Precision Feeding in Lactating Sows Improves Growth Performance and Carcass Quality of Their Progeny
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animals, Management, and Experimental Procedure
2.3. Growth-to-Target
2.4. Metabolic and Welfare Status
2.5. Productive Yields at Slaughterhouse
2.6. Statistical Analysis
3. Results
3.1. Growth to Target
3.2. Metabolic and Welfare Status
3.3. Productive Yields at Slaughterhouse
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Menegat, M.B.; Goodband, R.D.; DeRouchey, J.M.; Tokach, M.D.; Woodworth, J.C.; Dritz, S.S. Economics in Swine Nutrition. In Swine Nutrition Guide—General Nutrition Principles; Kansas State University: Manhattan, KS, USA, 2019; pp. 1–3. [Google Scholar]
- Sulabo, R.; Jacela, J.; Wiedemann, E.; Tokach, M.; Nelssen, J.; DeRouchey, J.; Goodband, R.; Dritz, S. Effects of Lactation Feed Intake and Creep Feeding on Sow and Piglet Performance. Kans. Agric. Exp. Stn. Res. Rep. 2014, 10, 24–37. [Google Scholar] [CrossRef]
- Hoffmann, C.K.; Bilkei, G. Effect of Body Condition of Postweaning ‘Flushed’ Sows and Weaning-To-Mating Interval on Sow Reproductive Performance. Vet. Rec. 2003, 152, 261–263. [Google Scholar] [CrossRef] [PubMed]
- Bortolozzo, F.P.; Zanin, G.P.; Ulguim, R.D.R.; Mellagi, A.P.G. Managing Reproduction in Hyperprolific Sow Herds. Animals 2023, 13, 1842. [Google Scholar] [CrossRef]
- Berckmans, D. Automatic On-Line Monitoring of Animals by Precision Livestock Farming. Livest. Prod. 2006, 1, 287–294. [Google Scholar]
- Guarino, M.; Norton, T.; Berckmans, D.; Vranken, E.; Berckmans, D. A Blueprint for Developing and Applying Precision Livestock Farming Tools: A Key Output of the EU-PLF Project. Anim. Front. 2017, 7, 12–17. [Google Scholar] [CrossRef]
- Gómez, Y.; Stygar, A.H.; Boumans, I.J.M.M.; Bokkers, E.A.M.; Pedersen, L.J.; Niemi, J.K.; Pastell, M.; Manteca, X.; Llonch, P. A Systematic Review on Validated Precision Livestock Farming Technologies for Pig Production and Its Potential to Assess Animal Welfare. Front. Vet. Sci. 2021, 8, 660565. [Google Scholar] [CrossRef]
- Aparicio, M.; Yeste-Vizcaíno, N.; Morales, J.; Soria, N.; Isabel, B.; Piñeiro, C.; González-Bulnes, A. Use of Precision Feeding during Lactation Improves the Productive Yields of Sows and Their Piglets under Commercial Farm Conditions. Animals 2024, 14, 2863. [Google Scholar] [CrossRef]
- Aparicio-Arnay, M.; Yeste-Vizcaíno, N.; Soria, N.; Cambra, J.; Isabel, B.; Piñeiro, C.; Gonzalez-Bulnes, A. Effects of Precision Feeding on Economic and Productive Yields of Hyperprolific Lactating Sows Allocated at Different Farrowing Pens. Animals 2025, 15, 763. [Google Scholar] [CrossRef]
- Moest, N.K.; Willard, N.C.; Shull, C.M.; McKilligan, D.; Ellis, M. Effect of Piglet Weaning Weight on Wean-to-Finish Growth Performance and Ultrasound Carcass Measures. J. Anim. Sci. 2023, 101, 9–10. [Google Scholar] [CrossRef]
- Pomar, C.; Remus, A. Precision Pig Feeding: A Breakthrough toward Sustainability. Anim. Front. 2019, 9, 52–59. [Google Scholar] [CrossRef]
- Collins, C.L.; Pluske, J.R.; Morrison, R.S.; McDonald, T.N.; Smits, R.J.; Henman, D.J.; Stensland, I.; Dunshea, F.R. Post-Weaning and Whole-of-Life Performance of Pigs is Determined by Live Weight at Weaning and the Complexity of the Diet Fed After Weaning. Anim. Nutr. 2017, 3, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Chacón, G.; Laita, S.G.B.; Portal, J.C.I.; Liesa, J.P. Validation of an EIA Technique for the Determination of Salivary Cortisol in Cattle. Span. J. Agric. Res. 2004, 1, 45–52. [Google Scholar] [CrossRef]
- Sánchez, J.; Matas, M.; Ibáñez-López, F.J.; Hernández, I.; Sotillo, J.; Gutiérrez, A.M. The Connection Between Stress and Immune Status in Pigs: A First Salivary Analytical Panel for Disease Differentiation. Front. Vet. Sci. 2022, 9, 881435. [Google Scholar] [CrossRef]
- Barbero, A.; Astiz, S.; Lopez-Bote, C.J.; Perez-Solana, M.L.; Ayuso, M.; Garcia-Real, I.; Gonzalez-Bulnes, A. Maternal Malnutrition and Offspring Sex Determine Juvenile Obesity and Metabolic Disorders in a Swine Model of Leptin Resistance. PLoS ONE 2013, 8, e78424. [Google Scholar] [CrossRef]
- Brøndum, J.; Egebo, M.; Agerskov, C.; Busk, H. On-Line Pork Carcass Grading with the Autofom Ultrasound System. J. Anim. Sci. 1998, 76, 1859–1868. [Google Scholar] [CrossRef]
- Fortin, A.; Tong, A.K.; Robertson, W.M. Evaluation of Three Ultrasound Instruments, CVT-2, Ultrafom 300 and Autofom for Predicting Salable Meat Yield and Weight of Lean in the Primals of Pork Carcasses. Meat Sci. 2004, 68, 537–549. [Google Scholar] [CrossRef]
- Hansen, A.V. Feed Intake in Reproducing Sows. In Nutritional Physiology of Pigs; Knudsen, K.E.B., Kjeldsen, N.J., Poulsen, H.D., Jensen, B.B., Eds.; Danish Pig Research Center: Copenhagen, Denmark, 2012. [Google Scholar]
- Campbell, R.G.; Dunkin, A.C. The effect of Birth Weight on the Estimated Milk Intake, Growth and Body Composition of Sow-Reared Piglets. Anim. Sci. 1982, 35, 193–197. [Google Scholar] [CrossRef]
- Dividich, J.L. A Review: Neonatal and Weaner Pig: Management to Reduce Variation; Biennial Conference of the Australian Pig Science Association: Adelaïde, Australia, 1999. [Google Scholar]
- Gondret, F.; Lefaucheur, L.; Louveau, I.; Lebret, B.; Pichodo, X.; Le Cozler, Y. Influence of Piglet Birth Weight on Postnatal Growth Performance, Tissue Lipogenic Capacity and Muscle Histological Traits at Market Weight. Livest. Prod. Sci. 2005, 93, 137–146. [Google Scholar] [CrossRef]
- Solà-Oriol, D.; Gasa, J. Feeding Strategies in Pig Production: Sows and their Piglets. Anim. Feed Sci. Technol. 2017, 233, 34–52. [Google Scholar] [CrossRef]
- Wolter, B.F.; Ellis, M. The Effects of Weaning Weight and Rate of Growth Immediately After Weaning on Subsequent Pig Growth Performance and Carcass Characteristics. Can. J. Anim. Sci. 2001, 81, 363–369. [Google Scholar] [CrossRef]
- Petrovic, V.; Novotný, J.; Hisira, V.; Link, R.; Leng, L.; Kovac, G. The Impact of Suckling and Post-weaning Period on Blood Chemistry of Piglets. Acta Vet. Brno 2009, 78, 365–371. [Google Scholar] [CrossRef]
- Lauridsen, C.; Jensen, S.K. Lipid Composition of Lactational Diets Influences the Fatty Acid Profile of the Progeny before and after Suckling. Animal 2007, 1, 952–962. [Google Scholar] [CrossRef] [PubMed]
- Mahan, D.C.; Lepine, A.J. Effect of Pig Weaning Weight and Associated Nursery Feeding Programs on Subsequent Performance to 105 Kilograms Body Weight. J. Anim. Sci. 1991, 69, 1370–1378. [Google Scholar] [CrossRef]
- Bate, L.A.; Hacker, R.R. Estrogens and Piglet Viability. II. Effect of Estrogen on Piglet Viability. J. Anim. Sci. 1982, 54, 1017–1022. [Google Scholar] [CrossRef] [PubMed]
- Dunshea, F.R. Sexual Dimorphism in Growth of Sucking and Growing Pigs. Asian-Australas. J. Anim. Sci. 2001, 14, 1610–1615. [Google Scholar] [CrossRef]
- Power, G.; Pluske, J.; Campbell, R.; Cranwell, P.; Kerton, D.; King, R.; Dunshea, F. Effect of Sex, Weight and Age on Post-Weaning Growth of Pigs. In Proceedings of the Nutrition Society of Australia, V20, Twentieth Annual Scientific Meeting, Sydney, Australia, 28 September–1 October 1996. [Google Scholar]
- Bérard, J.; Kreuzer, M.; Bee, G. In Large Litters Birth Weight and Gender is Decisive for Growth Performance but Less for Carcass and Pork Quality Traits. Meat Sci. 2010, 86, 845–851. [Google Scholar] [CrossRef]
- Faccin, J.; Laskoski, F.; Cemin, H.S.; Mellagi, A.P.; Bernardi, M.; Ulguim, R.; Bortolozzo, F.P.; Tokach, M.D. Evaluating the Impact of Weaning Weight and Growth Rate During the First Week Post Weaning on Overall Nursery Performance. J. Swine Health Prod. 2020, 28, 70–78. [Google Scholar] [CrossRef]
Group | BW Day 0 | BW Day 14 | ADWG 0–14 | BW Day 24 | ADWG 14–24 | ADWG0–24 |
---|---|---|---|---|---|---|
ESF | 1.22 ± 0.28 | 4.11 ± 0.86 | 0.207 ± 0.06 | 5.91 ± 1.45 | 0.226 ± 0.10 | 0.205 ± 0.05 |
CON | 1.20 ± 0.26 | 3.64 ± 0.74 | 0.180 ± 0.06 | 5.58 ± 1.23 | 0.191 ± 0.13 | 0.182 ± 0.05 |
p-Value | 0.162 | <0.001 | 0.448 | 0.002 | 0.045 | 0.059 |
Group | Feed Disappearance | Feed per Weaned Piglet | Feed per kg of Weaned Piglet | Weaned Piglets (n) | Weight of Weaned Piglets |
---|---|---|---|---|---|
ESF | 155.37 ± 18.77 | 11.31 ± 2.13 | 1.92 ± 0.33 | 13.95 ± 1.63 | 5.91 ± 1.46 |
CON | 187.83 ± 12.35 | 13.35 ± 1.94 | 2.43 ± 0.48 | 14.25 ± 1.45 | 5.58 ± 1.23 |
p-Value | <0.001 | 0.002 | <0.001 | 0.520 | <0.002 |
Group | BW Day 68 | ADWG 24–68 | BW Day 192 | ADWG 68–192 |
---|---|---|---|---|
ESF | 20.59 ± 4.21 | 0.332 ± 0.92 | 128.54 ± 14.56 | 0.921 ± 0.11 |
CON | 19.35 ± 4.06 | 0.312 ± 0.80 | 121.12 ± 12.53 | 0.871 ± 0.09 |
p-Value | <0.001 | 0.006 | <0.001 | <0.001 |
Day 14 | Day 31 | ||
---|---|---|---|
Group | Cortisol (μg/dL) | Cortisol (μg/dL) | Alpha-Amylase (U/L) |
ESF | 2.73 ± 2.29 | 0.18 ± 0.86 | 5004.01 ± 3917.27 |
CON | 2.67 ± 2.12 | 0.18 ± 0.88 | 4594.42 ± 2194.25 |
p-Value | 0.903 | 0.563 | 0.770 |
Group | Glucose (mg/dL) | Fructosamine (µmol/L) | Cholesterol (mg/dL) | HDL-c (mg/dL) | LDL-c (mg/dL) | Triglycerides (mg/dL) | Proteins (g/dL) |
---|---|---|---|---|---|---|---|
ESF | 132.2 ± 18.15 | 379.93 ± 50.94 | 128.05 ± 26.93 | 49.97 ± 7.52 | 64.82 ± 18.46 | 89.42 ± 38.48 | 4.98 ± 0.47 |
CON | 126.98 ± 14.44 | 382.35 ± 49.02 | 115.73 ± 32.65 | 47.6 ± 12.20 | 55.85 ± 13.79 | 75.62 ± 34.7 | 4.8 ± 0.32 |
p-Value | 0.166 | 0.790 | 0.028 | 0.129 | 0.015 | 0.043 | 0.052 |
Group | Carcass Weight (kg) | Carcass Yield (%) | Carcass Lean (%) | BFD (mm) | Loin Diameter (mm) |
---|---|---|---|---|---|
ESF | 105.17 ± 15.92 | 80.63 ± 5.89 | 62.31 ± 4.92 | 16.2 ± 3.10 | 73.08 ± 8.13 |
CON | 97.98 ± 20.25 | 80.36 ± 3.01 | 61.39 ± 10.95 | 15.03 ± 3.57 | 69.78 ± 13.69 |
p-Value | <0.001 | 0.684 | 0.325 | 0.003 | 0.010 |
Group | Loin W | Loin WT | Loin L | Ham W | Ham WT | Ham L |
ESF | 9.08 ± 1.35 | 8.13 ± 1.24 | 5.93 ± 0.71 | 13.56 ± 1.74 | 12.77 ± 1.62 | 10.51 ± 1.27 |
CON | 8.35 ± 1.81 | 7.45 ± 1.63 | 5.55 ± 1.12 | 12.67 ± 2.59 | 11.85 ± 2.41 | 9.84 ± 1.98 |
p-Value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Group | Shoulder W | Shoulder WT | Shoulder L | Belly W | Belly WT | Belly L |
ESF | 7.88 ± 1.06 | 7.15 ± 0.98 | 5.57 ± 0.70 | 4.84 ± 0.69 | 4.50 ± 0.66 | 2.99 ± 0.36 |
CON | 7.24 ± 1.52 | 6.65 ± 1.40 | 5.20 ± 1.07 | 4.44 ± 0.94 | 4.12 ± 0.89 | 3.00 ± 0.57 |
p-Value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aparicio-Arnay, M.; Yeste-Vizcaíno, N.; Soria, N.; Cambra, J.; Isabel, B.; Piñeiro, C.; Gonzalez-Bulnes, A. Precision Feeding in Lactating Sows Improves Growth Performance and Carcass Quality of Their Progeny. Agriculture 2025, 15, 887. https://doi.org/10.3390/agriculture15080887
Aparicio-Arnay M, Yeste-Vizcaíno N, Soria N, Cambra J, Isabel B, Piñeiro C, Gonzalez-Bulnes A. Precision Feeding in Lactating Sows Improves Growth Performance and Carcass Quality of Their Progeny. Agriculture. 2025; 15(8):887. https://doi.org/10.3390/agriculture15080887
Chicago/Turabian StyleAparicio-Arnay, María, Natalia Yeste-Vizcaíno, Nerea Soria, Jorge Cambra, Beatriz Isabel, Carlos Piñeiro, and Antonio Gonzalez-Bulnes. 2025. "Precision Feeding in Lactating Sows Improves Growth Performance and Carcass Quality of Their Progeny" Agriculture 15, no. 8: 887. https://doi.org/10.3390/agriculture15080887
APA StyleAparicio-Arnay, M., Yeste-Vizcaíno, N., Soria, N., Cambra, J., Isabel, B., Piñeiro, C., & Gonzalez-Bulnes, A. (2025). Precision Feeding in Lactating Sows Improves Growth Performance and Carcass Quality of Their Progeny. Agriculture, 15(8), 887. https://doi.org/10.3390/agriculture15080887