A Comprehensive Review of Digital Twins Technology in Agriculture
Abstract
:1. Introduction
- We systematically examine the current state of digital twin technologies in agriculture, highlighting both the technologies—such as IoT, cloud computing, and edge computing—and their concrete applications of different agricultural issues, including crop management, disaster warning, and resource optimization.
- We identify and categorize the primary technical and operational challenges impeding widespread DT adoption in agriculture. These include difficulties in data collection from heterogeneous sources, lack of standardization, interoperability issues, and high implementation costs, especially in low-resource settings.
- We propose future research directions with a specific emphasis on the integration of DTs and Foundation Models (FMs). Such convergence is anticipated to enhance the intelligence, autonomy, and scalability of agricultural DT systems.
2. Concept and Architecture of DT
2.1. Key Concepts of DT
2.2. Architecture of DT
3. Current Research and Key Technologies in Agricultural DT
3.1. Development of Agricultural DT
3.2. Key Technologies in Agricultural DT
3.2.1. Agricultural Data Acquisition
3.2.2. Agricultural Data Storage
3.2.3. 3D Modeling and Simulation
3.3. Applications of DT in Agriculture
3.3.1. Crop Production Management
3.3.2. Agricultural Disaster Warning and Response
3.3.3. Livestock Management
3.3.4. Optimization of Agricultural Machinery and Equipment
3.3.5. Resource Optimization in Agriculture
3.3.6. Agricultural Decision Support Systems
4. Challenges in Agricultural DT
4.1. Data Acquisition Challenges
4.2. Data Integration Barriers
4.3. Modeling and Simulation Challenges
4.4. Physical-Virtual Integration Bottlenecks
4.5. Full Life Cycle Management Challenges
4.6. Limitations
5. Future Directions
- Enhanced Decision Making: Combining DTs’ real-time simulation capabilities with FMs’ ability to interpret complex data can create highly intelligent DSS. For instance, a DT representing a farm could leverage an FM to analyze weather forecasts, soil conditions, and crop growth models to recommend optimal planting schedules, irrigation strategies, and pest management plans.
- Scalable Resource Optimization: FMs can process multi-modal data from DTs, including sensor readings, satellite images, and historical trends, to identify resource optimization strategies. This integration could enhance predictions for water usage, fertilizer application, and energy efficiency at both micro and macro scales.
- Predictive Analytics and Proactive Interventions: DTs can simulate potential agricultural scenarios, such as pest outbreaks or extreme weather events, while FMs enhance predictive analytics by learning from large datasets. This enables proactive measures to minimize crop losses and mitigate risks.
- Personalized Farming Solutions: The ability of FMs, adapting their output based on specific contexts, can provide personalized insights for individual farms, thus complementing the capabilities of DTs in precision agriculture. These systems could recommend crop varieties, market trends, and customized farming techniques, aligned with specific goals such as maximizing yield or minimizing carbon footprint [161].
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lakhiar, I.A.; Yan, H.; Zhang, J.; Wang, G.; Deng, S.; Bao, R.; Zhang, C.; Syed, T.N.; Wang, B.; Zhou, R.; et al. Plastic pollution in agriculture as a threat to food security, the ecosystem, and the environment: An overview. Agronomy 2024, 14, 548. [Google Scholar] [CrossRef]
- Maroušek, J. Study on agriculture decision-makers behavior on sustainable energy utilization. J. Agric. Environ. Ethics 2013, 26, 679–689. [Google Scholar] [CrossRef]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Lakhiar, I.A.; Gao, J.; Syed, T.N.; Chandio, F.A.; Tunio, M.H.; Ahmad, F.; Solangi, K.A. Overview of the aeroponic agriculture–An emerging technology for global food security. Int. J. Agric. Biol. Eng. 2020, 13, 1–10. [Google Scholar] [CrossRef]
- Sushanth, G.; Sujatha, S. IOT based smart agriculture system. In Proceedings of the 2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, 22–24 March 2018; pp. 1–4. [Google Scholar]
- Eli-Chukwu, N.C. Applications of artificial intelligence in agriculture: A review. Eng. Technol. Appl. Sci. Res. 2019, 9, 4377–4383. [Google Scholar] [CrossRef]
- Bannerjee, G.; Sarkar, U.; Das, S.; Ghosh, I. Artificial intelligence in agriculture: A literature survey. Int. J. Sci. Res. Comput. Sci. Appl. Manag. Stud. 2018, 7, 1–6. [Google Scholar]
- Chen, J.; Zhang, M.; Xu, B.; Sun, J.; Mujumdar, A.S. Artificial intelligence assisted technologies for controlling the drying of fruits and vegetables using physical fields: A review. Trends Food Sci. Technol. 2020, 105, 251–260. [Google Scholar] [CrossRef]
- Wang, L. Digital Twins in Agriculture: A Review of Recent Progress and Open Issues. Electronics 2024, 13, 2209. [Google Scholar] [CrossRef]
- Peladarinos, N.; Piromalis, D.; Cheimaras, V.; Tserepas, E.; Munteanu, R.A.; Papageorgas, P. Enhancing smart agriculture by implementing digital twins: A comprehensive review. Sensors 2023, 23, 7128. [Google Scholar] [CrossRef]
- Botín-Sanabria, D.M.; Mihaita, A.S.; Peimbert-García, R.E.; Ramírez-Moreno, M.A.; Ramírez-Mendoza, R.A.; Lozoya-Santos, J.d.J. Digital twin technology challenges and applications: A comprehensive review. Remote Sens. 2022, 14, 1335. [Google Scholar] [CrossRef]
- Kritzinger, W.; Karner, M.; Traar, G.; Henjes, J.; Sihn, W. Digital Twin in manufacturing: A categorical literature review and classification. Ifac-PapersOnline 2018, 51, 1016–1022. [Google Scholar] [CrossRef]
- Sepasgozar, S.M. Differentiating digital twin from digital shadow: Elucidating a paradigm shift to expedite a smart, sustainable built environment. Buildings 2021, 11, 151. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Gu, R. Research status and prospects on plant canopy structure measurement using visual sensors based on three-dimensional reconstruction. Agriculture 2020, 10, 462. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, B.; Shen, C.; Liu, H.; Huang, J.; Tian, K.; Tang, Z. Review of the field environmental sensing methods based on multi-sensor information fusion technology. Int. J. Agric. Biol. Eng. 2024, 17, 1–13. [Google Scholar]
- Awais, M.; Li, W.; Hussain, S.; Cheema, M.J.M.; Li, W.; Song, R.; Liu, C. Comparative evaluation of land surface temperature images from unmanned aerial vehicle and satellite observation for agricultural areas using in situ data. Agriculture 2022, 12, 184. [Google Scholar] [CrossRef]
- Yin, L.; You, T.; Arslan, M.; El-Seedi, H.R.; Guo, Z.; Zou, X.; Cai, J. Dual-layers Raman reporter-tagged Au@ Ag combined with core-satellite assemblies for SERS detection of Zearalenone. Food Chem. 2023, 429, 136834. [Google Scholar] [CrossRef]
- Hubbard, K.G.; Rosenberg, N.J.; Nielsen, D.C. Automated weather data network for agriculture. J. Water Resour. Plan. Manag. 1983, 109, 213–222. [Google Scholar] [CrossRef]
- Strommen, N.D.; Motha, R.P. An operational early warning agricultural weather system. In Planning for Drought; Routledge: London, UK, 2019; pp. 153–162. [Google Scholar]
- Hammer, G.; Hansen, J.; Phillips, J.; Mjelde, J.; Hill, H.; Love, A.; Potgieter, A. Advances in application of climate prediction in agriculture. Agric. Syst. 2001, 70, 515–553. [Google Scholar] [CrossRef]
- Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Comput. Electron. Agric. 2018, 151, 61–69. [Google Scholar] [CrossRef]
- Zhai, Z.; Martínez, J.F.; Beltran, V.; Martínez, N.L. Decision support systems for agriculture 4.0: Survey and challenges. Comput. Electron. Agric. 2020, 170, 105256. [Google Scholar] [CrossRef]
- Cox, P. Some issues in the design of agricultural decision support systems. Agric. Syst. 1996, 52, 355–381. [Google Scholar] [CrossRef]
- Ilbery, B.W. Agricultural decision-making: A behavioural perspective. Prog. Hum. Geogr. 1978, 2, 448–466. [Google Scholar] [CrossRef]
- Wu, H.; Li, X.; Lu, H.; Tong, L.; Kang, S. Crop acreage planning for economy-resource-efficiency coordination: Grey information entropy based uncertain model. Agric. Water Manag. 2023, 289, 108557. [Google Scholar] [CrossRef]
- Li, H.; Issaka, Z.; Jiang, Y.; Tang, P.; Chen, C. Overview of emerging technologies in sprinkler irrigation to optimize crop production. Int. J. Agric. Biol. Eng. 2019, 12, 1–9. [Google Scholar] [CrossRef]
- Angin, P.; Anisi, M.H.; Göksel, F.; Gürsoy, C.; Büyükgülcü, A. Agrilora: A digital twin framework for smart agriculture. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 2020, 11, 77–96. [Google Scholar]
- Yang, N.; Yuan, M.; Wang, P.; Zhang, R.; Sun, J.; Mao, H. Tea diseases detection based on fast infrared thermal image processing technology. J. Sci. Food Agric. 2019, 99, 3459–3466. [Google Scholar] [CrossRef]
- Jo, S.K.; Park, D.H.; Park, H.; Kim, S.H. Smart livestock farms using digital twin: Feasibility study. In Proceedings of the 2018 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 17–19 October 2018; pp. 1461–1463. [Google Scholar]
- Raba, D.; Tordecilla, R.D.; Copado, P.; Juan, A.A.; Mount, D. A digital twin for decision making on livestock feeding. Inf. J. Appl. Anal. 2022, 52, 267–282. [Google Scholar] [CrossRef]
- García, R.; Aguilar, J.; Toro, M.; Pinto, A.; Rodríguez, P. A systematic literature review on the use of machine learning in precision livestock farming. Comput. Electron. Agric. 2020, 179, 105826. [Google Scholar] [CrossRef]
- Neethirajan, S.; Kemp, B. Digital twins in livestock farming. Animals 2021, 11, 1008. [Google Scholar] [CrossRef]
- Skobelev, P.; Mayorov, I.; Simonova, E.; Goryanin, O.; Zhilyaev, A.; Tabachinskiy, A.; Yalovenko, V. Development of models and methods for creating a digital twin of plant within the cyber-physical system for precision farming management. J. Phys. Conf. Ser. 2020, 1703, 012022. [Google Scholar] [CrossRef]
- Purcell, W.; Neubauer, T.; Mallinger, K. Digital Twins in agriculture: Challenges and opportunities for environmental sustainability. Curr. Opin. Environ. Sustain. 2023, 61, 101252. [Google Scholar] [CrossRef]
- Chaux, J.D.; Sanchez-Londono, D.; Barbieri, G. A digital twin architecture to optimize productivity within controlled environment agriculture. Appl. Sci. 2021, 11, 8875. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, C.; Kevin, I.; Wang, K.; Huang, H.; Xu, X. Digital Twin-driven smart manufacturing: Connotation, reference model, applications and research issues. Robot. Comput.-Integr. Manuf. 2020, 61, 101837. [Google Scholar] [CrossRef]
- Wang, H.; Gu, J.; Wang, M. A review on the application of computer vision and machine learning in the tea industry. Front. Sustain. Food Syst. 2023, 7, 1172543. [Google Scholar] [CrossRef]
- Elbeltagi, A.; Srivastava, A.; Deng, J.; Li, Z.; Raza, A.; Khadke, L.; Yu, Z.; El-Rawy, M. Forecasting vapor pressure deficit for agricultural water management using machine learning in semi-arid environments. Agric. Water Manag. 2023, 283, 108302. [Google Scholar] [CrossRef]
- Min, Q.; Lu, Y.; Liu, Z.; Su, C.; Wang, B. Machine learning based digital twin framework for production optimization in petrochemical industry. Int. J. Inf. Manag. 2019, 49, 502–519. [Google Scholar] [CrossRef]
- Brucherseifer, E.; Winter, H.; Mentges, A.; Mühlhäuser, M.; Hellmann, M. Digital Twin conceptual framework for improving critical infrastructure resilience. at-Automatisierungstechnik 2021, 69, 1062–1080. [Google Scholar] [CrossRef]
- Goldenits, G.; Mallinger, K.; Raubitzek, S.; Neubauer, T. Current applications and potential future directions of reinforcement learning-based Digital Twins in agriculture. Smart Agricultural Technology 2024, 100512. [Google Scholar] [CrossRef]
- Cayambe, J.; Heredia-R, M.; Torres, E.; Puhl, L.; Torres, B.; Barreto, D.; Heredia, B.N.; Vaca-Lucero, A.; Diaz-Ambrona, C.G. Evaluation of sustainability in strawberry crops production under greenhouse and open-field systems in the Andes. Int. J. Agric. Sustain. 2023, 21, 2255449. [Google Scholar] [CrossRef]
- Yan, H.; Acquah, S.J.; Zhang, J.; Wang, G.; Zhang, C.; Darko, R.O. Overview of modelling techniques for greenhouse microclimate environment and evapotranspiration. Int. J. Agric. Biol. Eng. 2021, 14, 1–8. [Google Scholar] [CrossRef]
- Grieves, M. Digital twin: Manufacturing excellence through virtual factory replication. White Paper 2014, 1, 1–7. [Google Scholar]
- Jones, D.; Snider, C.; Nassehi, A.; Yon, J.; Hicks, B. Characterising the Digital Twin: A systematic literature review. CIRP J. Manuf. Sci. Technol. 2020, 29, 36–52. [Google Scholar] [CrossRef]
- Schleich, B.; Anwer, N.; Mathieu, L.; Wartzack, S. Shaping the digital twin for design and production engineering. CIRP Ann. 2017, 66, 141–144. [Google Scholar] [CrossRef]
- Miller, A.M.; Alvarez, R.; Hartman, N. Towards an extended model-based definition for the digital twin. Comput.-Aided Des. Appl. 2018, 15, 880–891. [Google Scholar] [CrossRef]
- Wang, Z. Digital twin technology. In Industry 4.0-Impact on Intelligent Logistics and Manufacturing; IntechOpen: London, UK, 2020. [Google Scholar]
- Grieves, M.; Vickers, J. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches; Springer: Cham, Switzerland, 2017; pp. 85–113. [Google Scholar]
- Mashaly, M. Connecting the twins: A review on digital twin technology & its networking requirements. Procedia Comput. Sci. 2021, 184, 299–305. [Google Scholar]
- Liu, J.; Zhou, H.; Liu, X.; Tian, G.; Wu, M.; Cao, L.; Wang, W. Dynamic evaluation method of machining process planning based on digital twin. IEEE Access 2019, 7, 19312–19323. [Google Scholar] [CrossRef]
- Barricelli, B.R.; Casiraghi, E.; Fogli, D. A survey on digital twin: Definitions, characteristics, applications, and design implications. IEEE Access 2019, 7, 167653–167671. [Google Scholar] [CrossRef]
- Boschert, S.; Rosen, R. Digital Twin—The Simulation Aspect. In Mechatronic Futures: Challenges and Solutions for Mechatronic Systems and their Designers; Hehenberger, P., Bradley, D., Eds.; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Negri, E.; Fumagalli, L.; Macchi, M. A review of the roles of digital twin in CPS-based production systems. Procedia Manuf. 2017, 11, 939–948. [Google Scholar] [CrossRef]
- Symeonaki, E.; Maraveas, C.; Arvanitis, K.G. Recent advances in digital twins for agriculture 5.0: Applications and open issues in livestock production systems. Appl. Sci. 2024, 14, 686. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, H.; Liu, A.; Nee, A.Y.C. Digital Twin in Industry: State-of-the-Art. IEEE Trans. Ind. Inform. 2019, 15, 2405–2415. [Google Scholar] [CrossRef]
- Tao, F.; Cheng, J.; Qi, Q.; Zhang, M.; Zhang, H.; Sui, F. Digital twin-driven product design, manufacturing and service with big data. Int. J. Adv. Manuf. Technol. 2018, 94, 3563–3576. [Google Scholar] [CrossRef]
- Rasheed, A.; San, O.; Kvamsdal, T. Digital twin: Values, challenges and enablers from a modeling perspective. IEEE access 2020, 8, 21980–22012. [Google Scholar] [CrossRef]
- Yu, W.; Liang, F.; He, X.; Hatcher, W.G.; Lu, C.; Lin, J.; Yang, X. A survey on the edge computing for the Internet of Things. IEEE Access 2017, 6, 6900–6919. [Google Scholar] [CrossRef]
- Verdouw, C.; Tekinerdogan, B.; Beulens, A.; Wolfert, S. Digital twins in smart farming. Agric. Syst. 2021, 189, 103046. [Google Scholar] [CrossRef]
- Canedo, A. Industrial IoT lifecycle via digital twins. In Proceedings of the Eleventh IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, Pittsburgh, PA, USA, 1–7 October 2016; p. 1. [Google Scholar]
- Alves, R.G.; Maia, R.F.; Lima, F. Development of a Digital Twin for smart farming: Irrigation management system for water saving. J. Clean. Prod. 2023, 388, 135920. [Google Scholar] [CrossRef]
- Dale, K.I.; Pope, E.C.; Hopkinson, A.R.; McCaie, T.; Lowe, J.A. Environment-aware digital twins: Incorporating weather and climate information to support risk-based decision-making. Artif. Intell. Earth Syst. 2023, 2, e230023. [Google Scholar] [CrossRef]
- Farsi, M.; Ariansyah, D.; Erkoyuncu, J.A.; Harrison, A. A digital twin architecture for effective product lifecycle cost estimation. Procedia CIRP 2021, 100, 506–511. [Google Scholar] [CrossRef]
- Shoji, K.; Schudel, S.; Onwude, D.; Shrivastava, C.; Defraeye, T. Mapping the postharvest life of imported fruits from packhouse to retail stores using physics-based digital twins. Resour. Conserv. Recycl. 2022, 176, 105914. [Google Scholar] [CrossRef]
- Henrichs, E.; Noack, T.; Pinzon Piedrahita, A.M.; Salem, M.A.; Stolz, J.; Krupitzer, C. Can a byte improve our bite? An analysis of digital twins in the food industry. Sensors 2021, 22, 115. [Google Scholar] [CrossRef]
- El Saddik, A. Digital twins: The convergence of multimedia technologies. IEEE Multimed. 2018, 25, 87–92. [Google Scholar] [CrossRef]
- Alam, K.M.; El Saddik, A. C2PS: A digital twin architecture reference model for the cloud-based cyber-physical systems. IEEE Access 2017, 5, 2050–2062. [Google Scholar] [CrossRef]
- Escribà-Gelonch, M.; Liang, S.; van Schalkwyk, P.; Fisk, I.; Long, N.V.D.; Hessel, V. Digital Twins in Agriculture: Orchestration and Applications. J. Agric. Food Chem. 2024, 72, 10737–10752. [Google Scholar] [CrossRef] [PubMed]
- Pylianidis, C.; Osinga, S.; Athanasiadis, I.N. Introducing digital twins to agriculture. Comput. Electron. Agric. 2021, 184, 105942. [Google Scholar] [CrossRef]
- Monteiro, J.; Barata, J.; Veloso, M.; Veloso, L.; Nunes, J. Towards sustainable digital twins for vertical farming. In Proceedings of the 2018 Thirteenth International Conference on Digital Information Management (ICDIM), Berlin, Germany, 24–26 September 2018; pp. 234–239. [Google Scholar]
- Sharma, A.; Jain, A.; Gupta, P.; Chowdary, V. Machine learning applications for precision agriculture: A comprehensive review. IEEE Access 2020, 9, 4843–4873. [Google Scholar] [CrossRef]
- Tagarakis, A.C.; Benos, L.; Kyriakarakos, G.; Pearson, S.; Sørensen, C.G.; Bochtis, D. Digital Twins in Agriculture and Forestry: A Review. Sensors 2024, 24, 3117. [Google Scholar] [CrossRef]
- Ahmed, S.; Qiu, B.; Ahmad, F.; Kong, C.W.; Xin, H. A state-of-the-art analysis of obstacle avoidance methods from the perspective of an agricultural sprayer UAV’s operation scenario. Agronomy 2021, 11, 1069. [Google Scholar] [CrossRef]
- Nasirahmadi, A.; Hensel, O. Toward the next generation of digitalization in agriculture based on digital twin paradigm. Sensors 2022, 22, 498. [Google Scholar] [CrossRef]
- Bermeo-Almeida, O.; Cardenas-Rodriguez, M.; Samaniego-Cobo, T.; Ferruzola-Gómez, E.; Cabezas-Cabezas, R.; Bazán-Vera, W. Blockchain in agriculture: A systematic literature review. In Proceedings of the Technologies and Innovation: 4th International Conference, CITI 2018, Guayaquil, Ecuador, 6–9 November 2018; Proceedings 4. Springer: Berlin/Heidelberg, Germany, 2018; pp. 44–56. [Google Scholar]
- Ding, C.; Wang, L.; Chen, X.; Yang, H.; Huang, L.; Song, X. A blockchain-based wide-area agricultural machinery resource scheduling system. Appl. Eng. Agric. 2023, 39, 1–12. [Google Scholar] [CrossRef]
- Leduc, G.; Kubler, S.; Georges, J.P. Innovative blockchain-based farming marketplace and smart contract performance evaluation. J. Clean. Prod. 2021, 306, 127055. [Google Scholar] [CrossRef]
- Zheng, Z.; Xie, S.; Dai, H.N.; Chen, X.; Wang, H. Blockchain challenges and opportunities: A survey. Int. J. Web Grid Serv. 2018, 14, 352–375. [Google Scholar] [CrossRef]
- Minerva, R.; Lee, G.M.; Crespi, N. Digital twin in the IoT context: A survey on technical features, scenarios, and architectural models. Proc. IEEE 2020, 108, 1785–1824. [Google Scholar] [CrossRef]
- Mohamed, T.M.K.; Gao, J.; Tunio, M. Development and experiment of the intelligent control system for rhizosphere temperature of aeroponic lettuce via the Internet of Things. Int. J. Agric. Biol. Eng. 2022, 15, 225–233. [Google Scholar]
- Dhanaraju, M.; Chenniappan, P.; Ramalingam, K.; Pazhanivelan, S.; Kaliaperumal, R. Smart farming: Internet of Things (IoT)-based sustainable agriculture. Agriculture 2022, 12, 1745. [Google Scholar] [CrossRef]
- Solangi, K.A.; Siyal, A.A.; Wu, Y.; Abbasi, B.; Solangi, F.; Lakhiar, I.A.; Zhou, G. An assessment of the spatial and temporal distribution of soil salinity in combination with field and satellite data: A case study in Sujawal District. Agronomy 2019, 9, 869. [Google Scholar] [CrossRef]
- Zhang, S.; Xue, X.; Chen, C.; Sun, Z.; Sun, T. Development of a low-cost quadrotor UAV based on ADRC for agricultural remote sensing. Int. J. Agric. Biol. Eng. 2019, 12, 82–87. [Google Scholar] [CrossRef]
- Silva, L.; Rodríguez-Sedano, F.; Baptista, P.; Coelho, J.P. The digital twin paradigm applied to soil quality assessment: A systematic literature review. Sensors 2023, 23, 1007. [Google Scholar] [CrossRef]
- Berger, K.; Machwitz, M.; Kycko, M.; Kefauver, S.C.; Van Wittenberghe, S.; Gerhards, M.; Verrelst, J.; Atzberger, C.; Van der Tol, C.; Damm, A.; et al. Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain: A review. Remote Sens. Environ. 2022, 280, 113198. [Google Scholar] [CrossRef]
- Memon, M.S.; Chen, S.; Niu, Y.; Zhou, W.; Elsherbiny, O.; Liang, R.; Du, Z.; Guo, X. Evaluating the Efficacy of Sentinel-2B and Landsat-8 for Estimating and Mapping Wheat Straw Cover in Rice–Wheat Fields. Agronomy 2023, 13, 2691. [Google Scholar] [CrossRef]
- Gao, Q.; Zribi, M.; Escorihuela, M.J.; Baghdadi, N.; Segui, P.Q. Irrigation mapping using Sentinel-1 time series at field scale. Remote Sens. 2018, 10, 1495. [Google Scholar] [CrossRef]
- Shorachi, M.; Kumar, V.; Steele-Dunne, S.C. Sentinel-1 SAR backscatter response to agricultural drought in the Netherlands. Remote Sens. 2022, 14, 2435. [Google Scholar] [CrossRef]
- Bloch, V.; Palosuo, T.; Huitu, H.; Ronkainen, A.; Backman, J.; Pussi, K.; Suokannas, A.; Pastell, M. Towards a digital twin for optimal field management. In Precision Agriculture’23; Wageningen Academic Publishers: Wageningen, The Netherlands, 2023; pp. 377–383. [Google Scholar]
- Moghadam, P.; Lowe, T.; Edwards, E.J. Digital twin for the future of orchard production systems. Proceedings 2020, 36, 92. [Google Scholar] [CrossRef]
- O’Grady, M.; Langton, D.; O’Hare, G. Edge computing: A tractable model for smart agriculture? Artif. Intell. Agric. 2019, 3, 42–51. [Google Scholar] [CrossRef]
- Kalyani, Y.; Vorster, L.; Whetton, R.; Collier, R. Application Scenarios of Digital Twins for Smart Crop Farming through Cloud–Fog–Edge Infrastructure. Future Internet 2024, 16, 100. [Google Scholar] [CrossRef]
- Fuentealba, D.; Flores, C.; Soto, I.; Zamorano, R.; Reid, S. Guidelines for digital twins in 5g agriculture. In Proceedings of the 2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Porto, Portugal, 20–22 July 2022; pp. 613–618. [Google Scholar]
- Shouqi, Y.; Darko, R.O.; Xingye, Z.; Junping, L.; Kun, T. Optimization of movable irrigation system and performance assessment of distribution uniformity under varying conditions. Int. J. Agric. Biol. Eng. 2017, 10, 72–79. [Google Scholar]
- Zhu, X.; Chikangaise, P.; Shi, W.; Chen, W.H.; Yuan, S. Review of intelligent sprinkler irrigation technologies for remote autonomous system. Int. J. Agric. Biol. Eng. 2018, 11, 23–30. [Google Scholar] [CrossRef]
- Yang, N.; Chang, K.; Dong, S.; Tang, J.; Wang, A.; Huang, R.; Jia, Y. Rapid image detection and recognition of rice false smut based on mobile smart devices with anti-light features from cloud database. Biosyst. Eng. 2022, 218, 229–244. [Google Scholar] [CrossRef]
- Zamora-Izquierdo, M.A.; Santa, J.; Martínez, J.A.; Martínez, V.; Skarmeta, A.F. Smart farming IoT platform based on edge and cloud computing. Biosyst. Eng. 2019, 177, 4–17. [Google Scholar] [CrossRef]
- Ketu, S.; Mishra, P.K.; Agarwal, S. Performance analysis of distributed computing frameworks for big data analytics: Hadoop vs spark. Comput. Sist. 2020, 24, 669–686. [Google Scholar] [CrossRef]
- Cravero, A.; Pardo, S.; Galeas, P.; López Fenner, J.; Caniupán, M. Data type and data sources for agricultural big data and machine learning. Sustainability 2022, 14, 16131. [Google Scholar] [CrossRef]
- Rehman, K.U.; Andleeb, S.; Ashfaq, M.; Akram, N.; Akram, M.W. Blockchain-enabled smart agriculture: Enhancing data-driven decision making and ensuring food security. J. Clean. Prod. 2023, 427, 138900. [Google Scholar] [CrossRef]
- Liu, J.; Yuan, Y.; Gao, Y.; Tang, S.; Li, Z. Virtual model of grip-and-cut picking for simulation of vibration and falling of grape clusters. Trans. ASABE 2019, 62, 603–614. [Google Scholar] [CrossRef]
- Wang, J.; Wang, T.; Fu, Y.; Yuan, J.; Hu, Y. Application Status and Development Prospects of Digital Twin Technology in Agricultural Production Process Control. Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 2024, 55, 1–20. [Google Scholar]
- Zermas, D.; Morellas, V.; Mulla, D.; Papanikolopoulos, N. Extracting phenotypic characteristics of corn crops through the use of reconstructed 3D models. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 8247–8254. [Google Scholar]
- Zhu, B.; Liu, F.; Xie, Z.; Guo, Y.; Li, B.; Ma, Y. Quantification of light interception within image-based 3-D reconstruction of sole and intercropped canopies over the entire growth season. Ann. Bot. 2020, 126, 701–712. [Google Scholar] [CrossRef]
- Xu, J.; Liu, H.; Shen, Y.; Zeng, X.; Zheng, X. Individual nursery trees classification and segmentation using a point cloud-based neural network with dense connection pattern. Sci. Hortic. 2024, 328, 112945. [Google Scholar] [CrossRef]
- Sun, Y.; Luo, Y.; Zhang, Q.; Xu, L.; Wang, L.; Zhang, P. Estimation of crop height distribution for mature rice based on a moving surface and 3D point cloud elevation. Agronomy 2022, 12, 836. [Google Scholar] [CrossRef]
- Edemetti, F.; Maiale, A.; Carlini, C.; D’Auria, O.; Llorca, J.; Tulino, A.M. Vineyard Digital Twin: Construction and characterization via UAV images–DIWINE Proof of Concept. In Proceedings of the 2022 IEEE 23rd International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), Belfast, UK, 14–17 June 2022; pp. 601–606. [Google Scholar]
- Wu, Q.; Gu, J. Design and research of robot visual servo system based on artificial intelligence. Agro Food Ind. Hi-Tech 2017, 28, 125–128. [Google Scholar]
- Jin, Y.; Liu, J.; Xu, Z.; Yuan, S.; Li, P.; Wang, J. Development status and trend of agricultural robot technology. Int. J. Agric. Biol. Eng. 2021, 14, 1–19. [Google Scholar] [CrossRef]
- Yandun, F.; Silwal, A.; Kantor, G. Visual 3d reconstruction and dynamic simulation of fruit trees for robotic manipulation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 54–55. [Google Scholar]
- Yu, S.; Liu, X.; Tan, Q.; Wang, Z.; Zhang, B. Sensors, systems and algorithms of 3D reconstruction for smart agriculture and precision farming: A review. Comput. Electron. Agric. 2024, 224, 109229. [Google Scholar] [CrossRef]
- Trilles, S.; Torres-Sospedra, J.; Belmonte, Ó.; Zarazaga-Soria, F.J.; González-Pérez, A.; Huerta, J. Development of an open sensorized platform in a smart agriculture context: A vineyard support system for monitoring mildew disease. Sustain. Comput. Inform. Syst. 2020, 28, 100309. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, W.; Wen, L.; Chen, Z.; Wu, S.; Zhou, K.; Sun, M.; Xu, L.; Hu, B.; Wu, C. Digital twins in smart farming: An autoware-based simulator for autonomous agricultural vehicles. Int. J. Agric. Biol. Eng. 2023, 16, 184–189. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Gao, M.; Dai, B.; Kou, S.; Wang, X.; Fu, X.; Shen, W. Digital twin perception and modeling method for feeding behavior of dairy cows. Comput. Electron. Agric. 2023, 214, 108181. [Google Scholar] [CrossRef]
- Sangeetha, S.; Indumathi, N.; Grover, R.; Singh, R.; Mavi, R. IoT based wireless communication system for smart irrigation and rice leaf disease prediction using ResNeXt-50. Int. J. Artif. Intell. Tools 2024, 33, 2450004. [Google Scholar] [CrossRef]
- Játiva, P.P.; Soto, I.; Azurdia-Meza, C.A.; Sánchez, I.; Wang, R.; Kern, W. Hybrid digital twin model for greenhouse and underground environments. IEEE Access 2024, 12, 73906–73924. [Google Scholar] [CrossRef]
- Skobelev, P.; Mayorov, I.; Simonova, E.; Goryanin, O.; Zhilyaev, A.; Tabachinskiy, A.; Yalovenko, V. Development of digital twin of plant for adaptive calculation of development stage duration and forecasting crop yield in a cyber-physical system for managing precision farming. In Cyber-Physical Systems: Digital Technologies and Applications; Springer: Berlin/Heidelberg, Germany, 2021; pp. 83–96. [Google Scholar]
- Rajeswari, D.; Parthiban, A.V.; Ponnusamy, S. Digital Twin-Based Crop Yield Prediction in Agriculture. In Harnessing AI and Digital Twin Technologies in Businesses; IGI Global: Hershey, PA, USA, 2024; pp. 99–110. [Google Scholar]
- Dai, M.; Shen, Y.; Li, X.; Liu, J.; Zhang, S.; Miao, H. Digital Twin System of Pest Management Driven by Data and Model Fusion. Agriculture 2024, 14, 1099. [Google Scholar] [CrossRef]
- Zanchin, A.; Sozzi, M.; Giora, D.; Kalantari, M.; Belfiore, N.; Terleth, J.; Tomasi, D.; Marinello, F. Digital Twins analysis as a tool to find new descriptors for grapevine bunch morphology categorisation and grey mould infection risk evaluation. Biosyst. Eng. 2024, 237, 71–82. [Google Scholar] [CrossRef]
- B., C. Research on Pig House Environment Monitoring System Based on Digital Twin Technology. Master’s Thesis, Jilin Agricultural University, Changchun, China, 2023.
- Erdélyi, V.; Jánosi, L. Digital twin and shadow in smart pork fetteners. Int. J. Eng. Manag. Sci. 2019, 4, 515–520. [Google Scholar]
- Zhang, Y.; Du, Y.; Mao, E.; Song, Z.; Chen, D.; Zhu, Z. Pressure Control Method of Wet Clutch in High-powered Tractor Based on Digital Twin. J. Mech. Eng. 2023, 59, 268–279. [Google Scholar]
- Zhang, Y.; Wang, D.; Du, Y.; Wu, Z.; Guo, X.; Gao, L. Shift Strategy for Powershift Tractors Based on Digital Twins. Trans. Chin. Soc. Agric. Mach. 2024, 55, 440–448. [Google Scholar]
- De Bortoli, L.; Marsi, S.; Marinello, F.; Gallina, P. Cost-efficient algorithm for autonomous cultivators: Implementing template matching with field digital twins for precision agriculture. Comput. Electron. Agric. 2024, 227, 109509. [Google Scholar] [CrossRef]
- Ghandar, A.; Ahmed, A.; Zulfiqar, S.; Hua, Z.; Hanai, M.; Theodoropoulos, G. A decision support system for urban agriculture using digital twin: A case study with aquaponics. IEEE Access 2021, 9, 35691–35708. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, Z.; Gao, G.; Qu, D.; Zhong, J.; Jia, D.; Du, X.; Yang, X.; Pan, S. Design and research of digital twin system for multi-environmental variable mapping in plant factory. Comput. Electron. Agric. 2023, 213, 108243. [Google Scholar] [CrossRef]
- Jiang, X.; Jiang, M.; Gou, Y.; Li, Q.; Zhou, Q. Forestry digital twin with machine learning in Landsat 7 data. Front. Plant Sci. 2022, 13, 916900. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.J. Getting value from artificial intelligence in agriculture. Anim. Prod. Sci. 2018, 60, 46–54. [Google Scholar] [CrossRef]
- Ayaz, M.; Ammad-Uddin, M.; Sharif, Z.; Mansour, A.; Aggoune, E.H.M. Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk. IEEE Access 2019, 7, 129551–129583. [Google Scholar] [CrossRef]
- Alves, R.G.; Souza, G.; Maia, R.F.; Tran, A.L.H.; Kamienski, C.; Soininen, J.P.; Aquino, P.T.; Lima, F. A digital twin for smart farming. In Proceedings of the 2019 IEEE Global Humanitarian Technology Conference (GHTC), Seattle, WA, USA, 17–20 October 2019; pp. 1–4. [Google Scholar]
- Jones, J.W.; Antle, J.M.; Basso, B.; Boote, K.J.; Conant, R.T.; Foster, I.; Godfray, H.C.J.; Herrero, M.; Howitt, R.E.; Janssen, S.; et al. Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science. Agric. Syst. 2017, 155, 269–288. [Google Scholar] [CrossRef]
- Khanal, S.; Kc, K.; Fulton, J.P.; Shearer, S.; Ozkan, E. Remote sensing in agriculture—Accomplishments, limitations, and opportunities. Remote Sens. 2020, 12, 3783. [Google Scholar] [CrossRef]
- Awais, M.; Li, W.; Li, H.; Cheema, M.J.M.; Hussain, S.; Liu, C. Optimization of intelligent irrigation systems for smart farming using multi-spectral unmanned aerial vehicle and digital twins modeling. Environ. Sci. Proc. 2022, 23, 13. [Google Scholar] [CrossRef]
- Skobelev, P.; Tabachinskiy, A.; Simonova, E.; Lee, T.R.; Zhilyaev, A.; Laryukhin, V. Digital twin of rice as a decision-making service for precise farming, based on environmental datasets from the fields. In Proceedings of the 2021 International Conference on Information Technology and Nanotechnology (ITNT), Samara, Russia, 20–24 September 2021; pp. 1–8. [Google Scholar]
- Dolci, R. IoT solutions for precision farming and food manufacturing: Artificial intelligence applications in digital food. In Proceedings of the 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), Turin, Italy, 4–8 July 2017; Volume 2, pp. 384–385. [Google Scholar]
- Tagliavini, G.; Defraeye, T.; Carmeliet, J. Multiphysics modeling of convective cooling of non-spherical, multi-material fruit to unveil its quality evolution throughout the cold chain. Food Bioprod. Process. 2019, 117, 310–320. [Google Scholar] [CrossRef]
- Alnowaiser, K.K.; Ahmed, M.A. Digital twin: Current research trends and future directions. Arab. J. Sci. Eng. 2023, 48, 1075–1095. [Google Scholar] [CrossRef]
- Paraforos, D.S.; Sharipov, G.M.; Griepentrog, H.W. ISO 11783-compatible industrial sensor and control systems and related research: A review. Comput. Electron. Agric. 2019, 163, 104863. [Google Scholar] [CrossRef]
- Khatraty, Y.B.; Mellouli, N.; Diallo, M.T.; Nanne, M.F. Smart Digital-Twin hub Concept for Rice yield prediction and monitoring from multivariate time series data. In Proceedings of the 2023 24th International Conference on Control Systems and Computer Science (CSCS), Bucharest, Romania, 24–26 May 2023; pp. 48–55. [Google Scholar]
- Erkoyuncu, J.A.; del Amo, I.F.; Ariansyah, D.; Bulka, D.; Roy, R. A design framework for adaptive digital twins. CIRP Ann. 2020, 69, 145–148. [Google Scholar] [CrossRef]
- Kampker, A.; Stich, V.; Jussen, P.; Moser, B.; Kuntz, J. Business models for industrial smart services–the example of a digital twin for a product-service-system for potato harvesting. Procedia CIRP 2019, 83, 534–540. [Google Scholar] [CrossRef]
- Tao, F.; Qi, Q. Make more digital twins. Nature 2019, 573, 490–491. [Google Scholar] [CrossRef] [PubMed]
- Bali, M.K.; Singh, M. Farming in the Digital Age: AI-Infused Digital Twins for Agriculture. In Proceedings of the 2024 3rd International Conference on Sentiment Analysis and Deep Learning (ICSADL), Bhimdatta, Nepal, 13–14 March 2024; pp. 14–21. [Google Scholar] [CrossRef]
- Klerkx, L.; Jakku, E.; Labarthe, P. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS-Wagening. J. Life Sci. 2019, 90, 100315. [Google Scholar] [CrossRef]
- Wolf, S.A.; Buttel, F.H. The political economy of precision farming. Am. J. Agric. Econ. 1996, 78, 1269–1274. [Google Scholar] [CrossRef]
- McClenaghan, A.; Gopsill, J.; Ballantyne, R.; Hicks, B. Cost Benefit Analysis for Digital Twin Model Selection at the Time of Investment. Procedia CIRP 2023, 120, 1197–1202. [Google Scholar] [CrossRef]
- Kshetri, N. The Economics of Digital Twins. Computer 2021, 54, 86–90. [Google Scholar] [CrossRef]
- Cesco, S.; Sambo, P.; Borin, M.; Basso, B.; Orzes, G.; Mazzetto, F. Smart agriculture and digital twins: Applications and challenges in a vision of sustainability. Eur. J. Agron. 2023, 146, 126809. [Google Scholar] [CrossRef]
- Rolandi, S.; Brunori, G.; Bacco, M.; Scotti, I. The digitalization of agriculture and rural areas: Towards a taxonomy of the impacts. Sustainability 2021, 13, 5172. [Google Scholar] [CrossRef]
- Abbasi, R.; Martinez, P.; Ahmad, R. The digitization of agricultural industry–a systematic literature review on agriculture 4.0. Smart Agric. Technol. 2022, 2, 100042. [Google Scholar] [CrossRef]
- Zhou, C.; Li, Q.; Li, C.; Yu, J.; Liu, Y.; Wang, G.; Zhang, K.; Ji, C.; Yan, Q.; He, L.; et al. A comprehensive survey on pretrained foundation models: A history from bert to chatgpt. Int. J. Mach. Learn. Cybern. 2024, 1–65. [Google Scholar] [CrossRef]
- Naveed, H.; Khan, A.U.; Qiu, S.; Saqib, M.; Anwar, S.; Usman, M.; Akhtar, N.; Barnes, N.; Mian, A. A comprehensive overview of large language models. arXiv 2023, arXiv:2307.06435. [Google Scholar]
- Joseph, S.R.; Hlomani, H.; Letsholo, K.; Kaniwa, F.; Sedimo, K. Natural language processing: A review. Int. J. Res. Eng. Appl. Sci. 2016, 6, 207–210. [Google Scholar]
- Yuan, L.; Chen, D.; Chen, Y.L.; Codella, N.; Dai, X.; Gao, J.; Hu, H.; Huang, X.; Li, B.; Li, C.; et al. Florence: A new foundation model for computer vision. arXiv 2021, arXiv:2111.11432. [Google Scholar]
- Firoozi, R.; Tucker, J.; Tian, S.; Majumdar, A.; Sun, J.; Liu, W.; Zhu, Y.; Song, S.; Kapoor, A.; Hausman, K.; et al. Foundation models in robotics: Applications, challenges, and the future. Int. J. Robot. Res. 2023, 44, 02783649241281508. [Google Scholar] [CrossRef]
- Kawaharazuka, K.; Matsushima, T.; Gambardella, A.; Guo, J.; Paxton, C.; Zeng, A. Real-world robot applications of foundation models: A review. Adv. Robot. 2024, 38, 1232–1254. [Google Scholar] [CrossRef]
- Hu, Y.; Xie, Q.; Jain, V.; Francis, J.; Patrikar, J.; Keetha, N.; Kim, S.; Xie, Y.; Zhang, T.; Fang, H.S.; et al. Toward general-purpose robots via foundation models: A survey and meta-analysis. arXiv 2023, arXiv:2312.08782. [Google Scholar]
- Wang, X.; Zhao, J.; Marostica, E.; Yuan, W.; Jin, J.; Zhang, J.; Li, R.; Tang, H.; Wang, K.; Li, Y.; et al. A pathology foundation model for cancer diagnosis and prognosis prediction. Nature 2024, 634, 970–978. [Google Scholar] [CrossRef]
- Yang, S.; Nachum, O.; Du, Y.; Wei, J.; Abbeel, P.; Schuurmans, D. Foundation models for decision making: Problems, methods, and opportunities. arXiv 2023, arXiv:2303.04129. [Google Scholar]
Category | Name | Application Scenario | Technologies | Data Sources | Functionality | Outcomes | Limitations | References |
---|---|---|---|---|---|---|---|---|
Case 1 | Vineyard Support System | Disease prediction & monitor environmental conditions | GIS & IoT & Edge Computing | Sensors & Goidanich Model | Real-time data collection and transmission & Node-based risk alerts: >70% | Achieved 96.9% successful data delivery over 30 days | Short-term testing & Communication dependency & Sensor scope | [113] |
Case 2 | Autonomous Agricultural Vehicles | Develop autonomous agricultural vehicles | Autoware Framework & Control Algorithms & ROS-based TF | UAV Aerial Imagery & Tractor Parameters | Real-time simulation & Path planning & Rviz visualization for trajectory tracking and lateral deviation analysis | Average lateral deviation of 0.023 m in simulation | Validated only on straight-row operations & Computational load | [114] |
Case 3 | Feeding Behavior of Dairy Cows | Monitoring and analyzing feeding behavior of dairy cows | UWB & IMU & LSTM | Collar Sensors & Video Observation & Positioning Anchors | Real-time tracking of cow positions and motion & Visualization interface for monitoring cow status and generating alerts | LSTM Accuracy: 94.97% & Precision: 99.99%, Recall: 93.86%, F1 Score: 95.21% | Only five cows tested & Deployment challenges | [115] |
Case 4 | Smart Irrigation and Rice Leaf Disease Prediction System | Smart irrigation and disease prediction | IoT & WSNs & ANN & ResNeXt-50 | WSNs & Remote sensing & Cameras | Real-Time monitoring & Automated irrigation & Disease classification | ANN Accuracy = 0.9427 ResNeXt-50 Accuracy = 0.967 | Model complexity & Only focused on rice diseases | [116] |
Case 5 | Digital Twin for Greenhouse and Underground Environments | Real-time monitoring and optimization | Visible Light Communication & LSTM | Sensors & UAV Aerial Imagery | Real-time monitoring & Multi-modal communication | 5G demonstrated the lowest latency (18 ms) & Temperature prediction achieved a mean squared error of 0.5405 | Small-scale testing & integration of multiple technologies increase deployment costs | [117] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Zhu, H.; Chang, Q.; Mao, Q. A Comprehensive Review of Digital Twins Technology in Agriculture. Agriculture 2025, 15, 903. https://doi.org/10.3390/agriculture15090903
Zhang R, Zhu H, Chang Q, Mao Q. A Comprehensive Review of Digital Twins Technology in Agriculture. Agriculture. 2025; 15(9):903. https://doi.org/10.3390/agriculture15090903
Chicago/Turabian StyleZhang, Ruixue, Huate Zhu, Qinglin Chang, and Qirong Mao. 2025. "A Comprehensive Review of Digital Twins Technology in Agriculture" Agriculture 15, no. 9: 903. https://doi.org/10.3390/agriculture15090903
APA StyleZhang, R., Zhu, H., Chang, Q., & Mao, Q. (2025). A Comprehensive Review of Digital Twins Technology in Agriculture. Agriculture, 15(9), 903. https://doi.org/10.3390/agriculture15090903