. Subsurf. Sens. Technol. Appl. 2002, 3, 253–270. [Google Scholar] [CrossRef]
- Massarelli, C.; Campanale, C.; Uricchio, V.F. Ground Penetrating Radar as a Functional Tool to Outline the Presence of Buried Waste: A Case Study in South Italy. Sustainability 2021, 13, 3805. [Google Scholar] [CrossRef]
- Zhou, L.; Yu, D.; Wang, Z.; Wang, X. Soil Water Content Estimation Using High-Frequency Ground Penetrating Radar. Water 2019, 11, 1036. [Google Scholar] [CrossRef]
- Klotzsche, A.; Jonard, F.; Looms, M.C.; van der Kruk, J.; Huisman, J.A. Measuring Soil Water Content with Ground Penetrating Radar: A Decade of Progress. Vadose Zone J. 2018, 17, 1–9. [Google Scholar] [CrossRef]
- Fouad Nashait, A.; Ali Seger, M. Detection of Water-Table by Using Ground Penetration Radar (GPR). Eng. Technol. J. 2011, 29, 554–566. [Google Scholar] [CrossRef]
- Liu, Y.; Irving, J.; Holliger, K. High-Resolution Velocity Estimation from Surface-Based Common-Offset GPR Reflection Data. Geophys. J. Int. 2022, 230, 131–144. [Google Scholar] [CrossRef]
- Oldenburg, D.; Jones, F. GPR—Basic Principles. Available online: https://gpg.geosci.xyz/content/GPR/GPR_fundamental_principles.html (accessed on 9 April 2025).
- Annan, P.; Cassidy, N.; Koppenjan, S.; Daniels, D.; Doolittle, J.; Butnor, J.; Slater, L.; Comas, X.; Redman, J.; Bristow, C.; et al. Ground Penetrating Radar: Theory and Applications; Elsevier: Amsterdam, The Netherlands, 2009; ISBN 9780444533487. [Google Scholar] [CrossRef]
- Annan, A.P. 11. Ground-Penetrating Radar. In Near-Surface Geophysics; Society of Exploration Geophysicists: Houston, TX, USA, 2005; pp. 357–438. [Google Scholar] [CrossRef]
- Annan, A.P. Electromagnetic Principles of Ground Penetrating Radar. In Ground Penetrating Radar Theory and Applications; Elsevier: Amsterdam, The Netherlands, 2009; pp. 1–40. [Google Scholar] [CrossRef]
- Friedman, S.P. Electrical Properties of Soils. In Encyclopedia of Agrophysics; Springer: Dordrecht, The Netherlands, 2011; pp. 242–255. ISBN 978-90-481-3584-4. [Google Scholar]
- Tosti, F.; Patriarca, C.; Slob, E.; Benedetto, A.; Lambot, S. Clay Content Evaluation in Soils through GPR Signal Processing. J. Appl. Geophys. 2013, 97, 69–80. [Google Scholar] [CrossRef]
- Kalmurzayev, K.; Madenova, Y. Ground Penetrating Radar Application to Detect the Watertight Clay Layer at Tailing Dump. Min. Metall. Explor. 2023, 40, 337–345. [Google Scholar] [CrossRef]
- Patriarca, C.; Tosti, F.; Velds, C.; Benedetto, A.; Lambot, S.; Slob, E. Frequency Dependent Electric Properties of Homogeneous Multi-Phase Lossy Media in the Ground-Penetrating Radar Frequency Range. J. Appl. Geophys. 2013, 97, 81–88. [Google Scholar] [CrossRef]
- Giroux, B.; Chouteau, M. Quantitative Analysis of Water-Content Estimation Errors Using Ground-Penetrating Radar Data and a Low-Loss Approximation. Geophysics 2010, 75, WA241–WA249. [Google Scholar] [CrossRef]
- Paz, M.C.; Alcalá, F.J.; Ribeiro, L. Ground Penetrating Radar Attenuation Expressions in Shallow Groundwater Research. J. Environ. Eng. Geophys. 2020, 25, 153–160. [Google Scholar] [CrossRef]
- Warren, C.; Giannopoulos, A.; Giannakis, I. GprMax: Open Source Software to Simulate Electromagnetic Wave Propagation for Ground Penetrating Radar. Comput. Phys. Commun. 2016, 209, 163–170. [Google Scholar] [CrossRef]
- van Overmeeren, R.A.; Sariowan, S.V.; Gehrels, J.C. Ground Penetrating Radar for Determining Volumetric Soil Water Content; Results of Comparative Measurements at Two Test Sites. J. Hydrol. 1997, 197, 316–338. [Google Scholar] [CrossRef]
- Wackernagel, H. Ordinary Kriging. In Multivariate Geostatistics; Springer: Berlin/Heidelberg, Germany, 1995; pp. 74–81. [Google Scholar] [CrossRef]
- Matheron, G. Principles of Geostatistics. Econ. Geol. 1963, 58, 1246–1266. [Google Scholar] [CrossRef]
- Oliver, M.A.; Webster, R. Basic Steps in Geostatistics: The Variogram and Kriging; Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-15864-8. [Google Scholar] [CrossRef]
- Hengl, T.; Heuvelink, G.B.M.; Stein, A. Comparison of Kriging with External Drift and Regression-Kriging; Technical Report; International Institute for Geo-Information Science and Earth Observation: Enschede, The Netherlands, 2003. [Google Scholar]
- Franco-Villoria, M.; Ignaccolo, R. Universal, Residual, and External Drift Functional Kriging. In Geostatistical Functional Data Analysis; Mateu, J., Giraldo, R., Eds.; Wiley: Hoboken, NJ, USA, 2022; pp. 55–72. ISBN 9781119387916. [Google Scholar] [CrossRef]
- Verfaillie, E.; Van Lancker, V.; Van Meirvenne, M. Multivariate Geostatistics for the Predictive Modelling of the Surficial Sand Distribution in Shelf Seas. Cont. Shelf Res. 2006, 26, 2454–2468. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Khattabi, J.E.L.; Lhamidi, K.; Aljer, A. Evaluation of the Variation of the GPR Frequency Spectra Created by the Activities of Earthworms. J. Appl. Geophys. 2024, 224, 105361. [Google Scholar] [CrossRef]
- Bai, X.; Yang, Y.; Wei, S.; Chen, G.; Li, H.; Li, Y.; Tian, H.; Zhang, T.; Cui, H. A Comprehensive Review of Conventional and Deep Learning Approaches for Ground-Penetrating Radar Detection of Raw Data. Appl. Sci. 2023, 13, 7992. [Google Scholar] [CrossRef]
- Hou, F.; Lei, W.; Li, S.; Xi, J. Deep Learning-Based Subsurface Target Detection From GPR Scans. IEEE Sens. J. 2021, 21, 8161–8171. [Google Scholar] [CrossRef]
- Warathe, S.; Tanti, R.K.; Anveshkumar, N. Compact Vivaldi Antenna Design at 500MHz for GPR Applications. In Proceedings of the 2019 IEEE Indian Conference on Antennas and Propogation (InCAP), Ahmedabad, India, 19–22 December 2019; IEEE: New York, NY, USA, 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Utsi, E.C. Ground Penetrating Radar: Theory and Practice; Butterworth-Heinemann: Oxford, UK, 2017. [Google Scholar] [CrossRef]
- Fu, C.; Jiang, Y.; Xie, Z.; Li, X.; Li, Y.; Li, K.; Zhao, Y.; Zhang, F.; Jiang, P. Full Waveform Inversion of Common-Offset Ground-Penetrating Radar Based on a Special Source Wavelet and Multiple Integral Wave-Field Transform. J. Appl. Geophys. 2022, 206, 104795. [Google Scholar] [CrossRef]
- Berard, B.A.; Maillol, J.-M. Multi-Offset Ground Penetrating Radar Data for Improved Imaging in Areas of Lateral Complexity—Application at a Native American Site. J. Appl. Geophys. 2007, 62, 167–177. [Google Scholar] [CrossRef]
- Switzer, A.D.; Gouramanis, C.; Bristow, C.S.; Simms, A.R. Ground-Penetrating Radar (GPR) in Coastal Hazard Studies. In Geological Records of Tsunamis and Other Extreme Waves; Elsevier: Amsterdam, The Netherlands, 2020; pp. 143–168. [Google Scholar] [CrossRef]
- Noviello, C.; Gennarelli, G.; Esposito, G.; Ludeno, G.; Fasano, G.; Capozzoli, L.; Soldovieri, F.; Catapano, I. An Overview on Down-Looking UAV-Based GPR Systems. Remote Sens. 2022, 14, 3245. [Google Scholar] [CrossRef]
- He, W.; Lai, W.W.-L. Angle-Corrected GPR Hyperbolic Fitting Models for Improved Parameter Estimation. Tunn. Undergr. Space Technol. 2024, 147, 105741. [Google Scholar] [CrossRef]
- Liu, X.; Chen, J.; Cui, X.; Liu, Q.; Cao, X.; Chen, X. Measurement of Soil Water Content Using Ground-Penetrating Radar: A Review of Current Methods. Int. J. Digit. Earth 2019, 12, 95–118. [Google Scholar] [CrossRef]
- Preko, K.; Wilhelm, H. Detection of Water Content Inhomogeneities in a Dike Model Using Invasive GPR Guided Wave Sounding and TRIME-TDR® Technique. J. Geophys. Eng. 2012, 9, 312–326. [Google Scholar] [CrossRef]
- Galagedara, L.W.; Parkin, G.W.; Redman, J.D. An Analysis of the Ground-penetrating Radar Direct Ground Wave Method for Soil Water Content Measurement. Hydrol. Process 2003, 17, 3615–3628. [Google Scholar] [CrossRef]
- Strobbia, C.; Cassiani, G. Multilayer Ground-Penetrating Radar Guided Waves in Shallow Soil Layers for Estimating Soil Water Content. Geophysics 2007, 72, J17–J29. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 Explanation and Elaboration: Updated Guidance and Exemplars for Reporting Systematic Reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Dominic, D.F.; Egan, K.; Carney, C.; Wolfe, P.J.; Boardman, M.R. Delineation of Shallow Stratigraphy Using Ground Penetrating Radar. J. Appl. Geophys. 1995, 33, 167–175. [Google Scholar] [CrossRef]
- Huisman, J.A.; Snepvangers, J.J.J.C.; Bouten, W.; Heuvelink, G.B.M. Mapping Spatial Variation in Surface Soil Water Content: Comparison of Ground-Penetrating Radar and Time Domain Reflectometry. J. Hydrol. 2002, 269, 194–207. [Google Scholar] [CrossRef]
- Wollschläger, U.; Roth, K. Estimation of Temporal Changes of Volumetric Soil Water Content from Ground-Penetrating Radar Reflections. Subsurf. Sens. Technol. Appl. 2005, 6, 207–218. [Google Scholar] [CrossRef]
- André, F.; van Leeuwen, C.; Saussez, S.; Van Durmen, R.; Bogaert, P.; Moghadas, D.; de Rességuier, L.; Delvaux, B.; Vereecken, H.; Lambot, S. High-Resolution Imaging of a Vineyard in South of France Using Ground-Penetrating Radar, Electromagnetic Induction and Electrical Resistivity Tomography. J. Appl. Geophys. 2012, 78, 113–122. [Google Scholar] [CrossRef]
- De Benedetto, D.; Castrignano, A.; Sollitto, D.; Modugno, F.; Buttafuoco, G.; Papa, G. Lo Integrating Geophysical and Geostatistical Techniques to Map the Spatial Variation of Clay. Geoderma 2012, 171–172, 53–63. [Google Scholar] [CrossRef]
- Nobes, D.C.; Wilson, T.M.; Cockcroft, M.; Almond, P.; Whitman, Z. Agricultural Ground Penetrating Radar Response to Deep Cultivation across a Fault Scarp after the 4 September 2010 Darfield Earthquake, Canterbury, New Zealand. In Proceedings of the 14th International Conference on Ground Penetrating Radar (GPR) 2012, Shanghai, China, 4–8 June 2012; pp. 769–773. [Google Scholar] [CrossRef]
- Jonard, F.; Mahmoudzadeh, M.; Roisin, C.; Weihermüller, L.; André, F.; Minet, J.; Vereecken, H.; Lambot, S. Characterization of Tillage Effects on the Spatial Variation of Soil Properties Using Ground-Penetrating Radar and Electromagnetic Induction. Geoderma 2013, 207–208, 310–322. [Google Scholar] [CrossRef]
- Cavallo, G.; De Benedetto, D.; Castrignanò, A.; Quarto, R.; Vonella, A.V.; Buttafuoco, G. Use of Geophysical Data for Assessing 3D Soil Variation in a Durum Wheat Field and Their Association with Crop Yield. Biosyst. Eng. 2016, 152, 28–40. [Google Scholar] [CrossRef]
- Castrignanò, A.; Buttafuoco, G.; Quarto, R.; Vitti, C.; Langella, G.; Terribile, F.; Venezia, A. A Combined Approach of Sensor Data Fusion and Multivariate Geostatistics for Delineation of Homogeneous Zones in an Agricultural Field. Sensors 2017, 17, 2794. [Google Scholar] [CrossRef]
- Barca, E.; De Benedetto, D.; Stellacci, A.M. Contribution of EMI and GPR Proximal Sensing Data in Soil Water Content Assessment by Using Linear Mixed Effects Models and Geostatistical Approaches. Geoderma 2019, 343, 280–293. [Google Scholar] [CrossRef]
- De Benedetto, D.; Montemurro, F.; Diacono, M. Mapping an Agricultural Field Experiment by Electromagnetic Induction and Ground Penetrating Radar to Improve Soil Water Content Estimation. Agronomy 2019, 9, 638. [Google Scholar] [CrossRef]
- Akinsunmade, A.; Tomecka-Suchoń, S.; Pysz, P. Correlation Between Agrotechnical Properties of Selected Soil Types and Corresponding GPR Response. Acta Geophys. 2019, 67, 1913–1919. [Google Scholar] [CrossRef]
- Cao, Q.; Song, X.; Wu, H.; Gao, L.; Liu, F.; Yang, S.; Zhang, G. Mapping the Response of Volumetric Soil Water Content to an Intense Rainfall Event at the Field Scale Using GPR. J. Hydrol. 2020, 583, 124605. [Google Scholar] [CrossRef]
- Kaufmann, M.S.; Klotzsche, A.; Vereecken, H.; van der Kruk, J. Simultaneous Multichannel Multi-offset Ground-penetrating Radar Measurements for Soil Characterization. Vadose Zone J. 2020, 19, e20017. [Google Scholar] [CrossRef]
- Akinsunmade, A.; Tomecka-Suchoń, S.; Kiełbasa, P.; Juliszewski, T.; Pysz, P.; Karczewski, J.; Zagórda, M. GPR Geophysical Method as a Remediation Tool to Determine Zones of High Penetration Resistance of Soil. J. Phys. Conf. Ser. 2021, 1782, 012001. [Google Scholar] [CrossRef]
- Akinsunmade, A. GPR Imaging of Traffic Compaction Effects on Soil Structures. Acta Geophys. 2021, 69, 643–653. [Google Scholar] [CrossRef]
- Kiełbasa, P.; Zagórda, M.; Juliszewski, T.; Akinsunmade, A.; Tomecka, S.; Karczewski, J.; Pysz, P. Assessment of the Possibility of Using GPR to Determine the Working Resistance Force of Tools for Subsoil Reclamation. J. Phys. Conf. Ser. 2021, 1782, 012013. [Google Scholar] [CrossRef]
- De Benedetto, D.; Barca, E.; Castellini, M.; Popolizio, S.; Lacolla, G.; Stellacci, A.M. Prediction of Soil Organic Carbon at Field Scale by Regression Kriging and Multivariate Adaptive Regression Splines Using Geophysical Covariates. Land 2022, 11, 381. [Google Scholar] [CrossRef]
- Lu, Q.; Liu, K.; Zeng, Z.; Liu, S.; Li, R.; Xia, L.; Guo, S.; Li, Z. Estimation of the Soil Water Content Using the Early Time Signal of Ground-Penetrating Radar in Heterogeneous Soil. Remote Sens. 2023, 15, 3026. [Google Scholar] [CrossRef]
- Li, Z.; Zeng, Z.; Xiong, H.; Lu, Q.; An, B.; Yan, J.; Li, R.; Xia, L.; Wang, H.; Liu, K. Study on Rapid Inversion of Soil Water Content from Ground-Penetrating Radar Data Based on Deep Learning. Remote Sens. 2023, 15, 1906. [Google Scholar] [CrossRef]
- Ruan, W.; Liu, B.; Liu, H.; Dong, H.; Sui, Y. Ground Penetrating Radar (GPR) Identification Method for Agricultural Soil Stratification in a Typical Mollisols Area of Northeast China. Chin. Geogr. Sci. 2023, 33, 664–678. [Google Scholar] [CrossRef]
- Hugenschmidt, J.; Kay, S. Unmasking Adaption of Tree Root Structure in Agroforestry Systems in Switzerland Using GPR. Geoderma Reg. 2023, 34, e00659. [Google Scholar] [CrossRef]
- Zhou, H.; Lu, Q.; Dong, Z.; Zeng, Z.; Li, R.; Xia, L.; Liu, K.; Zhang, M.; Feng, X. Mapping Agricultural Soil Water Content Using Multi-Feature Ensemble Learning of GPR Data. J. Appl. Geophys. 2024, 227, 105433. [Google Scholar] [CrossRef]
- Pathirana, S.; Lambot, S.; Krishnapillai, M.; Cheema, M.; Smeaton, C.; Galagedara, L. Integrated Ground-Penetrating Radar and Electromagnetic Induction Offer a Non-Destructive Approach to Predict Soil Bulk Density in Boreal Podzolic Soil. Geoderma 2024, 450, 117028. [Google Scholar] [CrossRef]
- De Benedetto, D.; Montemurro, F.; Diacono, M. Repeated Geophysical Measurements in Dry and Wet Soil Conditions to Describe Soil Water Content Variability. Sci. Agric. 2020, 77, e20180349. [Google Scholar] [CrossRef]
- Diacono, M.; Fiore, A.; Farina, R.; Canali, S.; Di Bene, C.; Testani, E.; Montemurro, F. Combined Agro-Ecological Strategies for Adaptation of Organic Horticultural Systems to Climate Change in Mediterranean Environment. Ital. J. Agron. 2016, 11, 730. [Google Scholar] [CrossRef]
- Stover, H.J.; Henry, H.A.L. Soil Homogenization and Microedges: Perspectives on Soil-based Drivers of Plant Diversity and Ecosystem Processes. Ecosphere 2018, 9, e02289. [Google Scholar] [CrossRef]
- West, J.R.; Lauer, J.G.; Whitman, T. Tillage Homogenizes Soil Bacterial Communities in Microaggregate Fractions by Facilitating Dispersal. Soil Biol. Biochem. 2023, 186, 109181. [Google Scholar] [CrossRef]
- Yang, R.; Wang, C.; Yang, Y.; Harrison, M.T.; Zhou, M.; Liu, K. Implications of Soil Waterlogging for Crop Quality: A Meta-Analysis. Eur. J. Agron. 2024, 161, 127395. [Google Scholar] [CrossRef]
- Haruna, S.I.; Anderson, S.H.; Nkongolo, N.V.; Zaibon, S. Soil Hydraulic Properties: Influence of Tillage and Cover Crops. Pedosphere 2018, 28, 430–442. [Google Scholar] [CrossRef]
- Hagage, M.; Abdulaziz, A.M.; Elbeih, S.F.; Hewaidy, A.G.A. Monitoring Soil Salinization and Waterlogging in the Northeastern Nile Delta Linked to Shallow Saline Groundwater and Irrigation Water Quality. Sci. Rep. 2024, 14, 27838. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, S.; He, X.; Chen, Q.; Zhang, H.; Liu, X. Improved Prediction of Water Retention Characteristic Based on Soil Gradation and Clay Fraction. Geoderma 2021, 404, 115293. [Google Scholar] [CrossRef]
- Algeo, J.; Van Dam, R.L.; Slater, L. Early-Time GPR: A Method to Monitor Spatial Variations in Soil Water Content During Irrigation in Clay Soils. Vadose Zone J. 2016, 15, 1–9. [Google Scholar] [CrossRef]
- Budzeń, M.; Kafarski, M.; Szypłowska, A.; Wilczek, A.; Lewandowski, A.; Majcher, J.; Skierucha, W.; Lewak, M. Effect of Soil Compaction on the Measurements of Complex Dielectric Permittivity Spectrum with an Open-Ended Antenna Probe and the Coaxial Cell System. Measurement 2024, 237, 115307. [Google Scholar] [CrossRef]
- Unger, P.W.; Kaspar, T.C. Soil Compaction and Root Growth: A Review. Agron. J. 1994, 86, 759–766. [Google Scholar] [CrossRef]
- Nawaz, M.F.; Bourrié, G.; Trolard, F. Soil Compaction Impact and Modelling. A Review. Agron. Sustain. Dev. 2013, 33, 291–309. [Google Scholar] [CrossRef]
- Bello-Bello, E.; López-Arredondo, D.; Rico-Chambrón, T.Y.; Herrera-Estrella, L. Conquering Compacted Soils: Uncovering the Molecular Components of Root Soil Penetration. Trends Plant Sci. 2022, 27, 814–827. [Google Scholar] [CrossRef]
- Tracy, S.R.; Black, C.R.; Roberts, J.A.; Mooney, S.J. Soil Compaction: A Review of Past and Present Techniques for Investigating Effects on Root Growth. J. Sci. Food Agric. 2011, 91, 1528–1537. [Google Scholar] [CrossRef]
- Shah, A.N.; Tanveer, M.; Shahzad, B.; Yang, G.; Fahad, S.; Ali, S.; Bukhari, M.A.; Tung, S.A.; Hafeez, A.; Souliyanonh, B. Soil Compaction Effects on Soil Health and Cropproductivity: An Overview. Environ. Sci. Pollut. Res. 2017, 24, 10056–10067. [Google Scholar] [CrossRef]
- Frene, J.P.; Pandey, B.K.; Castrillo, G. Under Pressure: Elucidating Soil Compaction and Its Effect on Soil Functions. Plant Soil 2024, 502, 267–278. [Google Scholar] [CrossRef]
- Alakukku, L. Persistence of Soil Compaction Due to High Axle Load Traffic. I. Short-Term Effects on the Properties of Clay and Organic Soils. Soil Tillage Res. 1996, 37, 211–222. [Google Scholar] [CrossRef]
- Gregorich, E.G.; Lapen, D.R.; Ma, B.L.; McLaughlin, N.B.; VandenBygaart, A.J. Soil and Crop Response to Varying Levels of Compaction, Nitrogen Fertilization, and Clay Content. Soil Sci. Soc. Am. J. 2011, 75, 1483–1492. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Ma, Z.; Chen, J.; Akbar, J.; Zhang, S.; Che, C.; Zhang, M.; Cerdà, A. A Review of Preferential Water Flow in Soil Science. Can. J. Soil Sci. 2018, 98, 604–618. [Google Scholar] [CrossRef]
- Cardinael, R.; Mao, Z.; Prieto, I.; Stokes, A.; Dupraz, C.; Kim, J.H.; Jourdan, C. Competition with Winter Crops Induces Deeper Rooting of Walnut Trees in a Mediterranean Alley Cropping Agroforestry System. Plant Soil 2015, 391, 219–235. [Google Scholar] [CrossRef]
- Buesa, I.; Mirás-Avalos, J.M.; De Paz, J.M.; Visconti, F.; Sanz, F.; Yeves, A.; Guerra, D.; Intrigliolo, D.S. Soil Management in Semi-Arid Vineyards: Combined Effects of Organic Mulching and No-Tillage under Different Water Regimes. Eur. J. Agron. 2021, 123, 126198. [Google Scholar] [CrossRef]
- Tao, L.; Li, F.; Liu, C.; Feng, X.; Gu, L.; Wang, B.; Wen, S.; Xu, M. Mitigation of Soil Acidification through Changes in Soil Mineralogy Due to Long-Term Fertilization in Southern China. Catena 2019, 174, 227–234. [Google Scholar] [CrossRef]
- Fink, J.R.; Inda, A.V.; Tiecher, T.; Barrón, V. Iron Oxides and Organic Matter on Soil Phosphorus Availability. Ciênc. Agrotecnol. 2016, 40, 369–379. [Google Scholar] [CrossRef]
- Ardekani, M.R. Off- and on-Ground GPR Techniques for Field-Scale Soil Moisture Mapping. Geoderma 2013, 200–201, 55–66. [Google Scholar] [CrossRef]
- Diamanti, N.; Annan, A.P. Air-Launched and Ground-Coupled GPR Data. In Proceedings of the 2017 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 19–24 March 2017; pp. 1694–1698. [Google Scholar] [CrossRef]
- Diamanti, N.; Annan, A.P. Understanding the Use of Ground-Penetrating Radar for Assessing Clandestine Tunnel Detection. Lead. Edge 2019, 38, 453–459. [Google Scholar] [CrossRef]
- Tjoelker, A.R.; Baraër, M.; Valence, E.; Charonnat, B.; Masse-Dufresne, J.; Mark, B.G.; McKenzie, J.M. Drone-Based Ground-Penetrating Radar with Manual Transects for Improved Field Surveys of Buried Ice. Remote Sens. 2024, 16, 2461. [Google Scholar] [CrossRef]
- Guan, Y.; Grote, K. Assessing the Potential of UAV-Based Multispectral and Thermal Data to Estimate Soil Water Content Using Geophysical Methods. Remote Sens. 2023, 16, 61. [Google Scholar] [CrossRef]
- Zajc, M.; Koroša, A.; Urbanc, J.; Rupar, L.; Koçyigit, B.; Krivic, A.; Pecan, U.; Glavan, M. GPR and UAV Remote Sensing for Detecting Changes in Soil Moisture across a Heterogeneous Agricultural Field. In Proceedings of the 29th European Meeting of Environmental and Engineering Geophysics, Edinburgh, UK, 3–7 September 2023. [Google Scholar] [CrossRef]
- Tillard, S.; Dubois, J.-C. Analysis of GPR Data: Wave Propagation Velocity Determination. J. Appl. Geophys. 1995, 33, 77–91. [Google Scholar] [CrossRef]
- He, W.; Wai-Lok Lai, W. Unified Optimization-Based Analysis of GPR Hyperbolic Fitting Models. Tunn. Undergr. Space Technol. 2024, 146, 105633. [Google Scholar] [CrossRef]
- Allred, B.J.; Ehsani, M.R.; Daniels, J.J. The Impact on Electrical Conductivity Measurement Due to Soil Profile Properties, Shallow Hydrologic Conditions, Fertilizer Application, Agricultural Tillage, and the Type of Geophysical Method Employed. In Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems 2003, San Antonio, TX, USA, 6–10 April 2003; Environment and Engineering Geophysical Society: Denver, CO, USA, 2003; pp. 336–349. [Google Scholar] [CrossRef]
- Corwin, D.L.; Yemoto, K. Salinity: Electrical Conductivity and Total Dissolved Solids. Methods Soil Anal. 2017, 2, 1442–1461. [Google Scholar] [CrossRef]
- Darmawan, D.; Perdana, D.; Ismardi, A.; Fathona, I.W. Investigating the Electrical Properties of Soil as an Indicator of the Content of the NPK Element in the Soil. Meas. Control. 2023, 56, 351–357. [Google Scholar] [CrossRef]
- Corwin, D.L. Climate Change Impacts on Soil Salinity in Agricultural Areas. Eur. J. Soil Sci. 2021, 72, 842–862. [Google Scholar] [CrossRef]
- Linna, P.; Halla, A.; Narra, N. Ground-Penetrating Radar-Mounted Drones in Agriculture. In Proceedings of the New Developments and Environmental Applications of Drones; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Meyers, J.M.; Lampousis, A.; Vargas, O. Integration of Near-Surface Geophysical Measurements with Data from Aerial Drones in a Hudson Valley Vineyard. In Proceedings of the SEG Technical Program Expanded Abstracts, Anaheim, CA, USA, 17 October 2018. [Google Scholar] [CrossRef]
Site | Website | Query |
---|---|---|
Scopus | www.scopus.com (accessed on 31 December 2024) | TITLE-ABS-KEY (gpr OR “ground penetrating radar” OR “ground-penetrating radar”) AND TITLE-ABS-KEY (agriculture AND (“precision agriculture” OR soil OR “water content” OR moisture OR “organic matter” OR horizons OR erosion OR “plant growth” OR “water infiltration” OR “hydraulic properties” OR “water dynamics” OR texture OR “bulk density” OR salinity OR degradation OR stratigraphy OR structure OR dielectric OR “electrical conductivity” OR permittivity OR roots OR “root system” OR clay OR “machine learning” OR “deep learning” OR clutter OR noise OR fertilizers OR agrochemicals OR farming OR vineyard OR olive OR “vine vigour” OR “olive grove”)) AND (LIMIT-TO (LANGUAGE, “English”)) |
Web of Science | www.webofscience.com (accessed on 31 December 2024) | TS = (gpr OR “ground penetrating radar” OR “ground-penetrating radar”) AND TS = (agriculture AND (“precision agriculture” OR soil OR “water content” OR moisture OR “organic matter” OR horizons OR erosion OR “plant growth” OR “water infiltration” OR “hydraulic properties” OR “water dynamics” OR texture OR “bulk density” OR salinity OR degradation OR stratigraphy OR structure OR dielectric OR “electrical conductivity” OR permittivity OR roots OR “root system” OR clay OR “machine learning” OR “deep learning” OR clutter OR noise OR fertilizers OR agrochemicals OR farming OR vineyard OR olive OR “vine vigour” OR “olive grove”)) Languages: English |
Study | Objective | Central Frequency (MHz) | Methodology | Main Findings |
---|---|---|---|---|
Dominic et al. [145] | Investigation of shallow stratigraphy | 80 | Radargram | Tillage homogenization of the topsoil and production of a reflective lower boundary |
Huisman et al. [146] | Visualization of irrigation patterns with GPR and TDR | 225 | Geostatistics, Ground wave analysis | Irrigation-induced flow pathways, increasing erosion risk |
Wollschläger and Roth [147] | Temporal changes estimation of volumetric SWC with GPR | 250 | Trace Analysis | The compacted layer restricted vertical water flow throughout an extended period |
André et al. [148] | Soil stratigraphy visualization and hydrogeophysical properties characterization with EMI, ERT, and GPR | 400 | Radargram | Compacted soil increased EM reflectivity |
Benedetto et al. [149] | Mapping of clay variation with EMI and GPR | 600, 1600 | Geostatistics | Tillage homogenization of the topsoil and production of a reflective lower boundary |
Nobes et al. [150] | Assessment of the impact of soil rehabilitation with deep tillage using GPR | 100 | Radargram, Trace Analysis | Tillage reduction in topsoil’s electrical permittivity due to increased porosity |
Jonard et al. [151] | Comparison of tillage effects on soil properties using EMI and GPR | 400 | Radargram, Geostatistics, Statistics | Conventional tillage increases soil heterogeneity and reduces water retention in the topsoil |
Cavallo et al. [152] | Delineation of management zones in terms of yield performance with EMI and GPR | 250 | Geostatistics | Tillage homogenization of the topsoil and production of a reflective lower boundary |
Castrignanò et al. [153] | Delineation of homogeneous zones in an agricultural field with EMI and GPR | 250 | Geostatistics | Tillage homogenization of the topsoil and production of a reflective lower boundary |
Barca et al. [154] | SWC assessment with EMI and GPR | 250, 600, 1600 | Geostatistics | The principal component analysis detected amplitude shift attributable to tillage discontinuity |
Benedetto et al. [155] | Improvement in SWC estimation with EMI and GPR | 600 | Geostatistics | Waterlogging above compacted soil |
Akinsunmade et al. [156] | Study of traffic compaction effects on the soil surface with GPR | 800 | Radargram, Trace Analysis | Repeated tractor traffic attenuated GPR signal |
Cao et al. [157] | Mapping SWC response to rainfall with GPR | 60 | Geostatistics, Ground wave analysis, Statistics | Waterlogging above compacted soil |
Kaufmann et al. [158] | Test of multichannel and multi-offset GPR instrument for soil characterization | 500 | Trace Analysis, Ground wave analysis | Tillage reduction in topsoil’s electrical permittivity due to increased porosity |
Akinsunmade et al. [159] | Determination of zones of high penetration resistance of soil with GPR | 800 | Radargram, Trace Analysis, Power Spectral Density | Repeated tractor traffic attenuated GPR signal |
Akinsunmade et al. [160] | Study of traffic compaction effects on the soil surface with GPR | 800 | Radargram, Trace Analysis | Repeated tractor traffic attenuated GPR signal |
Kiełbasa et al. [161] | Study of traffic compaction effects on the soil surface with GPR | 800 | Trace Analysis | Repeated tractor traffic attenuated GPR signal |
Benedetto et al. [162] | Prediction of SOC at field scale with EMI and GPR | 600, 1600 | Geostatistics, Statistics | Multivariate Adaptive Regression Splines more effective than Regression Kriging in the prediction of SOC with GPR and EMI variables |
Lu et al. [163] | Early-time signal analysis for SWC estimation | 500 | Trace Analysis, Geostatistics | Estimated SWC lower in tilled soil than in no-tillage soil |
Li et al. [164] | Deep learning-based GPR for SWC estimation | 500 | Deep Learning | SWC prediction is lower in tilled soil than in no-tillage soil |
Ruan et al. [165] | Soil stratification assessment with GPR wavelet and envelope signal analysis | 100, 250, 500 | Trace Analysis, Radargram | Iron-rich soils caused high attenuation, reducing GPR penetration |
Hugenschmidt and Kay [166] | Assessment of tillage impact on tree root systems | 400 | Radargram | Tillage disrupted shallow root systems, forcing deeper root growth |
Zhou et al. [167] | Multi-feature ensemble learning using Adaboost R for SWC estimation | 500 | Machine learning | SWC prediction is lower in tilled soil than in no-tillage soil |
Pathirana et al. [168] | Soil bulk density prediction with EMI and GPR | 500 | Statistics, Machine learning | Soil bulk density prediction with simple and multi-regression techniques, as well as Random Forests |
Methodology | Strengths | Limitations |
---|---|---|
Trace Analysis | Provides localized information on soil properties, which is useful for monitoring SWC and detecting compacted layers. | Requires precise setup and regular calibration. Provides point-specific data rather than broad spatial information. |
Radargram | Effective in detecting tilled or compacted layers and estimating SWC. Useful for detecting vertical soil structures and stratifications. | Requires data processing to remove noise from environmental variations (e.g., moisture content) or field setup inconsistencies. |
Geostatistics | Enables 3D mapping of soil degradation, providing a comprehensive view of soil layers and variations. | Requires complex processing. Geostatistical tools and software are needed to simplify interpretation and processing. |
Ground Wave Analysis | Effective for near-surface analysis, particularly in measuring shallow soil attributes such as SWC. Alternative to deeper GPR methods. | A labor-intensive acquisition process requiring specialized antenna setups (e.g., CMP and WARR), increasing operational time and cost. |
Antenna Setup | Strengths | Limitations |
---|---|---|
COS | Optimized visualizing soil layers and detecting point reflectors. Offers fast and efficient data acquisition while minimizing refraction issues in layered soils. | Requires prior knowledge of soil electrical permittivity for accurate depth estimation. Limited to horizontal soil layers and depth estimation challenges without additional data. |
CMP and WARR | Useful for analyzing EM velocity and ground wave propagation, enhancing depth and lateral soil property assessment. Allows for better velocity profiling and deeper insights into soil stratigraphy. | Data acquisition is labor-intensive and time-consuming and requires more complex setups and processing, limiting suitability for rapid field surveys. |
Central Frequency (MHz) | Strengths | Limitations |
---|---|---|
<250 | High penetration depth (up to 30 m), ideal for deep soil profiling and detecting large soil structures. | Low resolution, which makes it less effective for identifying small-scale soil features or fine details. Large antenna size may also limit practical use. |
250–500 | Balanced penetration depth and resolution, suitable for shallow geological surveys and detection of large bodies. | Limited in detecting small objects or fine details in the soil structure. |
500–750 | Provides good imaging of shallow layers, ideal for detecting shallow objects or infrastructure. | Low penetration depth (up to 5 m) limits its application for deep soil analysis. |
>750 | High resolution, ideal for detecting very small objects, such as fine-scale soil structures or root systems. | Very low penetration depth (less than 1 m), making it unsuitable for deeper soil analysis. |
Method | Strengths | Limitations |
---|---|---|
GPR | High-resolution imaging of soil layers, rapid data acquisition, effective for detecting compaction and moisture variability | Limited penetration in saturated, clay-rich, and saline soils; signal attenuation in high-conductivity materials |
ERT | Deep soil profiling, effective in detecting salinity and moisture variations, useful for mapping subsurface heterogeneity | Requires electrode contact with the ground, slower acquisition, affected by surface conditions |
EMI | Fast, large-area scanning, effective for mapping soil conductivity variations, suitable for detecting salinity | Lower depth resolution compared to GPR, sensitive to metal interference, limited ability to detect stratigraphic discontinuities |
TDR | Ease of use and useful to measure small-scale SWC | Large-scale SWC estimation requires a high number of measurements due to the small volume range (0.01–1 dm3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adão, F.; Pádua, L.; Sousa, J.J. Evaluating Soil Degradation in Agricultural Soil with Ground-Penetrating Radar: A Systematic Review of Applications and Challenges. Agriculture 2025, 15, 852. https://doi.org/10.3390/agriculture15080852
Adão F, Pádua L, Sousa JJ. Evaluating Soil Degradation in Agricultural Soil with Ground-Penetrating Radar: A Systematic Review of Applications and Challenges. Agriculture. 2025; 15(8):852. https://doi.org/10.3390/agriculture15080852
Chicago/Turabian StyleAdão, Filipe, Luís Pádua, and Joaquim J. Sousa. 2025. "Evaluating Soil Degradation in Agricultural Soil with Ground-Penetrating Radar: A Systematic Review of Applications and Challenges" Agriculture 15, no. 8: 852. https://doi.org/10.3390/agriculture15080852
APA StyleAdão, F., Pádua, L., & Sousa, J. J. (2025). Evaluating Soil Degradation in Agricultural Soil with Ground-Penetrating Radar: A Systematic Review of Applications and Challenges. Agriculture, 15(8), 852. https://doi.org/10.3390/agriculture15080852