Detecting Long-Term Dry Matter Yield Trend of Sorghum-Sudangrass Hybrid and Climatic Factors Using Time Series Analysis in the Republic of Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Time Series Data Collection
2.2. Data Processing
2.3. Data Analysis
3. Results
3.1. Analysis of Dry Matter Yield Trend of Sorghum-Sudangrass Hybrid
3.2. Detecting the Effect of Climatic Factors on Dry Matter Yield Trend
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Church, J.A.; White, N.J. Sea-level rise from the late 19th to the early 21st century. Surv. Geophys. 2011, 32, 585–602. [Google Scholar] [CrossRef]
- New, M.; Liverman, D.; Schroeder, H.; Anderson, K. Four degrees and beyond: The potential for a global temperature increase of four degrees and its implications. Philos. Trans. Math. Eng. Sci. 2011, 369, 6–19. [Google Scholar] [CrossRef] [PubMed]
- Korean Meteorological Administration. Korean Climate Change Assessment Report, Scientific Evidence of Climate Change; National Institute of Environmental Research: Incheon, Korea, 2014.
- Thornton, P.K.; Ericksen, P.J.; Herrero, M.; Challinor, A.J. Climate variability and vulnerability to climate change: A review. Glob. Chang. Biol. 2014, 20, 3313–3328. [Google Scholar] [CrossRef] [PubMed]
- Prażak, R. Prospects for Sorghum cultivation in Poland. Acta Agrobot. 2016, 69, 1–8. [Google Scholar] [CrossRef]
- Li, G.; Kim, S.; Han, S.H.; Son, Y. Effect of soil moisture on the response of soil respiration to open field experimental warming and precipitation manipulation. Forests 2017, 8, 56. [Google Scholar] [CrossRef]
- Jiang, Y.; Weng, Q. Estimation of Hourly and Daily Evapotranspiration and Soil Moisture Using Downsacled LST over Various Urban Surfaces. GISci. Remote Sens. 2016, 54, 95–117. [Google Scholar] [CrossRef]
- Lee, C.S.D.; Park, J.S.; Jang, J.D. Improvement of AMSR2 soil moisture products over South Korea. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3839–3849. [Google Scholar] [CrossRef]
- Lim, S.S.; Lee, S.M.; Lee, S.H.; Choi, W.J. Dry matter yield and nutrients uptake of Sorghum × Sudangrass Hybrid Grown with Different Rates of Livestock Manure Compost. Korean J. Soil Sci. Fertil. 2010, 43, 458–465. [Google Scholar]
- Seo, S.; Kim, J.; Chung, E.; Kim, W.; Kang, W. Effect of methods and rates of seeding on the forage production and nutritive value of sorghum-sudangrass hybrid grown under application of animal manure. J. Korean Soc. Grassl. Sci. 2000, 20, 49–54, (In Korean with English abstract). [Google Scholar]
- Kim, J.D.; Ko, K.H.; Kwon, C.H. Effect of heading and BMR types on the agronomic characteristics, forage yield and quality of sorghum-sudangrass hybrid. J. Korean Soc. Grassl. Forage Sci. 2012, 32, 293–300, (In Korean with English abstract). [Google Scholar] [CrossRef]
- Dann, H.M.; Grant, R.J.; Cotanch, K.W.; Thomas, E.D.; Ballard, C.S.; Rice, R. Comparison of Brown Midrib Sorghum-Sudangrass with Corn Silage on Locational Performance and Nutrient Digestibility in Holstein Dairy Cows. J. Dairy Sci. 2008, 91, 663–672. [Google Scholar] [CrossRef] [PubMed]
- Sowiński, J.; Ewelina, S. Growth rate and yields of a sorghum-sudangrass hybrid variety grown on a light and a medium-heavy soil as affected by cutting management and seeding rate. Pol. J. Agron. 2011, 4, 23–28. [Google Scholar]
- Chemere, B.; Kim, M.; Peng, J.; Kim, B.; Sung, K. Detecting dry matter yield trend of whole crop maize considering the climatic factors in the Republic of Korea. Grassl. Sci. 2018, in press. [Google Scholar] [CrossRef]
- Peng, J.L. Suitability Mapping and Yield Prediction Modeling Using Climatic And Geographic Information for Improving Forage Crops Production in South Korea. Ph.D. Thesis, Kangwon National University, Chuncheon, Korea, February 2017; pp. 1–181. [Google Scholar]
- Lobell, D.B.; Burke, M.B. On the use of statistical models to predict crop yield responses to climate change. Agric. For. Meteorol. 2010, 150, 1443–1452. [Google Scholar] [CrossRef]
- Box, G.E.P.; Jenkins, G.M. Time Series Analysis: Forecasting and Control, revised ed.; Holden-Day: San Fransisco, CA, USA, 1976; pp. 1–575. [Google Scholar]
- IBM Corporation. IBM SPSS Statistics Base 23; IBM Corporation: New York, NY, USA, 2016; pp. 1–430. [Google Scholar]
- DeLurgio, S.A. Forecasting Principles and Applications; Irwin/McGraw-Hill: New York, NY, USA, 1998. [Google Scholar]
- MacKinnon, J.G. Numerical distribution functions for unit root and cointegration tests. J. App. Econ. 1996, 11, 601–618. [Google Scholar] [CrossRef]
- Chan, W.S. A comparison of some of pattern identification methods for order determination of mixed ARMA models. Statis. Prob. Lett. 1999, 42, 69–79. [Google Scholar] [CrossRef]
- Yürekli, K.; Simsek, H.; Cemek, B.; Karaman, S. Simulating climatic variables by using stochastic approach. Build. Environ. 2007, 42, 3493–3499. [Google Scholar] [CrossRef]
- Hoy, M.; Livernois, J.; Mckenna, C.; Rees, R.; Stengos, T. Mathematics for Economics, 2nd ed.; MIT Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Fribourg, H.A. Summer annual grasses. In An Introduction to Grassland Agriculture, 5th ed.; Barnes, R.F., Nelson, C.J., Collins, M., Moore, K.J., Eds.; Iowa State Univ. Press: Ames, IA, USA, 1995; pp. 463–472. [Google Scholar]
- Collins, M.; Hannaway, D.B. Forage-related animal disorders. In Forages: An Introduction to Grassland Agriculture, 6th ed.; Barnes, R.F., Nelson, C.J., Collins, M., Moore, K.J., Eds.; Blackwell Publishing: Ames, IA, USA, 2003; pp. 415–442. [Google Scholar]
- McDonald, P. The Biochemistry of Silage; Wiley-Blackwell: Chichester, UK; New York, NY, USA, 1981. [Google Scholar]
- Moisio, T.; Heikonen, M. Lactic acid fermentation in silage preserved with formic acid. Anim. Feed Sci. Technol. 1994, 47, 107–124. [Google Scholar] [CrossRef]
- McDonald, P.; Henderson, A.R.; Heron, S.J.E. Biochemistry of Silage, 2nd ed.; Chalcombe Publications: Marlow, UK, 1991; pp. 1–340. [Google Scholar]
- Kikindonov, T.; Slanev, K.; Enchev, S.; Kikindonov, G. Results of breeding sudangrass, sorghum-sudangrass hybrids and sweet sorghum for green mass productivity. Agric. Sci. 2015, 7, 17–23. [Google Scholar]
- Bae, D.H.; Jung, I.W.; Chang, H.J. Long-term trend of precipitation and runoff in Korean River Basins. Hydrol. Process. Int. J. 2008, 22, 2644–2656. [Google Scholar] [CrossRef]
- Kang, K.A.; Byun, H.R. On the developing processes of the climatological drought over the East Asia in 1982. J. Korean Meteorol. Soc. 2004, 40, 467–483. [Google Scholar]
- Min, S.K.; Kwon, W.T.; Park, E.H.; Choi, Y.G. Spatial and temporal comparisons of droughts over Korea with East Asia. Int. J. Clim. 2003, 23, 223–233. [Google Scholar] [CrossRef] [Green Version]
- Nam, W.H.; Hayes, M.J.; Svoboda, M.D.; Tadesse, T.; Wilhite, D.A. Drought hazard assessment in the context of climate change for South Korea. Agric. Water Manag. 2015, 160, 106–117. [Google Scholar] [CrossRef]
- Kwak, J.; Kim, S.; Jung, J.; Singh, V.P.; Lee, D.R.; Kim, H.S. Assessment of Meteorological Drought in Korea Under Climate Change. Adv. Meteorol. 2016, 1–13. [Google Scholar] [CrossRef]
- Boo, K.O.; Kwon, W.T.; Baek, H.J. Change of extreme events of temperature and precipitation over Korea using regional projection of future climate change. Geophys. Res. Lett. 2006, 33, 1–4. [Google Scholar] [CrossRef]
- Im, E.S.; Ahn, J.B.; Kwon, W.T.; Giorgi, F. Multi-decadal scenario simulation over Korea using a one-way double-nested regional climate model system. Part II: Future climate projection (2021–2050). Clim. Dyn. 2007, 30, 239–254. [Google Scholar] [CrossRef]
- Jang, D.W.; Park, H.S.; Choi, J.T. Development of future precipitation forecasting program using probability forecast and climate change scenario. Proced. Eng. 2016, 154, 645–649. [Google Scholar] [CrossRef]
- Kim, J.E.; Hong, S.Y. Impact of Soil Moisture Anomalies on Summer Rainfall over East Asia: A Reginal Climate Model Study. J. Clim. 2007, 20, 5732–5743. [Google Scholar] [CrossRef]
- Venuto, B.; Rryan, K. Forage and biomass feedstock production from hybrid forage sorghum and sorghum-sudangrass hybrids. Grassl. Sci. 2008, 54, 189–196. [Google Scholar] [CrossRef]
Statistics | DMY (kg ha−1) | SHAMT (°C) | SHMT (°C) | SHPA (mm) | SHPD (days) | SHDS (°C) |
---|---|---|---|---|---|---|
Mean | 17,141.7 | 3037.3 | 22.5 | 956.9 | 52.0 | 760.7 |
Median | 16,106.5 | 2999.7 | 22.5 | 908.5 | 50.0 | 745.2 |
SD | 5422.0 | 321.7 | 1.1 | 348.9 | 10.0 | 123.1 |
CS | 0.82 | −0.71 | −0.01 | 0.40 | −0.24 | 0.01 |
CK | 0.23 | 1.31 | 0.75 | −0.85 | −0.01 | −0.43 |
Min | 8175.0 | 1892.3 | 19.3 | 319.0 | 19.3 | 492.9 |
Max | 33,817.0 | 3766.7 | 25.4 | 1609.5 | 76.0 | 1020.0 |
CV | 0.32 | 0.11 | 0.05 | 0.37 | 0.19 | 0.16 |
Models | R2 | RMSE | MAPE | MAE | MaxAPE | MaxAE |
---|---|---|---|---|---|---|
ARIMA (2, 1, 0) | 0.616 | 3368.989 | 15.602 | 2549.499 | 97.511 | 11354.301 |
ARIMA (1, 0, 0) | 0.587 | 3487.953 | 17.156 | 2737.991 | 97.521 | 11006.030 |
ARIMA (1, 1, 1) | 0.623 | 3337.410 | 16.047 | 2611.557 | 113.398 | 10579.526 |
ARIMA (1, 1, 2) | 0.621 | 3347.831 | 15.729 | 2566.802 | 110.161 | 11085.822 |
ARIMA (2, 1, 1) | 0.633 | 3296.403 | 15.678 | 2544.823 | 100.008 | 10575.837 |
ARIMA (3, 1, 0) | 0.619 | 3357.194 | 15.735 | 2564.254 | 111.868 | 10967.444 |
ARIMA (3, 1, 1) | 0.633 | 3299.176 | 15.680 | 2544.528 | 100.283 | 10464.098 |
Model | Coefficient | SE | t-Statistics | p-Value |
---|---|---|---|---|
AR (1) | 0.394 | 0.074 | 5.319 | 0.001 |
AR (2) | 0.219 | 0.062 | 3.536 | 0.001 |
MA (1) | 0.891 | 0.052 | 17. 186 | 0.001 |
Variables | DMY | SHAMT | SHMT | SHPA | SHPD | SHDS |
---|---|---|---|---|---|---|
DMY | 1 | 0.223 ** | 0.039 | −0.181 ** | 0.029 | 0.216 ** |
SHAMT | 1 | −0.164 ** | 0.232 ** | 0.461 ** | 0.608 ** | |
SHMT | 1 | −0.101 * | −0.121 * | −0.416 ** | ||
SHPA | 1 | 0.447 ** | −0.159 ** | |||
SHPD | 1 | −0.121 * | ||||
SHDS | 1 |
Variables | Parameters | Coefficients | SE | VIF | p-Value |
---|---|---|---|---|---|
DMY | Constant | 2250.438 | 531.681 | 0.001 | |
AR (1) | 0.479 | 0.050 | 0.001 | ||
AR (2) | 0.272 | 0.049 | 0.001 | ||
MA (1) | 1.00 | 0.452 | 0.027 | ||
SHAMT | −0.514 | 0.223 | 1.924 | 0.022 | |
SHPA | −0.449 | 0.130 | 1.244 | 0.001 | |
SHDS | −0.307 | 0.405 | 1.868 | 0.449 | |
DMY | Constant | 2677.418 | 574.026 | 0.001 | |
AR (1) | 0.496 | 0.049 | 0.001 | ||
AR (2) | 0.274 | 0.049 | 0.001 | ||
MA (1) | 0.999 | 0.121 | 0.001 | ||
SHAMT | −0.701 | 0.186 | 1.057 | 0.001 | |
SHPT | −0.544 | 0.318 | 1.057 | 0.001 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chemere, B.; Kim, J.; Lee, B.; Kim, M.; Kim, B.; Sung, K. Detecting Long-Term Dry Matter Yield Trend of Sorghum-Sudangrass Hybrid and Climatic Factors Using Time Series Analysis in the Republic of Korea. Agriculture 2018, 8, 197. https://doi.org/10.3390/agriculture8120197
Chemere B, Kim J, Lee B, Kim M, Kim B, Sung K. Detecting Long-Term Dry Matter Yield Trend of Sorghum-Sudangrass Hybrid and Climatic Factors Using Time Series Analysis in the Republic of Korea. Agriculture. 2018; 8(12):197. https://doi.org/10.3390/agriculture8120197
Chicago/Turabian StyleChemere, Befekadu, Jiyung Kim, Baehun Lee, Moonju Kim, Byongwan Kim, and Kyungil Sung. 2018. "Detecting Long-Term Dry Matter Yield Trend of Sorghum-Sudangrass Hybrid and Climatic Factors Using Time Series Analysis in the Republic of Korea" Agriculture 8, no. 12: 197. https://doi.org/10.3390/agriculture8120197