Overview of Organic Cover Crop-Based No-Tillage Technique in Europe: Farmers’ Practices and Research Challenges
Abstract
:1. Introduction
2. Methodology
3. European Organic Farmers’ No-Tillage and Cover Crop Practices
3.1. Organic No-Tillage and Cover Crop Practices in Europe
3.2. Cover Crop Management
3.3. Application in Crop Rotations
3.4. Farmers’ Experience in No Tillage Production
4. The Challenges of Living or Killed (Mulch) Cover Crop-Based No-Tillage in European Organic Farming
4.1. Weed Management
4.2. Inadequacy of Available NT Equipment and Low Technical Skills and Information
4.3. Unstable Crop Yields
4.4. Cover Crop Termination
4.5. Crop Emergence
4.6. Soil Structure
4.7. Increased Labor Requirements
5. Overview of Living or Killed (Mulch) Cover Crop-Based No-Tillage Organic Research in Europe
5.1. Living Cover Crop-Based No-Tillage (LBNT) Production
5.2. Cover Crop Mulch-Based No-Tillage (MBNT) Techniques
6. European Research Challenges for the Future
- Choice of relevant cover crop species: In Europe, few cover crop species have been assessed for MBNT production, even though the appropriate choice of cover crop is essential for efficient weed control [38]. Further screening of species and cultivars under temperate climate conditions is needed to identify optimal cover crop/cash crop combinations and support the decision-making process of farmers. Other questions must also be addressed: Can cover crop species that have given promising results in North America (e.g., rye and triticale) lead to similar results on soybean MBNT in Europe? Which cover crop(s) lead to the best trade-off between weed suppression, crop yield and cover crop control?
- Increasing cover crop biomass: As indicated by many researchers, adequate cover crop biomass is a key factor to ensure weed control in MBNT; however, doubts have been raised regarding the ability to achieve high levels of cover crop biomass (8000–9000 kg/ha) determined to be optimal by North American researchers in Europe, particularly in southern areas. Thus, the following questions must be addressed: What level of cover crop biomass must be reached to ensure satisfactory weed control? Which management strategies could optimize cover crop biomass and achieve a comparable degree of weed suppression as ploughing or chemical methods? How does cover crop biomass impact weed development and crop yield? What are the weed control implications of earlier cover crop sowing?
- Improving cover crop termination: Improving cover crop termination by mechanical methods (e.g., rolling-crimping and mowing) leads to greater success in organic MBNT; however, consistent termination of the cover crop remains challenging using the current practices of European farmers. Cover crop termination remains particularly challenging in Northern Europe, where a humid climate fosters vigorous cover crop development. While considerable efforts must be made to develop appropriate machinery adapted to work with the high biomass remaining on the soil surface, further refinement is needed regarding the optimal cover crop termination practices (number of rollings, date of rolling, etc.), with the aim of improving mulch distribution, prolonging its persistence on the ground until crop harvest, and enhancing the quality of crop sowing (seeds/soil contact). In particular, additional studies are required to quantify the effect of cover crop rolling on the mulch degradation rate until crop harvest under a temperate climate and the effectiveness of the roller crimper on legume species termination.
- Designing crop rotation: Integrating MBNT into organic crop rotations in accordance with organic farmers’ challenges (e.g., weed management at rotational scale, maintaining crop yields, etc.) while incorporating both production and economic limitations remains a major issue.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Altieri, M.A.; Lana, M.A.; Bittencourt, H.V.; Kieling, A.S.; Comin, J.J.; Lovato, P.E. Enhancing crop productivity via weed suppression in organic no-till cropping systems in santa catarina, Brazil. J. Sustain. Agric. 2011, 35, 855–869. [Google Scholar] [CrossRef]
- Hobbs, P.R.; Sayre, K.; Gupta, R. The role of conservation agriculture in sustainable agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Kassam, A.; Friedrich, T.; Shaxson, F.; Pretty, J. The spread of conservation agriculture: Justification, sustainability and uptake. Int. J. Agric. Sustain. 2009, 7, 292–320. [Google Scholar] [CrossRef]
- Masutti, C. Action publique et expertise dans la conservation des ressources agricoles aux états-unis dans les années 1930. Ruralia 2007, 25, 1–25. [Google Scholar]
- Horowitz, J. No-Till Farming is a Growing Practice; DIANE Publishing: Collingdale, PA, USA, 2011; p. 28. [Google Scholar]
- Cannell, R.Q.; Hawes, J.D. Trends in tillage practices in relation to sustainable crop production with special reference to temperate climates. Soil Tillage Res. 1994, 30, 245–282. [Google Scholar] [CrossRef]
- Gohlke, T.; Ingersoll, T.; Roe, R.D.; Oregon, N.; Pullman, W.N. Soil disturbance in no-till and direct seed planting systems. Nat. Res. Conserv. Serv. Agron. Tech. Note 2000, 39, 1–6. [Google Scholar]
- Soane, B.D.; Ball, B.C.; Arvidsson, J.; Basch, G.; Moreno, F.; Roger-Estrade, J. No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil Tillage Res. 2012, 118, 66–87. [Google Scholar] [CrossRef]
- Teasdale, J.R.; Coffman, C.B.; Mangum, R.W. Potential long-term benefits of no-tillage and organic cropping systems for grain production and soil improvement. Agron. J. 2007, 99, 1297–1305. [Google Scholar] [CrossRef]
- Triplett, G.B.; Dick, W.A. No-tillage crop production: A revolution in agriculture! Agron. J. 2008, 100, 153–165. [Google Scholar] [CrossRef]
- Favarato, L.; Galvão, J.; Souza, J.; Guarçoni, R.; Souza, C.; Cunha, D. Population density and weed infestation in organic no-tillage corn cropping system under different soil covers. Planta Daninha 2014, 32, 739–746. [Google Scholar] [CrossRef]
- Carrera, L.M.; Abdul-Baki, A.A.; Teasdale, J.R. Cover crop management and weed suppression in no-tillage sweet corn production. HortScience 2004, 39, 1262–1266. [Google Scholar]
- Mäder, P.; Berner, A. Development of reduced tillage systems in organic farming in Europe. Renew. Agric. Food Syst. 2012, 27, 7–11. [Google Scholar] [CrossRef]
- Watson, C.A.; Atkinson, D.; Gosling, P.; Jackson, L.R.; Rayns, F.W. Managing soil fertility in organic farming systems. Soil Use Manag. 2002, 18, 239–247. [Google Scholar] [CrossRef]
- Peigné, J.; Lefevre, V.; Vian, J.F.; Fleury, P. Conservation agriculture in organic farming: Experiences, challenges and opportunities in europe. In Conservation Agriculture; Farooq, M., Siddique, K.H.M., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 559–578. [Google Scholar]
- Shirtliffe, S.J.; Johnson, E.N. Progress towards no-till organic weed control in western Canada. Renew. Agric. Food Syst. 2012, 27, 60–67. [Google Scholar] [CrossRef]
- Gadermaier, F.; Berner, A.; Fließbach, A.; Friedel, J.K.; Mäder, P. Impact of reduced tillage on soil organic carbon and nutrient budgets under organic farming. Renew. Agric. Food Syst. 2012, 27, 68–80. [Google Scholar] [CrossRef]
- Peigné, J.; Ball, B.C.; Roger-Estrade, J.; David, C. Is conservation tillage suitable for organic farming? A review. Soil Use Manag. 2007, 23, 129–144. [Google Scholar] [CrossRef]
- Casagrande, M.; Peigné, J.; Payet, V.; Mäder, P.; Sans, F.X.; Blanco-Moreno, J.M.; Antichi, D.; Bàrberi, P.; Beeckman, A.; Bigongiali, F.; et al. Organic farmers’ motivations and challenges for adopting conservation agriculture in Europe. Org. Agr. 2015. [Google Scholar] [CrossRef]
- Peigné, J.; Casagrande, M.; Payet, V.; David, C.; Sans, F.X.; Blanco-Moreno, J.M.; Cooper, J.; Gascoyne, K.; Antichi, D.; Bàrberi, P.; et al. How organic farmers practice conservation agriculture in europe. Renew. Agric. Food Syst. 2015, 31, 72–85. [Google Scholar] [CrossRef]
- Delate, K.; Cwach, D.; Chase, C. Organic no-tillage system effects on soybean, corn and irrigated tomato production and economic performance in Iowa, USA. Renew. Agric. Food Syst. 2012, 27, 49–59. [Google Scholar] [CrossRef]
- Halde, C.; Entz, M.H. Plant species and mulch application rate affected decomposition of cover crop mulches used in organic rotational no-till systems. Can. J. Plant Sci. 2016, 96, 59–71. [Google Scholar] [CrossRef]
- Halde, C.; Gulden, R.H.; Entz, M.H. Selecting cover crop mulches for organic rotational no-till systems in Manitoba, Canada. Agron. J. 2014, 106, 1193. [Google Scholar] [CrossRef]
- Moyer, J. Organic No-Till Farming: Advancing No-Till Agriculture: Crops, Soil, Equipment; Acres U.S.A.: Austin, TX, USA, 2011; p. 204. [Google Scholar]
- Parr, M.; Grossman, J.M.; Reberg-Horton, S.C.; Brintin, C.; Crozier, C. Nitrogen delivery from legume cover crops in no-till organic corn production. Crops Soil Mag. Am. Soc. Agron. 2012. [Google Scholar] [CrossRef]
- Silva, E.M. Screening five fall-sown cover crops for use in organic no-till crop production in the upper midwest. Agroecol. Sustain. Food Syst. 2014, 38, 748–763. [Google Scholar] [CrossRef]
- Davis, A.S. Cover-crop roller-crimper contributes to weed management in no-till soybean. Weed Sci. 2010, 58, 300–309. [Google Scholar] [CrossRef]
- Kornecki, T.S.; Arriaga, F.J.; Price, A.J. Roller type and operating speed effects on rye termination rates, soil moisture, and yield of sweet corn in a no-till system. HortScience 2012, 47, 217–223. [Google Scholar]
- Kornecki, T.S.; Price, A.J. Effects of different roller/crimper designs and rolling speed on rye cover crop termination and seed cotton yield in a no-till system. J. Cotton Sci. 2010, 14, 212–220. [Google Scholar]
- Mirsky, S.B.; Curran, W.S.; Mortenseny, D.M.; Ryany, M.R.; Shumway, D.L. Timing of cover-crop management effects on weed suppression in no-till planted soybean using a roller-crimper. Weed Sci. 2011, 59, 380–389. [Google Scholar] [CrossRef]
- Mischler, R.; Duiker, S.W.; Curran, W.S.; Wilson, D. Hairy vetch management for no-till organic corn production. Agron. J. 2010, 102, 355–362. [Google Scholar] [CrossRef]
- Parr, M.; Grossman, J.M.; Reberg-Horton, S.C.; Brinton, C.; Crozier, C. Roller-crimper termination for legume cover crops in north Carolina: Impacts on nutrient availability to a succeeding corn crop. Commun. Soil Sci. Plant Anal. 2014, 45, 1106–1119. [Google Scholar] [CrossRef]
- Vaisman, I.; Entz, M.H.; Flaten, D.N.; Gulden, R.H. Blade roller–green manure interactions on nitrogen dynamics, weeds, and organic wheat. Agron. J. 2011, 103, 879–889. [Google Scholar] [CrossRef]
- Bernstein, E.R.; Stoltenberg, D.E.; Posner, J.L.; Hedtcke, J.L. Weed community dynamics and suppression in tilled and no-tillage transitional organic winter rye–soybean systems. Weed Sci. 2014, 62, 125–137. [Google Scholar] [CrossRef]
- Carr, P.; Gramig, G.; Liebig, M. Impacts of organic zero tillage systems on crops, weeds, and soil quality. Sustainability 2013, 5, 3172–3201. [Google Scholar] [CrossRef]
- Carr, P.M.; Anderson, R.L.; Lawley, Y.E.; Miller, P.R.; Zwinger, S.F. Organic zero-till in the northern US great plains region: Opportunities and obstacles. Renew. Agric. Food Syst. 2012, 27, 12–20. [Google Scholar] [CrossRef]
- Luna, J.M.; Mitchell, J.P.; Shrestha, A. Conservation tillage for organic agriculture: Evolution toward hybrid systems in the western USA. Renew. Agric. Food Syst. 2012, 27, 21–30. [Google Scholar] [CrossRef]
- Mirsky, S.B.; Ryan, M.R.; Curran, W.S.; Teasdale, J.R.; Maul, J.; Spargo, J.T.; Moyer, J.; Grantham, A.M.; Weber, D.; Way, T.R.; et al. Conservation tillage issues: Cover crop-based organic rotational no-till grain production in the mid-atlantic region, USA. Renew. Agric. Food Syst. 2012, 27, 31–40. [Google Scholar] [CrossRef]
- Mirsky, S.B.; Ryan, M.R.; Teasdale, J.R.; Curran, W.S.; Reberg-Horton, C.S.; Spargo, J.T.; Wells, M.S.; Keene, C.L.; Moyer, J.W. Overcoming weed management challenges in cover crop–based organic rotational no-till soybean production in the eastern United States. Weed Technol. 2013, 27, 193–203. [Google Scholar] [CrossRef]
- Wells, M.S.; Brinton, C.M.; Reberg-Horton, S.C. Weed suppression and soybean yield in a no-till cover-crop mulched system as influenced by six rye cultivars. Renew. Agric. Food Syst. 2015, 31, 1–12. [Google Scholar] [CrossRef]
- Wells, M.S.; Reberg-Horton, S.C.; Mirsky, S.B. Cultural strategies for managing weeds and soil moisture in cover crop based no-till soybean production. Weed Sci. 2014, 62, 501–511. [Google Scholar] [CrossRef]
- Bernstein, E.R.; Posner, J.L.; Stoltenberg, D.E.; Hedtcke, J.L. Organically managed no-tillage rye–soybean systems: Agronomic, economic, and environmental assessment. Agron. J. 2011, 103, 1169. [Google Scholar] [CrossRef]
- Ryan, M.R.; Curran, W.S.; Grantham, A.M.; Hunsberger, L.K.; Mirsky, S.B.; Mortensen, D.A.; Nord, E.A.; Wilson, D.O. Effects of seeding rate and poultry litter on weed suppression from a rolled cereal rye cover crop. Weed Sci. 2011, 59, 438–444. [Google Scholar] [CrossRef]
- Cooper, J.; Baranski, M.; Stewart, G.; Nobel-de Lange, M.; Bàrberi, P.; Fließbach, A.; Peigné, J.; Berner, A.; Brock, C.; Casagrande, M.; et al. Shallow non-inversion tillage in organic farming maintains crop yields and increases soil C stocks: A meta-analysis. Agron. Sustain. Dev. 2016. [Google Scholar] [CrossRef]
- Baker, C.J.; Saxton, K.E. No-Tillage Seeding in Conservation Agriculture; CABI: Oxfordshire, UK, 2007; p. 340. [Google Scholar]
- Derpsch, R.; Friedrich, T.; Kassam, A.; Li, H. Current status of adoption of no-till farming in the world and some of its main benefits. Int. J. Agric. Biol. Eng. 2010, 3, 1–25. [Google Scholar]
- Armengot, L.; Berner, A.; Blanco-Moreno, J.M.; Mäder, P.; Sans, F.X. Long-term feasibility of reduced tillage in organic farming. Agron. Sustain. Dev. 2014, 35, 339–346. [Google Scholar] [CrossRef]
- Emmerling, C. Reduced and conservation tillage effects on soil ecological properties in an organic farming system. Biol. Agric. Hortic. 2007, 24, 363–377. [Google Scholar] [CrossRef]
- Krauss, M.; Berner, A.; Burger, D.; Wiemken, A.; Niggli, U.; Mäder, P. Reduced tillage in temperate organic farming: Implications for crop management and forage production. Soil Use Manag. 2010, 26, 12–20. [Google Scholar] [CrossRef]
- Bilalis, D.; Kakabouki, I.; Karkanis, A.; Travlos, I.; Triantafyllidis, V.; Dimitra, H. Seed and saponin production of organic quinoa (Chenopodium quinoa Willd.) for different tillage and fertilization. Not. Bot. Horti Agrobot. Cluj-Napoca 2012, 40, 42. [Google Scholar]
- Bilalis, D.; Karkanis, A.; Pantelia, A.; Patsiali, S.; Konstantas, A.; Efthimiadou, A. Weed populations are affected by tillage systems and fertilization practices in organic flax (Linum usitatissimum L.) crop. Aust. J. Crop Sci. 2012, 6, 157. [Google Scholar]
- Bilalis, D.; Karkanis, A.; Patsiali, S.; Agriogianni, M.; Konstantas, A.; Triantafyllidis, V. Performance of wheat varieties (Triticum Aestivum L.) under conservation tillage practices in organic agriculture. Not. Bot. Horti Agrobot. Cluj-Napoca 2011, 39, 28. [Google Scholar]
- Lefèvre, V.; Capitaine, M.; Peigné, J.; Roger-Estrade, J. Soil Conservation Practices in Organic Farming: Overview of French farmers’ Experiences and Contribution to Future Cropping Systems Design. Available online: http://ifsa.boku.ac.at/cms/fileadmin/Proceeding2012/IFSA2012_WS6.3_Lefevre.pdf (accessed on 11 January 2017).
- Peigné, J.; Cannavaciuolo, M.; Gautronneau, Y.; Aveline, A.; Giteau, J.L.; Cluzeau, D. Earthworm populations under different tillage systems in organic farming. Soil Tillage Res. 2009, 104, 207–214. [Google Scholar] [CrossRef]
- Pelosi, C.; Bertrand, M.; Roger-Estrade, J. Earthworm community in conventional, organic and direct seeding with living mulch cropping systems. Agron. Sustain. Dev. 2009, 29, 287–295. [Google Scholar] [CrossRef]
- Friedrich, T.; Kassam, A.; Corsi, S.; Jat, R.A.; Sahrawat, K.L.; Kassam, A.H. Conservation agriculture in europe. In Conservation Agriculture: Global Prospects and Challenges; CABI: Oxfordshire, UK, 2014; pp. 127–170. [Google Scholar]
- Bàrberi, P. Weed management in organic agriculture: Are we addressing the right issues? Weed Res. 2002, 42, 177–193. [Google Scholar] [CrossRef]
- Emmerling, C. Response of earthworm communities to different types of soil tillage. Appl. Soil Ecol. 2001, 17, 91–96. [Google Scholar] [CrossRef]
- Sans, F.X.; Berner, A.; Armengot, L.; Mäder, P. Tillage effects on weed communities in an organic winter wheat–sunflower–spelt cropping sequence. Weed Res. 2011, 51, 413–421. [Google Scholar] [CrossRef]
- Morris, N.L.; Miller, P.C.H.; Orson, J.H.; Froud-Williams, R.J. The adoption of non-inversion tillage systems in the United Kingdom and the agronomic impact on soil, crops and the environment—A review. Soil Tillage Res. 2010, 108, 1–15. [Google Scholar] [CrossRef]
- Ball, B.C.; Cheshire, M.V.; Robertson, E.A.G.; Hunter, E.A. Carbohydrate composition in relation to structural stability, compactibility and plasticity of two soils in a long-term experiment. Soil Tillage Res. 1996, 39, 143–160. [Google Scholar] [CrossRef]
- Munkholm, L.J.; Schjønning, P.; Rasmussen, K.J.; Tanderup, K. Spatial and temporal effects of direct drilling on soil structure in the seedling environment. Soil Tillage Res. 2003, 71, 163–173. [Google Scholar] [CrossRef]
- Alakukku, L.; Uusitalo, R.; Särkelä, A.; Lahti, K.; Valkama, P.; Valpasvuo-Jaatinen, P.; Ventelä, A.-M. Phosphorus Stratification in the Ap Horizon of Ploughed and No-Till Soils and Its Effect on P Forms in Surface Runoff. In Proceedings of the ISTRO 18th Triennial Conference Sustainable Agriculture, Izmir, Turkey, 15–19 June 2009; International Soil Tillage Research Organisation: Izmir, Turkey, 2009. [Google Scholar]
- Canali, S.; Diacono, M.; Campanelli, G.; Montemurro, F. Organic no-till with roller crimpers: Agro-ecosystem services and applications in organic mediterranean vegetable productions. Sustain. Agric. Res. 2015, 4, 70. [Google Scholar] [CrossRef]
- Berner, A.; Hildermann, I.; Fliesbach, A.; Pfiffner, L.; Niggli, U.; Mader, P. Crop yield and soil fertility response to reduced tillage under organic management. Soil Tillage Res. 2008, 101, 89–96. [Google Scholar] [CrossRef]
- Lehocká, Z.; Klimeková, M.; Bieliková, M.; Mendel, L. The effect of different tillage systems under organic management on soil quality indicators. Agron. Res. 2009, 7, 369–373. [Google Scholar]
- Hiltbrunner, J.; Liedgens, M.; Stamp, P.; Streit, B. Effects of row spacing and liquid manure on directly drilled winter wheat in organic farming. Eur. J. Agron. 2005, 22, 441–447. [Google Scholar] [CrossRef]
- Hiltbrunner, J.; Liedgens, M.; Bloch, L.; Stamp, P.; Streit, B. Legume cover crops as living mulches for winter wheat: Components of biomass and the control of weeds. Eur. J. Agron. 2007, 26, 21–29. [Google Scholar] [CrossRef]
- Hiltbrunner, J.; Streit, B.; Liedgens, M. Are seeding densities an opportunity to increase grain yield of winter wheat in a living mulch of white clover? Field Crops Res. 2007, 102, 163–171. [Google Scholar] [CrossRef]
- Bilalis, D.J.; Karamanos, A.J. Organic maize growth and mycorrhizal root colonization response to tillage and organic fertilization. J. Sustain. Agric. 2010, 34, 836–849. [Google Scholar] [CrossRef]
- Den Hollander, N.G.; Bastiaans, L.; Kropff, M.J. Clover as a cover crop for weed suppression in an intercropping design: I. Characteristics of several clover species. Eur. J. Agrono. 2007, 26, 92–103. [Google Scholar] [CrossRef]
- Hollander, N.G.D. Growth characteristics of several clover species and their suitability for weed suppression in a mixed cropping design. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2012. [Google Scholar]
- Vian, J.F.; Peigne, J.; Chaussod, R.; Roger-Estrade, J. Effects of four tillage systems on soil structure and soil microbial biomass in organic farming. Soil Use Manag. 2009, 25, 1–10. [Google Scholar] [CrossRef]
- Delate, K.; Cwach, D.; Fiscus, M. Evaluation of an Organic No–Till System for Organic Corn and Soybean Production–Agronomy Farm Trial, 2011; Organic Ag Program Webpage, Iowa State University: Ames, IA, USA, 2012. [Google Scholar]
- Parr, M.; Grossman, J.M.; Reberg-Horton, S.C.; Brinton, C.; Crozier, C. Nitrogen delivery from legume cover crops in no-till organic corn production. Agron. J. 2011, 103, 1578. [Google Scholar] [CrossRef]
- Mirsky, S.B.; Curran, W.S.; Mortensen, D.A.; Ryan, M.R.; Shumway, D.L. Control of cereal rye with a roller/crimper as influenced by cover crop phenology. Agron. J. 2009, 101, 1589. [Google Scholar] [CrossRef]
- Smith, A.N.; Reberg-Horton, S.C.; Place, G.T.; Meijer, A.D.; Arellano, C.; Mueller, J.P. Rolled rye mulch for weed suppression in organic no-tillage soybeans. Weed Sci. 2011, 59, 224–231. [Google Scholar] [CrossRef]
- Lefebvre, M.; Leblanc, M.; Gilbert, P.-A.; Estevez, B.; Grenier, M.; Belzile, L. Semis Direct Sur Paillis De Seigle Roulé En Régie Biologique; Institut De Recherche Et De Développement En Agroenvironnement: Québec, QC, Canada, 2011; p. 36. [Google Scholar]
European Regions | Opportunities | Challenges | References |
---|---|---|---|
Northern areas (>45° N) | High cover crop biomass potential Large number of farmers with experience of cover crop practices Soil preservation to cope with climate change | Slow soil warming Moisture conditions foster rapid weed development and degradation of cover crop residues Cover crop management/termination difficulties Low NT adoption Fewer experienced farmers in CA | [8,13,19,20] |
Southern areas (≤45° N) | Fast soil warming reduces soil erosion and maintains soil moisture in the face of climate change More experienced farmers in NT | Water and nutrient deficiencies for the cash crop (more irrigation required) Less application of cover crops in the crop rotation Cover crop establishment difficulties (under warm and dry conditions) Fewer farmers experienced in cover crop practices |
Country | Soil Type | Year | Cash Crop | Cover Crop | References |
---|---|---|---|---|---|
France | Cambisol (silty) Fluvisol (sandy loam) | 2003 | corn | clover (living) | [15,54,73] |
2005 | corn | alfalfa (mulch *) | |||
2008 | soybean | rye (mulch *) | |||
Greece | Tagnic Eutric Cambisol (clay loam) | 2007 | corn | Common vetch (Vicia sativa L.) (living), fababean (Vicia faba L.) (living) | [50,51,52,70] |
2008 | winter wheat | ||||
2010 | flax | ||||
2011 | quinoa | ||||
Switzerland | Partial gleyic Cambisol Orthic Luvisol | 2002 | winter wheat | birdsfoot trefoil (Lotus corniculatus L.), white clover (Trifolium repens L.), subclover (Trifolium subterraneum ssp.), strong-spined medick (Medicago truncatula Gaertner) (living) | [67,68,69] |
2004 | winter wheat | ||||
2005 | winter wheat |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vincent-Caboud, L.; Peigné, J.; Casagrande, M.; Silva, E.M. Overview of Organic Cover Crop-Based No-Tillage Technique in Europe: Farmers’ Practices and Research Challenges. Agriculture 2017, 7, 42. https://doi.org/10.3390/agriculture7050042
Vincent-Caboud L, Peigné J, Casagrande M, Silva EM. Overview of Organic Cover Crop-Based No-Tillage Technique in Europe: Farmers’ Practices and Research Challenges. Agriculture. 2017; 7(5):42. https://doi.org/10.3390/agriculture7050042
Chicago/Turabian StyleVincent-Caboud, Laura, Joséphine Peigné, Marion Casagrande, and Erin M. Silva. 2017. "Overview of Organic Cover Crop-Based No-Tillage Technique in Europe: Farmers’ Practices and Research Challenges" Agriculture 7, no. 5: 42. https://doi.org/10.3390/agriculture7050042
APA StyleVincent-Caboud, L., Peigné, J., Casagrande, M., & Silva, E. M. (2017). Overview of Organic Cover Crop-Based No-Tillage Technique in Europe: Farmers’ Practices and Research Challenges. Agriculture, 7(5), 42. https://doi.org/10.3390/agriculture7050042