Functionality of Alternative Flours as Additives Enriching Bread with Proteins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
- yellow pea (Pisum sativum)—Młyn Niedźwiady (Niedźwiady, Poland),
- green pea (Pisum sativum)—POL-ENSA (Zator, Poland), raw material sourced from the Czech Republic,
- chickpea (Cicer arietinum)—POL-ENSA (Zator, Poland), raw material sourced from Turkey,
- hemp (Cannabis sativa), residual product of hemp seed oil pressing (Sklep Ale Młyn (Gdańsk, Poland)were the initial working material. White wheat flours with 405 mg/100 g and 650 mg/100 g ash content, namely type 405 and 650, were used as reference material in the breadmaking process. Flours were manufactured by GoodMills Polska sp. z o.o. (Stradunia, Poland) and “Młynpol” Adam Gołębiowski, Roman Wołoszczak i wspólnicy Spólka Jawna (Gromadka, Poland), respectively. All food ingredients including fresh baking yeast and brewed table salt used for bread preparation were sourced from a local grocery store. All reagents used were of analytical grade unless otherwise stated.
2.2. Flour Characteristics
2.2.1. Proximate Composition
2.2.2. Pasting Characteristics
2.2.3. Rheological Properties
2.2.4. Water Absorption Capacity
2.3. Model Dough Properties
2.3.1. Static Multiple Light Scattering
2.3.2. Diffusing Wave Spectroscopy
2.4. Bread Characteristics
2.4.1. Color Parameters
2.4.2. Texture Analysis
2.4.3. Sensory Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Flour Composition
3.2. Model Dough Properties
3.3. Bread Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Badia-Olmos, C.; Laguna, L.; Haros, C.M.; Tárrega, A. Techno-Functional and Rheological Properties of Alternative Plant-Based Flours. Foods 2023, 12, 1411. [Google Scholar] [CrossRef]
- Rodríguez-Miranda, J.; Peña, M.; Rivera, M.; Donovan, J. Nutritional Benefits and Consumer Acceptance of Maize Chips Combined with Alternative Flours. Foods 2025, 14, 864. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, J.A.; Viana, L.; English, M.M. Folate Content and Chemical Composition of Commercially Available Gluten-Free Flour Alternatives. Plant Foods Hum. Nutr. 2020, 75, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Badia-Olmos, C.; Sentandreu, M.A.; Laguna, L.; Tárrega, A.; Sentandreu, E. A comparative study of vegetable flours as alternative protein sources of interest for food industry. LWT 2024, 204, 116414. [Google Scholar] [CrossRef]
- Pourafshar, S.; ARosentrater, K.; Krishnan, P. A Review of Alternatives to Wheat Flour. In Proceedings of the 2010 ASABE Annual International Meeting, Pittsburgh, PA, USA, 20–23 June 2010. [Google Scholar]
- Milana, M.; van Asselt, E.D.; van der Fels-Klerx, H.J. The chemical and microbiological safety of emerging alternative protein sources and derived analogues: A review. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13377. [Google Scholar] [CrossRef]
- Wafula, E.N.; Onduso, M.; Wainaina, I.N.; Buvé, C.; Kinyanjui, P.K.; Githiri, S.M.; Saeys, W.; Sila, D.N.; Hendrickx, M. Antinutrient to mineral molar ratios of raw common beans and their rapid prediction using near-infrared spectroscopy. Food Chem. 2022, 368, 130773. [Google Scholar] [CrossRef]
- Parenti, O.; Assaf, N.; Alinovi, M.; Rinaldi, M.; Caligiani, A.; Chiavaro, E. Physico-chemical characterisation of whole meal flours from three wild chickpea varieties and their technological performance in Gluten Free Bread. Curr. Res. Food Sci. 2024, 9, 100816. [Google Scholar] [CrossRef]
- Kahraman, G.; Harsa, S.; Casiraghi, M.C.; Lucisano, M.; Cappa, C. Impact of Raw, Roasted and Dehulled Chickpea Flours on Technological and Nutritional Characteristics of Gluten-Free Bread. Foods 2022, 11, 199. [Google Scholar] [CrossRef]
- Yaver, E. Nutritional and textural properties and antioxidant activity of breads prepared from immature, mature, germinated, fermented and black chickpea flours. J. Sci. Food Agric. 2022, 102, 7164–7171. [Google Scholar] [CrossRef]
- Fraś, A.; Gzowska, M.; Wiśniewska, M. Nutritional Value Evaluation of New Pea Genotypes (Pisum sativum L.) Based on Their Chemical, Amino Acids and Dietary Fiber Composition. Molecules 2024, 29, 5033. [Google Scholar] [CrossRef]
- Ram, H.; Hedau, N.K.; Chaudhari, G.V.; Kant, L. Peas with zero shelling edible pods: A review. Sci. Hortic. 2021, 288, 110333. [Google Scholar] [CrossRef]
- Millar, K.A.; Gallagher, E.; Burke, R.; McCarthy, S.; Barry-Ryan, C. Proximate composition and anti-nutritional factors of fava-bean (Vicia faba), green-pea and yellow-pea (Pisum sativum) flour. J. Food Compos. Anal. 2019, 82, 103233. [Google Scholar] [CrossRef]
- Karabulut, G.; Kahraman, O.; Pandalaneni, K.; Kapoor, R.; Feng, H. A comprehensive review on hempseed protein: Production, functional and nutritional properties, novel modification methods, applications, and limitations. Int. J. Biol. Macromol. 2023, 253, 127240. [Google Scholar] [CrossRef] [PubMed]
- Tănase Apetroaei, V.; Pricop, E.M.; Istrati, D.I.; Vizireanu, C. Hemp Seeds (Cannabis sativa L.) as a Valuable Source of Natural Ingredients for Functional Foods—A Review. Molecules 2024, 29, 2097. [Google Scholar] [CrossRef]
- Stasiłowicz, A.; Tomala, A.; Podolak, I.; Cielecka-Piontek, J. Cannabis sativa L. as a Natural Drug Meeting the Criteria of a Multitarget Approach to Treatment. Int. J. Mol. Sci. 2021, 22, 778. [Google Scholar] [CrossRef]
- Teterycz, D.; Sobota, A.; Przygodzka, D.; Łysakowska, P. Hemp seed (Cannabis sativa L.) enriched pasta: Physicochemical properties and quality evaluation. PLoS ONE 2021, 16, e0248790. [Google Scholar] [CrossRef]
- Stasiłowicz-Krzemień, A.; Nogalska, W.; Maszewska, Z.; Maleszka, M.; Dobroń, M.; Szary, A.; Kępa, A.; Żarowski, M.; Hojan, K.; Lukowicz, M.; et al. The Use of Compounds Derived from Cannabis sativa in the Treatment of Epilepsy, Painful Conditions, and Neuropsychiatric and Neurodegenerative Disorders. Int. J. Mol. Sci. 2024, 25, 5749. [Google Scholar] [CrossRef]
- Farinon, B.; Molinari, R.; Costantini, L.; Merendino, N. The Seed of Industrial Hemp (Cannabis sativa L.): Nutritional Quality and Potential Functionality for Human Health and Nutrition. Nutrients 2020, 12, 1935. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, R.; Tilley, M.; Siliveru, K.; Li, Y. Effect of Pulse Type and Substitution Level on Dough Rheology and Bread Quality of Whole Wheat-Based Composite Flours. Processes 2021, 9, 1687. [Google Scholar] [CrossRef]
- Kotsiou, K.; Palassaros, G.; Irakli, M.; Biliaderis, C.G.; Lazaridou, A. Effect of Pretreated Yellow Split Pea Flour Supplementation on Dough Rheology, Texture, Volatile Profile, and Sensory Attributes of Wheat Flour–Based Breads. Food Bioprocess Technol. 2025, 18, 3993–4009. [Google Scholar] [CrossRef]
- Nkurikiye, E.; Chen, G.; Tilley, M.; Wu, X.; Zhang, G.; Fritz, A.; Li, Y. Incorporating chickpea flour can enhance mixing tolerance and dough strength of wheat flour. Cereal Chem. 2023, 100, 1250–1262. [Google Scholar] [CrossRef]
- Paladugula, M.P.; Smith, B.; Morris, C.F.; Kiszonas, A. Incorporation of yellow pea flour into white pan bread. Cereal Chem. 2021, 98, 1020–1026. [Google Scholar] [CrossRef]
- González-Montemayor, A.M.; Solanilla-Duque, J.F.; Flores-Gallegos, A.C.; López-Badillo, C.M.; Ascacio-Valdés, J.A.; Rodríguez-Herrera, R. Green Bean, Pea and Mesquite Whole Pod Flours Nutritional and Functional Properties and Their Effect on Sourdough Bread. Foods 2021, 10, 2227. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Araiza, O.; Boukid, F.; Suo, X.; Wang, S.; Vittadini, E. Pretreated Green Pea Flour as Wheat Flour Substitutes in Composite Bread Making. Foods 2023, 12, 2284. [Google Scholar] [CrossRef]
- Nkurikiye, E.; Xiao, R.; Tilley, M.; Siliveru, K.; Li, Y. Bread-making properties of different pulse flours in composites with refined wheat flour. J. Texture Stud. 2023, 54, 311–322. [Google Scholar] [CrossRef]
- Kotsiou, K.; Sacharidis, D.-D.; Matsakidou, A.; Biliaderis, C.G.; Lazaridou, A. Impact of Roasted Yellow Split Pea Flour on Dough Rheology and Quality of Fortified Wheat Breads. Foods 2021, 10, 1832. [Google Scholar] [CrossRef]
- Drakula, S.; Novotni, D.; Čukelj Mustač, N.; Voučko, B.; Krpan, M.; Hruškar, M.; Ćurić, D. Alteration of phenolics and antioxidant capacity of gluten-free bread by yellow pea flour addition and sourdough fermentation. Food Biosci. 2021, 44, 101424. [Google Scholar] [CrossRef]
- Benali, A.; En-nahli, Y.; Noutfia, Y.; Elbaouchi, A.; Kabbour, M.R.; Gaboun, F.; El Maadoudi, E.H.; Benbrahim, N.; Taghouti, M.; Ouhssine, M.; et al. Nutritional and Technological Optimization of Wheat-Chickpea- Milk Powder Composite Flour and Its Impact on Rheological and Sensorial Properties of Leavened Flat Bread. Foods 2021, 10, 1843. [Google Scholar] [CrossRef]
- Scheffold, F.; Romer, S.; Cardinaux, F.; Bissig, H.; Stradner, A.; Rojas-Ochoa, L.F.; Trappe, V.; Urban, C.; Skipetrov, S.E.; Cipelletti, L.; et al. New Trends in Optical Microrheology of Complex Fluids and Gels BT—Trends in Colloid and Interface Science XVI; Miguel, M., Burrows, H.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 141–146. [Google Scholar]
- Corredig, M.; Alexander, M. Food emulsions studied by DWS: Recent advances. Trends Food Sci. Technol. 2008, 19, 67–75. [Google Scholar] [CrossRef]
- Cristiano, M.C.; Froiio, F.; Mancuso, A.; De Gaetano, F.; Ventura, C.A.; Fresta, M.; Paolino, D. The Rheolaser MasterTM and Kinexus Rotational Rheometer® to Evaluate the Influence of Topical Drug Delivery Systems on Rheological Features of Topical Poloxamer Gel. Molecules 2020, 25, 1979. [Google Scholar] [CrossRef]
- PN-A-79011-1:1998; Dry food mixes—Test methods—General principles. Polski Komitet Normalizacyjny: Warsaw, Poland, 1998.
- ISO 20483:2013; Cereals and pulses—Determination of the nitrogen content and calculation of the crude protein content—Kjeldahl method. International Organization for Standardization: Geneva, Switzerland, 2013.
- Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers. Available online: https://www.legislation.gov.uk/eur/2011/1169/contents (accessed on 23 March 2025).
- ISO 12966:2014; Animal and vegetable fats and oils—Gas chromatography of fatty acid methyl esters. International Organization for Standardization: Geneva, Switzerland, 2013.
- AACC 08-12.01; Ash in Farina and Semolina. Cereals & Grains Association: St. Paul, MN, USA, 1999.
- AOAC 991.43; Total, Soluble and Insoluble Dietary Fiber in Foods. AOAC International: Rockville, MD, USA, 1994.
- Lewandowicz, J.; Le Thanh-Blicharz, J.; Szwengiel, A. The Effect of Chemial Modification on the Rheological Properties and Structure of Food Grade Modified Starches. Process 2022, 10, 938. [Google Scholar] [CrossRef]
- Sosulski, F.W. The Centrifuge Method for Determining Flour Absorption in Hard Red Spring Wheats. Cereal Chem. 1962, 39, 344–349. [Google Scholar]
- ISO 6564; Sensory analysis—Methodology—Flavour profile methods. International Organization for Standardization: Geneva, Switzerland, 1985.
- Souza, E.J.; Guttieri, M.; Sneller, C. Nutritional Profile of Whole-Grain Soft Wheat Flour. Cereal Chem. 2011, 88, 473–479. [Google Scholar] [CrossRef]
- Zięba, T.; Kapelko-Żeberska, M.; Gryszkin, A.; Wilczak, A.; Raszewski, B.; Spychaj, R. Effect of the Botanical Origin on Properties of RS3/4 Type Resistant Starch. Polymers 2019, 11, 81. [Google Scholar] [CrossRef]
- Schultz, C.J.; Lim, W.L.; Khor, S.F.; Neumann, K.A.; Schulz, J.M.; Ansari, O.; Skewes, M.A.; Burton, R.A. Consumer and health-related traits of seed from selected commercial and breeding lines of industrial hemp, Cannabis sativa L. J. Agric. Food Res. 2020, 2, 100025. [Google Scholar] [CrossRef]
- Bojňanská, T.; Musilová, J.; Vollmannová, A. Effects of Adding Legume Flours on the Rheological and Breadmaking Properties of Dough. Foods 2021, 10, 1087. [Google Scholar] [CrossRef]
- Cacak-Pietrzak, G.; Sujka, K.; Księżak, J.; Bojarszczuk, J.; Ziarno, M.; Studnicki, M.; Krajewska, A.; Dziki, D. Assessment of Physicochemical Properties and Quality of the Breads Made from Organically Grown Wheat and Legumes. Foods 2024, 13, 1244. [Google Scholar] [CrossRef]
- Hoque, M.; Biswas, R.; Alam, M.; Sarkar, A.; Haque, M.I.; Hasan, M.M. Pulse fortified whole wheat bread: A review on dough rheology, bread quality, and sensory properties. F1000Research 2022, 11, 536. [Google Scholar] [CrossRef]
- Wójcik, M.; Różyło, R.; Schönlechner, R.; Berger, M.V. Physico-chemical properties of an innovative gluten-free, low-carbohydrate and high protein-bread enriched with pea protein powder. Sci. Rep. 2021, 11, 14498. [Google Scholar] [CrossRef]
- Cacak-Pietrzak, G.; Sujka, K.; Księżak, J.; Bojarszczuk, J.; Dziki, D. Sourdough Wheat Bread Enriched with Grass Pea and Lupine Seed Flour: Physicochemical and Sensory Properties. Appl. Sci. 2023, 13, 8664. [Google Scholar] [CrossRef]
Nutritional Value | Flour | |||
---|---|---|---|---|
Yellow Pea | Green Pea | Chickpea | Hemp | |
Energy (kcal) | 354 | 331 | 330 | 319 |
Fat (g/100 g) | 2.45 b ± 0.07 | 2.20 ab ± 0.06 | 2.08 a ± 0.06 | 12.18 c ± 0.11 |
Saturates (g/100 g) | 0.40 a ± 0.02 | 0.34 a ± 0.01 | 0.34 a ± 0.01 | 1.32 b ± 0.05 |
Carbohydrates (g/100 g) | 61.45 | 61.05 | 59.56 | 45.87 |
Sugars (g/100 g) | 6.04 | 6.05 | 5.43 | 2.70 |
Fiber (g/100 g) | 7.99 a ± 1.12 | 9.72 a ± 1.37 | 6.75 a ± 0.95 | 43.40 b ± 6.10 |
Protein (g/100 g) | 25.43 ab ± 1.45 | 21.08 a ± 1.20 | 21.75 a ± 1.24 | 28.24 b ± 1.61 |
Sodium (mg/kg) | 14.0 bc ± 1.5 | 15.8 c ± 1.6 | 10.2 b ± 1.1 | 4.6 ab ± 0.5 |
Ash (g/100 g) | 2,85 a ± 0.06 | 2.58 a ± 0.06 | 2.58 a ± 0.06 | 5.54 b ± 0.09 |
Water (g/100 g) | 7.82 a ± 0.12 | 12.64 b ± 0.19 | 14.03 c ± 0.21 | 8.17 a ± 0.12 |
Rheological Parameter | Flour | |||
---|---|---|---|---|
Yellow Pea | Green Pea | Chickpea | Hemp | |
Consistency index (Pa∙sn) | 32.7 c ±6.3 | 12.1 ab ±2.7 | 18.7 b ±0.5 | 9.9 a ±1.1 |
Flow behavior index (-) | 0.307 b ±0.015 | 0.373 c ±0.030 | 0.337 bc ±0.010 | 0.002 a ±0.001 |
Thixotropy (Pa∙s−1) | 16,750 a ±6152 | 8599 a ±221 | 14,000 a ±368 | 10,281 a ±2234 |
Bread Dough | Turbiscan Stability Index (-) | Macroscopic Viscosity Index (nm−2∙s) | Solid–Liquid Balance (-) | Fluidity Index (Hz) | Water Absorption Capacity (%) |
---|---|---|---|---|---|
Reference | 7.0 | 0.0053 b ± 0.0007 | 0.497 b ± 0.016 | 0.461 b ± 0.063 | 64 a ± 1 |
Yellow pea | 3.5 | 0.0146 c ± 0.0019 | 0.446 a ± 0.008 | 0.169 a ± 0.019 | 107 c ± 1 |
Green pea | 6.4 | 0.0052 b ± 0.0016 | 0.508 b ± 0.038 | 0.484 b ± 0.149 | 93 b ± 1 |
Chickpea | 5.7 | 0.0033 a ± 0.0010 | 0.535 c ± 0.039 | 0.809 c ± 0.256 | 93 b ± 4 |
Hemp | 3.8 | 0.0041 ab ± 0.0005 | 0.518 b ± 0.013 | 0.512 b ± 0.052 | 127 d ± 1 |
Bread Crumb | Color Parameter | |||
---|---|---|---|---|
L | a | b | ΔE | |
Reference | 72.57 b ± 1.85 | −0.21 a ± 0.07 | 16.46 b ± 0.25 | - |
Yellow pea | 70.91 b ± 1.03 | 0.52 b ± 0.06 | 19.64 c ± 0.13 | 3.66 |
Green pea | 71.06 b ± 0.13 | 0.76 bc ± 0.13 | 16.41 b ± 0.23 | 1.79 |
Chickpea | 71.00 b ± 1.88 | 1.63 d ± 0.23 | 15.36 b ± 0.64 | 2.65 |
Hemp | 51.89 a ± 0.68 | 0.64 c ± 0.03 | 13.96 a ± 0.71 | 20.85 |
Bread crust | ||||
Reference | 64.03 c ± 1.62 | 8.36 b ± 1.24 | 31.62 c ± 0.84 | - |
Yellow pea | 50.84 a ± 0.51 | 10.02 b ± 0.57 | 25.72 b ± 1.09 | 14.55 |
Green pea | 55.59 b ± 1.37 | 13.10 c ± 0.53 | 30.87 c ± 0.98 | 9.71 |
Chickpea | 54.22 b ± 0.63 | 13.10 c ± 0.81 | 30.39 c ± 0.27 | 11.30 |
Hemp | 52.30 ab ± 0.45 | 4.18 a ± 0.49 | 21.95 a ± 0.51 | 15.76 |
Bread | Hardness (g) |
---|---|
Reference | 1108.5 a ± 67.0 |
Yellow pea | 1278.6 a ± 187.2 |
Green pea | 1217.4 a ± 160.2 |
Chickpea | 1204.4 a ± 48.1 |
Hemp | 1342.4 a ± 178.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lewandowicz, J.; Le Thanh-Blicharz, J.; Jankowska, P.; Lewandowicz, G. Functionality of Alternative Flours as Additives Enriching Bread with Proteins. Agriculture 2025, 15, 851. https://doi.org/10.3390/agriculture15080851
Lewandowicz J, Le Thanh-Blicharz J, Jankowska P, Lewandowicz G. Functionality of Alternative Flours as Additives Enriching Bread with Proteins. Agriculture. 2025; 15(8):851. https://doi.org/10.3390/agriculture15080851
Chicago/Turabian StyleLewandowicz, Jacek, Joanna Le Thanh-Blicharz, Patrycja Jankowska, and Grażyna Lewandowicz. 2025. "Functionality of Alternative Flours as Additives Enriching Bread with Proteins" Agriculture 15, no. 8: 851. https://doi.org/10.3390/agriculture15080851
APA StyleLewandowicz, J., Le Thanh-Blicharz, J., Jankowska, P., & Lewandowicz, G. (2025). Functionality of Alternative Flours as Additives Enriching Bread with Proteins. Agriculture, 15(8), 851. https://doi.org/10.3390/agriculture15080851