Recent Contributions of Agricultural Economics Research in the Field of Sustainable Development
Abstract
:1. Introduction
2. Evolving Agricultural and Agro-Energy Policy toward a Sustainability Path
3. Innovative Strategies for a More Sustainable Agri-Food Chain
3.1. Agbiotech Innovation for Sustainable Agriculture
3.2. Food Waste Reduction
3.3. Increasing the Sustainability of Food Production
4. Consumer Preferences for Environmental Sustainability Attributes
5. Migration and Climate Change
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Topic | Main Findings | Implications | Future Research |
---|---|---|---|
Agricultural and agro-energy policy toward a sustainability path | Farm level agricultural policy schemes, aimed at fostering environmental sustainability, may lack territorial targeting and weaken economic and social sustainability in some areas. | Such shortcomings may be addressed by setting up a monitoring system to assess ex-ante and ex-post impacts of agricultural policy on the three pillars of sustainability | Current indicators used to assess agricultural sustainability should be reinforced, through a better integration of farm-level and territorial databases |
Agbiotech innovation for sustainable agriculture | Increasing patenting activity over time, innovation able to provide solutions for a more sustainable production system | Policies aimed at promoting the adoption of NBT based products | Identification of drivers/constraints related to innovation capacity and competitiveness and their impact on productivity |
Food waste reduction | Prevention is the most preferable option from an economic and environmental perspective | Need to implement policy interventions and incentives to decrease food waste generation and promote re-use | Models for the estimations of the economic gains derived by the implementation of different food waste reduction strategies |
Increasing the sustainability of food production | Different production strategies can lead to different impacts, reduction in meat consumption is one of the most effective solutions | Measures to incentivize input-use efficiency and resource protection and promote the shift toward more sustainable consumption patterns | Assessment of the environmental and economic costs associated with current food production practices |
Consumer preferences for environmental sustainability attributes | Growing concern among consumers about the environmental impacts of their everyday food choices. Not all consumers are conscious and interested in these aspects, and even those that are concerned often do not take on sustainable behaviors | More effort in finding ways to better communicate the impacts of day-by-day food choices and in understanding the motivations behind the attitude-behavior gap | Further studies should investigate how to motivate different types of consumers so that they can make more sustainable choices reducing the environmental impacts of the food system |
Migration and climate change | Negative agricultural variations due to an increase in temperature and precipitations are possible motivations behind the migration decision | Socio-economic policies have to take into account the fact that climate change may induce more individuals to move | Analysis of the relationship between climate change, agricultural productivity, conflicts, and migration so that a negative impact of climate change on agricultural productivity may generate conflicts, hence may force human mobility |
References
- Martin, J.E. Agricultural Economics: A Critical Review of the State of the Science. J. Agric. Appl. Econ. 1978, 10, 39–42. [Google Scholar] [CrossRef]
- Shao, G.; Li, F.; Tang, L. Multidisciplinary perspectives on sustainable development. Int. J. Sustain. Dev. World Ecol. 2011, 18, 187–189. [Google Scholar] [CrossRef]
- Cortese, A.D. The critical role of higher education in creating a sustainable future. Plan. High. Educ. 2003, 31, 15–22. [Google Scholar]
- Jabareen, Y. Teaching Sustainability: A Multidisciplinary Approach. Creat. Educ. 2011, 2, 388–392. [Google Scholar] [CrossRef]
- Wu, J.J. Landscape Ecology, Cross-Disciplinarity, and Sustainability Science; Springer: Berlin, Germany, 2006. [Google Scholar]
- Glavič, P.; Lukman, R. Review of sustainability terms and their definitions. J. Clean. Prod. 2007, 15, 1875–1885. [Google Scholar] [CrossRef]
- Mauerhofer, V. 3-D Sustainability: An approach for priority setting in situation of conflicting interests towards a Sustainable Development. Ecol. Econ. 2008, 64, 496–506. [Google Scholar] [CrossRef]
- Smith, P.; Clark, H.; Dong, H.; Elsiddig, E.A.; Haberl, H.; Harper, R.; House, J.; Jafari, M.; Masera, O.; Mbow, C.; et al. Chapter 11—Agriculture, forestry and other land use (AFOLU). In Climate Change 2014: Mitigation of Climate Change. IPCC Working Group III Contribution to AR5; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- World Commission on Environment and Development. Our Common Future; Oxford University Press: Oxford, UK; New York, NY, USA, 1987; ISBN 978-0-19-282080-8. [Google Scholar]
- Defrancesco, E.; Gatto, P.; Runge, F.; Trestini, S. Factors affecting farmers’ participation in agri-environmental measures: A Northern Italian perspective. J. Agric. Econ. 2008, 59, 114–131. [Google Scholar] [CrossRef]
- Bertoni, D.; Cavicchioli, D.; Pretolani, R.; Olper, A. Agri-Environmental Measures Adoption: New Evidence from Lombardy Region. In The Common Agricultural Policy after the Fischler Reform; Routledge: Abingdon, UK, 2011; pp. 275–294. [Google Scholar]
- Burton, R.J. The influence of farmer demographic characteristics on environmental behaviour: A review. J. Environ. Manag. 2014, 135, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Franzén, F.; Dinnétz, P.; Hammer, M. Factors affecting farmers’ willingness to participate in eutrophication mitigation—A case study of preferences for wetland creation in Sweden. Ecol. Econ. 2016, 130, 8–15. [Google Scholar] [CrossRef]
- Pavlis, E.S.; Terkenli, T.S.; Kristensen, S.B.; Busck, A.G.; Cosor, G.L. Patterns of agri-environmental scheme participation in Europe: Indicative trends from selected case studies. Land Use Policy 2016, 57, 800–812. [Google Scholar] [CrossRef]
- Paracchini, M.L.; Bulgheroni, C.; Borreani, G.; Tabacco, E.; Banterle, A.; Bertoni, D.; Rossi, G.; Parolo, G.; Origgi, R.; De Paola, C. A diagnostic system to assess sustainability at a farm level: The SOSTARE model. Agric. Syst. 2015, 133, 35–53. [Google Scholar] [CrossRef]
- De Olde, E.M.; Oudshoorn, F.W.; Sørensen, C.A.; Bokkers, E.A.; De Boer, I.J. Assessing sustainability at farm-level: Lessons learned from a comparison of tools in practice. Ecol. Indic. 2016, 66, 391–404. [Google Scholar] [CrossRef]
- Zahm, F.; Viaux, P.; Vilain, L.; Girardin, P.; Mouchet, C. Assessing farm sustainability with the IDEA method–from the concept of agriculture sustainability to case studies on farms. Sustain. Dev. 2008, 16, 271–281. [Google Scholar] [CrossRef]
- Bertoni, D.; Curzi, D.; Iacus, S.; Olper, A. Estimating the Causal Effect of Green Payments in Agriculture: The Coarsened Exact Matching; International Association of Agricultural Economists: Milwaukee, WI, USA, 2018. [Google Scholar]
- Pufahl, A.; Weiss, C.R. Evaluating the effects of farm programmes: Results from propensity score matching. Eur. Rev. Agric. Econ. 2009, 36, 79–101. [Google Scholar] [CrossRef]
- Chabé-Ferret, S.; Subervie, J. How much green for the buck? Estimating additional and windfall effects of French agro-environmental schemes by DID-matching. J. Environ. Econ. Manag. 2013, 65, 12–27. [Google Scholar] [CrossRef] [Green Version]
- Olper, A.; Raimondi, V.; Cavicchioli, D.; Vigani, M. Do CAP payments reduce farm labour migration? A panel data analysis across EU regions. Eur. Rev. Agric. Econ. 2014, 41, 843–873. [Google Scholar] [CrossRef] [Green Version]
- Giannakis, E.; Efstratoglou, S.; Antoniades, A. Off-Farm Employment and Economic Crisis: Evidence from Cyprus. Agriculture 2018, 8, 41. [Google Scholar] [CrossRef]
- Matthews, A. Greening agricultural payments in the EU’s Common Agricultural Policy. Bio-Based Appl. Econ. 2013, 2, 1–27. [Google Scholar]
- Gocht, A.; Ciaian, P.; Bielza, M.; Terres, J.-M.; Röder, N.; Himics, M.; Salputra, G. EU-wide Economic and Environmental Impacts of CAP Greening with High Spatial and Farm-type Detail. J. Agric. Econ. 2017, 68, 651–681. [Google Scholar] [CrossRef] [Green Version]
- Louhichi, K.; Ciaian, P.; Espinosa, M.; Perni, A.; Gomez y Paloma, S. Economic impacts of CAP greening: Application of an EU-wide individual farm model for CAP analysis (IFM-CAP). Eur. Rev. Agric. Econ. 2017, 45, 205–238. [Google Scholar] [CrossRef]
- Fumagalli, M.; Acutis, M.; Mazzetto, F.; Vidotto, F.; Sali, G.; Bechini, L. An analysis of agricultural sustainability of cropping systems in arable and dairy farms in an intensively cultivated plain. Eur. J. Agron. 2011, 34, 71–82. [Google Scholar] [CrossRef]
- Cavicchioli, D.; Bertoni, D. Effects of Cap Green Payments in Lombardy: A Comparison of Proposed and Approved Measures Based on Census Data; Universitas Studiorum: Mantova, Italy, 2015; pp. 109–120. [Google Scholar]
- Solazzo, R.; Pierangeli, F. How does greening affect farm behaviour? Trade-off between commitments and sanctions in the Northern Italy. Agric. Syst. 2016, 149, 88–98. [Google Scholar] [CrossRef]
- Solazzo, R.; Donati, M.; Tomasi, L.; Arfini, F. How effective is greening policy in reducing GHG emissions from agriculture? Evidence from Italy. Sci. Total Environ. 2016, 573, 1115–1124. [Google Scholar] [CrossRef] [PubMed]
- Cortignani, R.; Severini, S.; Dono, G. Complying with greening practices in the new CAP direct payments: An application on Italian specialized arable farms. Land Use Policy 2017, 61, 265–275. [Google Scholar] [CrossRef]
- Gaudino, S.; Reidsma, P.; Kanellopoulos, A.; Sacco, D.; van Ittersum, M.K. Integrated Assessment of the EU’s Greening Reform and Feed Self-Sufficiency Scenarios on Dairy Farms in Piemonte, Italy. Agriculture 2018, 8, 137. [Google Scholar] [CrossRef]
- Bertoni, D.; Aletti, G.; Ferrandi, G.; Micheletti, A.; Cavicchioli, D.; Pretolani, R. Farmland Use Transitions After the CAP Greening: A Preliminary Analysis Using Markov Chains Approach. Land Use Policy 2018, 79, 789–800. [Google Scholar] [CrossRef]
- Le Roy, D.G.; Klein, K.K. The policy objectives of a biofuel industry in Canada: An assessment. Agriculture 2012, 2, 436–451. [Google Scholar] [CrossRef]
- Tokgoz, S.; Zhang, W.; Msangi, S.; Bhandary, P. Biofuels and the future of food: Competition and complementarities. Agriculture 2012, 2, 414–435. [Google Scholar] [CrossRef]
- Bartoli, A.; Cavicchioli, D.; Kremmydas, D.; Rozakis, S.; Olper, A. The impact of different energy policy options on feedstock price and land demand for maize silage: The case of biogas in Lombardy. Energy Policy 2016, 96, 351–363. [Google Scholar] [CrossRef] [Green Version]
- Demartini, E.; Gaviglio, A.; Gelati, M.; Cavicchioli, D. The Effect of Biogas Production on Farmland Rental Prices: Empirical Evidences from Northern Italy. Energies 2016, 9, 965. [Google Scholar] [CrossRef]
- Pacini, C.; Giesen, G.; Wossink, A.; Omodei-Zorini, L.; Huirne, R. The EU’s Agenda 2000 reform and the sustainability of organic farming in Tuscany: Ecological-economic modelling at field and farm level. Agric. Syst. 2004, 80, 171–197. [Google Scholar] [CrossRef]
- Van Passel, S.; Nevens, F.; Mathijs, E.; Van Huylenbroeck, G. Measuring farm sustainability and explaining differences in sustainable efficiency. Ecol. Econ. 2007, 62, 149–161. [Google Scholar] [CrossRef]
- Meul, M.; Nevens, F.; Reheul, D.; Hofman, G. Energy use efficiency of specialised dairy, arable and pig farms in Flanders. Agric. Ecosyst. Environ. 2007, 119, 135–144. [Google Scholar] [CrossRef]
- Bechini, L.; Castoldi, N. On-farm monitoring of economic and environmental performances of cropping systems: Results of a 2-year study at the field scale in northern Italy. Ecol. Indic. 2009, 9, 1096–1113. [Google Scholar] [CrossRef]
- Thomassen, M.A.; Dolman, M.A.; Van Calker, K.J.; De Boer, I.J.M. Relating life cycle assessment indicators to gross value added for Dutch dairy farms. Ecol. Econ. 2009, 68, 2278–2284. [Google Scholar] [CrossRef]
- Ripoll-Bosch, R.; Díez-Unquera, B.; Ruiz, R.; Villalba, D.; Molina, E.; Joy, M.; Olaizola, A.; Bernués, A. An integrated sustainability assessment of mediterranean sheep farms with different degrees of intensification. Agric. Syst. 2012, 105, 46–56. [Google Scholar] [CrossRef]
- Demartini, E.; Gaviglio, A.; Bertoni, D. Integrating agricultural sustainability into policy planning: A geo-referenced framework based on Rough Set theory. Environ. Sci. Policy 2015, 54, 226–239. [Google Scholar] [CrossRef]
- Kirchner, M.; Schmidt, J.; Kindermann, G.; Kulmer, V.; Mitter, H.; Prettenthaler, F.; Rüdisser, J.; Schauppenlehner, T.; Schönhart, M.; Strauss, F. Ecosystem services and economic development in Austrian agricultural landscapes—The impact of policy and climate change scenarios on trade-offs and synergies. Ecol. Econ. 2015, 109, 161–174. [Google Scholar] [CrossRef]
- Paracchini, M.L.; Correia, T.P.; Loupa-Ramos, I.; Capitani, C.; Madeira, L. Progress in indicators to assess agricultural landscape valuation: How and what is measured at different levels of governance. Land Use Policy 2016, 53, 71–85. [Google Scholar] [CrossRef]
- Palmgren, M.G.; Edenbrandt, A.K.; Vedel, S.E.; Andersen, M.M.; Landes, X.; Østerberg, J.T.; Falhof, J.; Olsen, L.I.; Christensen, S.B.; Sandøe, P.; et al. Are we ready for back-to-nature crop breeding? Trends Plant Sci. 2015, 20, 155–164. [Google Scholar] [CrossRef]
- Lusser, M.; Parisi, C.; Plan, D.; Rodríguez-Cerezo, E. Deployment of new biotechnologies in plant breeding. Nat. Biotechnol. 2012, 30, 231–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, M.M.; Landes, X.; Xiang, W.; Anyshchenko, A.; Falhof, J.; Østerberg, J.T.; Olsen, L.I.; Edenbrandt, A.K.; Vedel, S.E.; Thorsen, B.J.; et al. Feasibility of new breeding techniques for organic farming. Trends Plant Sci. 2015, 20, 426–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kissoudis, C.; van de Wiel, C.; Visser, R.G.; van der Linden, G. Future-proof crops: Challenges and strategies for climate resilience improvement. Curr. Opin. Plant Biol. 2016, 30, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Stenberg, J.A.; Heil, M.; Åhman, I.; Björkman, C. Optimizing Crops for Biocontrol of Pests and Disease. Trends Plant Sci. 2015, 20, 698–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shew, A.M.; Danforth, D.M.; Nalley, L.L.; Nayga, R.M.; Tsiboe, F.; Dixon, B.L. New innovations in agricultural biotech: Consumer acceptance of topical RNAi in rice production. Food Control 2017, 81, 189–195. [Google Scholar] [CrossRef]
- Jefferson, O.A.; Jaffe, A.; Ashton, D.; Warren, B.; Koellhofer, D.; Dulleck, U.; Ballagh, A.; Moe, J.; DiCuccio, M.; Ward, K.; et al. Mapping the global influence of published research on industry and innovation. Nat. Biotechnol. 2018, 36, 31–39. [Google Scholar] [CrossRef]
- Clancy, M.S.; Moschini, G. Intellectual Property Rights and the Ascent of Proprietary Innovation in Agriculture. Annu. Rev. Resour. Econ. 2017, 9, 53–74. [Google Scholar] [CrossRef] [Green Version]
- Zilberman, D.; Gordon, B.; Hochman, G.; Wesseler, J. Economics of Sustainable Development and the Bioeconomy. Appl. Econ. Perspect. Policy 2018, 40, 22–37. [Google Scholar] [CrossRef]
- Haščič, I.; Migotto, M. Measuring Environmental Innovation Using Patent Data; OECD: Paris, France, 2015. [Google Scholar]
- Haščič, I.; Silva, J.; Johnstone, N. The Use of Patent Statistics for International Comparisons and Analysis of Narrow Technological Fields; OECD: Paris, France, 2015. [Google Scholar]
- Graff, G.D.; Cullen, S.E.; Bradford, K.J.; Zilberman, D.; Bennett, A.B. The public–private structure of intellectual property ownership in agricultural biotechnology. Nat. Biotechnol. 2003, 21, 989–995. [Google Scholar] [CrossRef]
- Frisio, D.G.; Ferrazzi, G.; Ventura, V.; Vigani, M. Public vs. Private Agbiotech Research in the United States and European Union, 2002–2009. AgBioForum 2010, 13, 333–342. [Google Scholar]
- Egelie, K.J.; Graff, G.D.; Strand, S.P.; Johansen, B. The emerging patent landscape of CRISPR–Cas gene editing technology. Nat. Biotechnol. 2016, 34, 1025–1031. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.S.; Timotijevic, L.; Newton, R.; Coutinho, D.; Llerena, J.L.; Ortega, S.; Benighaus, L.; Hofmaier, C.; Xhaferri, Z.; de Boer, A. The framing of innovation among European research funding actors: Assessing the potential for ‘responsible research and innovation’in the food and health domain. Food Policy 2016, 62, 78–87. [Google Scholar] [CrossRef]
- Eriksson, M.; Strid, I.; Hansson, P.-A. Carbon footprint of food waste management options in the waste hierarchy–a Swedish case study. J. Clean. Prod. 2015, 93, 115–125. [Google Scholar] [CrossRef]
- Reynolds, C.J.; Piantadosi, J.; Boland, J. Rescuing Food from the Organics Waste Stream to Feed the Food Insecure: An Economic and Environmental Assessment of Australian Food Rescue Operations Using Environmentally Extended Waste Input-Output Analysis. Sustainability 2015, 7, 4707–4726. [Google Scholar] [CrossRef] [Green Version]
- Bellemare, M.F.; Çakir, M.; Peterson, H.H.; Novak, L.; Rudi, J. On the Measurement of Food Waste. Am. J. Agric. Econ. 2017, 99, 1148–1158. [Google Scholar] [CrossRef]
- Garrone, P.; Melacini, M.; Perego, A. Opening the black box of food waste reduction. Food Policy 2014, 46, 129–139. [Google Scholar] [CrossRef]
- Papargyropoulou, E.; Lozano, R.; Steinberger, J.K.; Wright, N.; bin Ujang, Z. The food waste hierarchy as a framework for the management of food surplus and food waste. J. Clean. Prod. 2014, 76, 106–115. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Herrero, I.; Hoehn, D.; Margallo, M.; Laso, J.; Bala, A.; Batlle-Bayer, L.; Fullana, P.; Vazquez-Rowe, I.; Gonzalez, M.J.; Durá, M.J. On the estimation of potential food waste reduction to support sustainable production and consumption policies. Food Policy 2018, 80, 24–38. [Google Scholar] [CrossRef]
- Chegere, M.J. Post-harvest losses reduction by small-scale maize farmers: The role of handling practices. Food Policy 2018, 77, 103–115. [Google Scholar] [CrossRef]
- Balzaretti, C.M.; Ventura, V.; Ratti, S.; Ferrazzi, G.; Spallina, A.; Carruba, M.O.; Castrica, M. Improving the overall sustainability of the school meal chain: The role of portion sizes. Eat Weight Disord. 2018. [Google Scholar] [CrossRef]
- Vittuari, M.; De Menna, F.; Gaiani, S.; Falasconi, L.; Politano, A.; Dietershagen, J.; Segrè, A. The Second Life of Food: An Assessment of the Social Impact of Food Redistribution Activities in Emilia Romagna, Italy. Sustainability 2017, 9, 1817. [Google Scholar] [CrossRef]
- Schneider, F. The evolution of food donation with respect to waste prevention. Waste Manag. 2013, 33, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Stepman, E.; Uyttendaele, M.; De Boeck, E.; Jacxsens, L. Needs of beneficiaries related to the format and content of food parcels in Ghent, Belgium. Br. Food J. 2018, 120, 578–587. [Google Scholar] [CrossRef]
- Mourad, M. Recycling, recovering and preventing “food waste”: Competing solutions for food systems sustainability in the United States and France. J. Clean. Prod. 2016, 126, 461–477. [Google Scholar] [CrossRef]
- Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives (Text with EEA Relevance); European Union: Brussels, Belgium, 2008; Volume 034, pp. 99–126.
- Regulation (EC) No 1069/2009 of the European Parliament and of the Council of 21 October 2009 Laying down Health Rules as Regards Animal by-Products and Derived Products not Intended for Human Consumption and Repealing Regulation (EC) No 1774/2002 (Animal by-Products Regulation); European Parliament: Brussels, Belgium, 2009; Volume 300.
- Zu Ermgassen, E.K.H.J.; Phalan, B.; Green, R.E.; Balmford, A. Reducing the land use of EU pork production: Where there’s a will, there’s a way. Food Policy 2016, 58, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Salemdeeb, R.; zu Ermgassen, E.K.H.J.; Kim, M.H.; Balmford, A.; Al-Tabbaa, A. Environmental and health impacts of using food waste as animal feed: A comparative analysis of food waste management options. J. Clean. Prod. 2017, 140, 871–880. [Google Scholar] [CrossRef]
- Castrica, M.; Tedesco, D.E.A.; Panseri, S.; Ferrazzi, G.; Ventura, V.; Frisio, D.G.; Balzaretti, C.M. Pet Food as the Most Concrete Strategy for Using Food Waste as Feedstuff within the European Context: A Feasibility Study. Sustainability 2018, 10, 2035. [Google Scholar] [CrossRef]
- Kasapidou, E.; Sossidou, E.; Mitlianga, P. Fruit and Vegetable Co-Products as Functional Feed Ingredients in Farm Animal Nutrition for Improved Product Quality. Agriculture 2015, 5, 1020–1034. [Google Scholar] [CrossRef] [Green Version]
- Stranieri, S.; Orsi, L.; Banterle, A.; Ricci, E.C. Sustainable development and supply chain coordination: The impact of corporate social responsibility rules in the European Union food industry. Corp. Soc. Responsib. Environ. Manag. 2018. [Google Scholar] [CrossRef]
- Banterle, A.; Ricci, E.C.; Cavaliere, A. Environmental sustainability and the food system. In Regulating Food Safety Law in the EU—A Management and Economics Perspective; Bremmers, H.J., Purnhagen, K., Eds.; Springer: Basel, Switzerland, 2018. [Google Scholar]
- Cole, C.V.; Duxbury, J.; Freney, J.; Heinemeyer, O.; Minami, K.; Mosier, A.; Paustian, K.; Rosenberg, N.; Sampson, N.; Sauerbeck, D.; et al. Global estimates of potential mitigation of greenhouse gas emissions by agriculture. Nutr. Cycl. Agroecosyst. 1997, 49, 221–228. [Google Scholar] [CrossRef]
- Valdez, V.; Berger, J.D.; Warkentin, T.; Asseng, S.; Ratnakumar, P.; Rao, K.P.C.; Gaur, P.M.; Munier-Jolain, N.; Larmure, A.; Voisin, A.S. Adaptation of grain legumes to climatic change: A review. Agron. Sustain. Dev. 2012, 32, 31–44. [Google Scholar] [CrossRef]
- Bruinsma, J. World Agriculture: Towards 2015/2030: An FAO Study; Routledge: Abingdon, UK, 2017. [Google Scholar]
- Delgado, C.; Rosegrant, M.; Steinfeld, H.; Ehui, S.; Courbois, C. Livestock to 2020: The Next Food Revolution. Outlook Agric. 2001, 30, 27–29. [Google Scholar] [CrossRef] [Green Version]
- De Vries, M.; de Boer, I.J. Comparing environmental impacts for livestock products: A review of life cycle assessments. Livest. Sci. 2010, 128, 1–11. [Google Scholar] [CrossRef]
- Presumido, P.H.; Sousa, F.; Gonçalves, A.; Dal Bosco, T.C.; Feliciano, M. Environmental Impacts of the Beef Production Chain in the Northeast of Portugal Using Life Cycle Assessment. Agriculture 2018, 8, 165. [Google Scholar] [CrossRef]
- Garnett, T. Livestock-related greenhouse gas emissions: Impacts and options for policy makers. Environ. Sci. Policy 2009, 12, 491–503. [Google Scholar] [CrossRef]
- Steinfeld, H.; Gerber, P.; Wassenaar, T.D.; Castel, V.; Rosales, M.; Rosales, M.; de Haan, C. Livestock’s Long Shadow: Environmental Issues and Options; Food & Agriculture Organization: Rome, Italy, 2006. [Google Scholar]
- Vermeir, I.; Verbeke, W. Sustainable Food Consumption: Exploring the Consumer “Attitude—Behavioral Intention” Gap. J. Agric. Environ. Ethics 2006, 19, 169–194. [Google Scholar]
- Crosson, P.; Shalloo, L.; O’Brien, D.; Lanigan, G.J.; Foley, P.A.; Boland, T.M.; Kenny, D.A. A review of whole farm systems models of greenhouse gas emissions from beef and dairy cattle production systems. Anim. Feed Sci. Technol. 2011, 166, 29–45. [Google Scholar] [CrossRef]
- Capper, J.L. The environmental impact of beef production in the United States: 1977 compared with 2007. J. Anim. Sci. 2011, 89, 4249–4261. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, N.; Pirog, R.; Rasmussen, R. Comparative life cycle environmental impacts of three beef production strategies in the Upper Midwestern United States. Agric. Syst. 2010, 103, 380–389. [Google Scholar] [CrossRef]
- Casey, J.W.; Holden, N.M. Greenhouse Gas Emissions from Conventional, Agri-Environmental Scheme, and Organic Irish Suckler-Beef Units. J. Environ. Qual. 2006, 35, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Garnett, T. Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)? Food Policy 2011, 36, S23–S32. [Google Scholar] [CrossRef]
- Micha, R.; Wallace, S.K.; Mozaffarian, D. Red and processed meat consumption and risk of incident coronary heart disease, stroke, and diabetes: A systematic review and meta-analysis. Circulation 2010, 121, 2271–2283. [Google Scholar] [CrossRef]
- Bouvard, V.; Loomis, D.; Guyton, K.Z.; Grosse, Y.; El Ghissassi, F.; Benbrahim-Tallaa, L.; Guha, N.; Mattock, H.; Kurt, S. Carcinogenicity of consumption of red and processed meat—Google Scholar. Lancet Oncol. 2015, 16, 1599–1600. [Google Scholar] [CrossRef]
- Ricci, E.C.; Banterle, A. The effects of EXPO MIlano 2015 on consumer food choices. Econ. Ago-Aliment. Food Econ. 2018, 20, 233–244. [Google Scholar] [CrossRef]
- Grunert, K.G. Sustainability in the Food Sector: A Consumer Behaviour Perspective. Int. J. Food Syst. Dyn. 2011, 2, 207–218. [Google Scholar]
- Evans, D. Consuming conventions: Sustainable consumption, ecological citizenship and the worlds of worth. J. Rural. Stud. 2011, 27, 109–115. [Google Scholar] [CrossRef]
- Cavaliere, A.; Ventura, V. Mismatch between food sustainability and consumer acceptance toward innovation technologies among Millennial students: The case of Shelf Life Extension. J. Clean. Prod. 2018, 175, 641–650. [Google Scholar] [CrossRef]
- Coppola, A.; Verneau, F. An empirical analysis on technophobia/technophilia in consumer market segmentation. Agric. Food Econ. 2014, 2, 2. [Google Scholar] [CrossRef]
- Grunert, K.G.; Hieke, S.; Wills, J. Sustainability labels on food products: Consumer motivation, understanding and use. Food Policy 2014, 44, 177–189. [Google Scholar] [CrossRef] [Green Version]
- Grebitus, C.; Steiner, B.; Veeman, M.M. Paying for sustainability: A cross-cultural analysis of consumers’ valuations of food and non-food products labeled for carbon and water footprints. J. Behav. Exp. Econ. 2016, 63, 50–58. [Google Scholar] [CrossRef]
- Grolleau, G.; Caswell, J.A. Interaction between Food Attributes in Markets: The Case of Environmental Labeling. J. Agric. Resour. Econ. 2006, 31, 471–484. [Google Scholar] [CrossRef]
- Krystallis, A.; Grunert, K.G.; de Barcellos, M.D.; Perrea, T.; Verbeke, W. Consumer attitudes towards sustainability aspects of food production: Insights from three continents. J. Mark. Manag. 2012, 28, 334–372. [Google Scholar] [CrossRef]
- Asioli, D.; Næs, T.; Granli, B.S.; Lengard Almli, V. Consumer preferences for iced coffee determined by conjoint analysis: An exploratory study with N orwegian consumers. Int. J. Food Sci. Technol. 2014, 49, 1565–1571. [Google Scholar] [CrossRef]
- Hu, W.; Hünnemeyer, A.; Veeman, M.; Adamowicz, W.; Srivastava, L. Trading off health, environmental and genetic modification attributes in food. Eur. Rev. Agric. Econ. 2004, 31, 389–408. [Google Scholar] [CrossRef]
- Caputo, V.; Nayga, R.M.; Scarpa, R. Food miles or carbon emissions? Exploring labelling preference for food transport footprint with a stated choice study. Aust. J. Agric. Resour. Econ. 2013, 57, 465–482. [Google Scholar] [CrossRef] [Green Version]
- Akaichi, F.; Nayga, R.M.; Nalley, L.L. Are there trade-offs in valuation with respect to greenhouse gas emissions, origin and food miles attributes? Eur. Rev. Agric. Econ. 2017, 44, 3–31. [Google Scholar] [CrossRef]
- Feucht, Y.; Zander, K. Consumers’ preferences for carbon labels and the underlying reasoning. A mixed methods approach in 6 European countries. J. Clean. Prod. 2018, 178, 740–748. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Cerri, J.; Testa, F.; Rizzi, F. The more I care, the less I will listen to you: How information, environmental concern and ethical production influence consumers’ attitudes and the purchasing of sustainable products. J. Clean. Prod. 2018, 175, 343–353. [Google Scholar] [CrossRef]
- De Groot, J.; Steg, L. General Beliefs and the Theory of Planned Behavior: The Role of Environmental Concerns in the TPB. J. Appl. Soc. Psychol. 2007, 37, 1817–1836. [Google Scholar] [CrossRef] [Green Version]
- Govindasamy, R.; Italia, J.; Adelaja, A. Predicting willingness-to-pay a premium for integrated pest management produce: A logistic approach. Agric. Resour. Econ. Rev. 2001, 30, 151–159. [Google Scholar] [CrossRef]
- Ohtomo, S.; Hirose, Y. The dual-process of reactive and intentional decision-making involved in eco-friendly behavior. J. Environ. Psychol. 2007, 27, 117–125. [Google Scholar] [CrossRef]
- Hobbs, J.E.; Goddard, E. Consumers and trust. Food Policy 2015, 52, 71–74. [Google Scholar] [CrossRef]
- Lassoued, R.; Hobbs, J.E. Consumer confidence in credence attributes: The role of brand trust. Food Policy 2015, 52, 99–107. [Google Scholar] [CrossRef]
- Nuttavuthisit, K.; Thøgersen, J. The importance of consumer trust for the emergence of a market for green products: The case of organic food. J. Bus. Ethics 2017, 140, 323–337. [Google Scholar] [CrossRef]
- Ricci, E.C.; Banterle, A.; Stranieri, S. Trust to Go Green: An Exploration of Consumer Intentions for Eco-friendly Convenience Food. Ecol. Econ. 2018, 148, 54–65. [Google Scholar] [CrossRef]
- Brunner, T.A.; van der Horst, K.; Siegrist, M. Convenience food products. Drivers for consumption. Appetite 2010, 55, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Olsen, N.V. The convenience consumer’s dilemma. Br. Food J. 2012, 114, 1613–1625. [Google Scholar] [CrossRef]
- Thaler, R.; Sunstein, C. Nudge: The Gentle Power of Choice Architecture; Yale: New Haven, CT, USA, 2008. [Google Scholar]
- Bacon, L.; Krpan, D. (Not) Eating for the environment: The impact of restaurant menu design on vegetarian food choice. Appetite 2018, 125, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Kurz, V. Nudging to reduce meat consumption: Immediate and persistent effects of an intervention at a university restaurant. J. Environ. Econ. Manag. 2018, 90, 317–341. [Google Scholar] [CrossRef]
- De Boer, J.; Schösler, H.; Aiking, H. “Meatless days” or “less but better”? Exploring strategies to adapt Western meat consumption to health and sustainability challenges. Appetite 2014, 76, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Filimonau, V.; Lemmer, C.; Marshall, D.; Bejjani, G. ‘Nudging’ as an architect of more responsible consumer choice in food service provision: The role of restaurant menu design. J. Clean. Prod. 2017, 144, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Menapace, L.; Raffaelli, R. Preferences for locally grown products: Evidence from a natural field experiment. Eur. Rev. Agric. Econ. 2017, 44, 255–284. [Google Scholar] [CrossRef]
- Brunner, F.; Kurz, V.; Bryngelsson, D.; Hedenus, F. Carbon Label at a University Restaurant—Label Implementation and Evaluation. Ecol. Econ. 2018, 146, 658–667. [Google Scholar] [CrossRef]
- Aertsens, J.; Verbeke, W.; Mondelaers, K.; Huylenbroeck, G.V. Personal determinants of organic food consumption: A review. Br. Food J. 2009, 111, 1140–1167. [Google Scholar] [CrossRef]
- Agovino, M.; Crociata, A.; Quaglione, D.; Sacco, P.; Sarra, A. Good Taste Tastes Good. Cultural Capital as a Determinant of Organic Food Purchase by Italian Consumers: Evidence and Policy Implications. Ecol. Econ. 2017, 141, 66–75. [Google Scholar] [CrossRef]
- Arvola, A.; Vassallo, M.; Dean, M.; Lampila, P.; Saba, A.; Lähteenmäki, L.; Shepherd, R. Predicting intentions to purchase organic food: The role of affective and moral attitudes in the Theory of Planned Behaviour. Appetite 2008, 50, 443–454. [Google Scholar] [CrossRef]
- Gerini, F.; Alfnes, F.; Schjøll, A. Organic-and Animal Welfare-labelled Eggs: Competing for the Same Consumers? J. Agric. Econ. 2016, 67, 471–490. [Google Scholar] [CrossRef]
- Zanoli, R.; Scarpa, R.; Napolitano, F.; Piasentier, E.; Naspetti, S.; Bruschi, V. Organic label as an identifier of environmentally related quality: A consumer choice experiment on beef in Italy. Renew. Agric. Food Syst. 2013, 28, 70–79. [Google Scholar] [CrossRef]
- Alfnes, F. Selling only sustainable seafood: Attitudes toward public regulation and retailer policies. Mar. Policy 2017, 78, 74–79. [Google Scholar] [CrossRef]
- Roheim, C.A.; Asche, F.; Santos, J.I. The elusive price premium for ecolabelled products: Evidence from seafood in the UK market. J. Agric. Econ. 2011, 62, 655–668. [Google Scholar] [CrossRef]
- Uchida, H.; Onozaka, Y.; Morita, T.; Managi, S. Demand for ecolabeled seafood in the Japanese market: A conjoint analysis of the impact of information and interaction with other labels. Food Policy 2014, 44, 68–76. [Google Scholar] [CrossRef]
- Caracciolo, F.; Cicia, G.; Del Giudice, T.; Cembalo, L.; Krystallis, A.; Grunert, K.G.; Lombardi, P. Human values and preferences for cleaner livestock production. J. Clean. Prod. 2016, 112, 121–130. [Google Scholar] [CrossRef]
- Pomarici, E.; Vecchio, R. Millennial generation attitudes to sustainable wine: An exploratory study on Italian consumers. J. Clean. Prod. 2014, 66, 537–545. [Google Scholar] [CrossRef]
- Van Loo, E.J.; Caputo, V.; Nayga, R.M.; Seo, H.-S.; Zhang, B.; Verbeke, W. Sustainability labels on coffee: Consumer preferences, willingness-to-pay and visual attention to attributes. Ecol. Econ. 2015, 118, 215–225. [Google Scholar] [CrossRef]
- Van Loo, E.J.; Caputo, V.; Nayga, R.M.; Verbeke, W. Consumers’ valuation of sustainability labels on meat. Food Policy 2014, 49, 137–150. [Google Scholar] [CrossRef]
- Vecchio, R.; Annunziata, A. Willingness-to-pay for sustainability-labelled chocolate: An experimental auction approach. J. Clean. Prod. 2015, 86, 335–342. [Google Scholar] [CrossRef]
- Apostolidis, C.; McLeay, F. Should we stop meating like this? Reducing meat consumption through substitution. Food Policy 2016, 65, 74–89. [Google Scholar] [CrossRef]
- Hoek, A.C.; Pearson, D.; James, S.W.; Lawrence, M.A.; Friel, S. Shrinking the food-print: A qualitative study into consumer perceptions, experiences and attitudes towards healthy and environmentally friendly food behaviours. Appetite 2017, 108, 117–131. [Google Scholar] [CrossRef]
- Mullee, A.; Vermeire, L.; Vanaelst, B.; Mullie, P.; Deriemaeker, P.; Leenaert, T.; De Henauw, S.; Dunne, A.; Gunter, M.J.; Clarys, P.; et al. Vegetarianism and meat consumption: A comparison of attitudes and beliefs between vegetarian, semi-vegetarian, and omnivorous subjects in Belgium. Appetite 2017, 114, 299–305. [Google Scholar] [CrossRef]
- Vainio, A.; Niva, M.; Jallinoja, P.; Latvala, T. From beef to beans: Eating, motives and the replacement of animal proteins with plant proteins among Finnish consumers. Appetite 2016, 106, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, C.J.; Mirosa, M.; Clothier, B. New Zealand’s Food Waste: Estimating the Tonnes, Value, Calories and Resources Wasted. Agriculture 2016, 6, 9. [Google Scholar] [CrossRef]
- Blanke, M. Challenges of Reducing Fresh Produce Waste in Europe—From Farm to Fork. Agriculture 2015, 5, 389–399. [Google Scholar] [CrossRef] [Green Version]
- Secondi, L.; Principato, L.; Laureti, T. Household food waste behaviour in EU-27 countries: A multilevel analysis. Food Policy 2015, 56, 25–40. [Google Scholar] [CrossRef]
- Stancu, V.; Haugaard, P.; Lähteenmäki, L. Determinants of consumer food waste behaviour: Two routes to food waste. Appetite 2016, 96, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Neff, R.A.; Spiker, M.L.; Truant, P.L. Wasted food: US consumers’ reported awareness, attitudes, and behaviors. PLoS ONE 2015, 10, e0127881. [Google Scholar] [CrossRef] [PubMed]
- Hebrok, M.; Boks, C. Household food waste: Drivers and potential intervention points for design—An extensive review. J. Clean. Prod. 2017, 151, 380–392. [Google Scholar] [CrossRef]
- Toma, L.; Costa Font, M.; Thompson, B. Impact of consumers’ understanding of date labelling on food waste behaviour. Oper. Res. 2017, 1–18. [Google Scholar] [CrossRef]
- Thompson, B.; Toma, L.; Barnes, A.P.; Revoredo-Giha, C. The effect of date labels on willingness to consume dairy products: Implications for food waste reduction. Waste Manag. 2018, 78, 124–134. [Google Scholar] [CrossRef]
- Aschemann-Witzel, J.; Niebuhr Aagaard, E.M. Elaborating on the attitude-behaviour gap regarding organic products: Young Danish consumers and in-store food choice: In-store organic food choice. Int. J. Consum. Stud. 2014, 38, 550–558. [Google Scholar] [CrossRef]
- Godin, G.; Conner, M.; Sheeran, P. Bridging the intention–behaviour gap: The role of moral norm. Br. J. Soc. Psychol. 2005, 44, 497–512. [Google Scholar] [CrossRef] [PubMed]
- Cai, R.; Feng, S.; Oppenheimer, M.; Pytlikova, M. Climate variability and international migration: The importance of the agricultural linkage. J. Environ. Econ. Manag. 2016, 79, 135–151. [Google Scholar] [CrossRef] [Green Version]
- Kubik, Z.; Maurel, M. Weather shocks, agricultural production and migration: Evidence from Tanzania. J. Dev. Stud. 2016, 52, 665–680. [Google Scholar] [CrossRef]
- Nawrotzki, R.J.; Hunter, L.M.; Runfola, D.M.; Riosmena, F. Climate change as a migration driver from rural and urban Mexico. Environ. Res. Lett. 2015, 10, 114023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Todaro, M.P. A model of labor migration and urban unemployment in less developed countries. Am. Econ. Rev. 1969, 59, 138–148. [Google Scholar]
- Harris, J.R.; Todaro, M.P. Migration, unemployment and development: A two-sector analysis. Am. Econ. Rev. 1970, 60, 126–142. [Google Scholar]
- Stark, O.; Stark, O. The Migration of Labor; Wiley: Hoboken, NJ, USA, 1991. [Google Scholar]
- Drabo, A.; Mbaye, L.M. Natural disasters, migration and education: An empirical analysis in developing countries. Environ. Dev. Econ. 2015, 20, 767–796. [Google Scholar] [CrossRef]
- Falco, C.; Donzelli, F.; Olper, A. Climate Change, Agriculture and Migration: A Survey. Sustainability 2018, 10, 1405. [Google Scholar] [CrossRef]
- Mendelsohn, R.; Nordhaus, W.D.; Shaw, D. The Impact of Global Warming on Agriculture: A Ricardian Analysis. Am. Econ. Rev. 1994, 84, 753–771. [Google Scholar]
- Mendelsohn, R.O.; Massetti, E. The use of cross-sectional analysis to measure climate impacts on agriculture: Theory and evidence. Rev. Environ. Econ. Policy 2017, 11, 280–298. [Google Scholar] [CrossRef]
- Dell, M.; Jones, B.F.; Olken, B.A. Temperature and Income: Reconciling New Cross-Sectional and Panel Estimates; National Bureau of Economic Research: Cambridge, MA, USA, 2009. [Google Scholar]
- Falco, C.; Galeotti, M.; Olper, A. Climate change and Migration: Is Agriculture the Main Channel? IEFE Working Papers; IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita’ Bocconi: Milano, Italy, 2018. [Google Scholar]
- Cattaneo, C.; Peri, G. The migration response to increasing temperatures. J. Dev. Econ. 2016, 122, 127–146. [Google Scholar] [CrossRef] [Green Version]
- Auffhammer, M.; Schlenker, W. Empirical studies on agricultural impacts and adaptation. Energy Econ. 2014, 46, 555–561. [Google Scholar] [CrossRef]
- FAO. Reducing Vulnerabilities and Enhancing Resilience; United Nations: New York, NY, USA, 2017. [Google Scholar]
- Lobell, D.B.; Bänziger, M.; Magorokosho, C.; Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Chang. 2011, 1, 42–45. [Google Scholar] [CrossRef]
- Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate trends and global crop production since 1980. Science 2011, 333, 616–620. [Google Scholar] [CrossRef] [PubMed]
- Hsiang, S.M.; Burke, M.; Miguel, E. Quantifying the Influence of Climate on Human Conflict. Science 2013, 341, 1235367. [Google Scholar] [CrossRef] [PubMed]
- Hsiang, S.M.; Burke, M. Climate, conflict, and social stability: What does the evidence say? Clim. Chang. 2014, 123, 39–55. [Google Scholar] [CrossRef]
- Cattaneo, C.; Bosetti, V. Climate-induced International Migration and Conflicts. CESifo Econ. Stud. 2017, 63, 500–528. [Google Scholar] [CrossRef]
- Helpman, E.; Melitz, M.; Rubinstein, Y. Estimating Trade Flows: Trading Partners and Trading Volumes. Q. J. Econ. 2008, 123, 441–487. [Google Scholar] [CrossRef]
- Missirian, A.; Schlenker, W. Asylum applications respond to temperature fluctuations. Science 2017, 358, 1610–1614. [Google Scholar] [CrossRef]
- Bazzi, S. Wealth Heterogeneity and the Income Elasticity of Migration. Am. Econ. J. Appl. Econ. 2017, 9, 219–255. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertoni, D.; Cavicchioli, D.; Donzelli, F.; Ferrazzi, G.; Frisio, D.G.; Pretolani, R.; Ricci, E.C.; Ventura, V. Recent Contributions of Agricultural Economics Research in the Field of Sustainable Development. Agriculture 2018, 8, 200. https://doi.org/10.3390/agriculture8120200
Bertoni D, Cavicchioli D, Donzelli F, Ferrazzi G, Frisio DG, Pretolani R, Ricci EC, Ventura V. Recent Contributions of Agricultural Economics Research in the Field of Sustainable Development. Agriculture. 2018; 8(12):200. https://doi.org/10.3390/agriculture8120200
Chicago/Turabian StyleBertoni, Danilo, Daniele Cavicchioli, Franco Donzelli, Giovanni Ferrazzi, Dario G. Frisio, Roberto Pretolani, Elena Claire Ricci, and Vera Ventura. 2018. "Recent Contributions of Agricultural Economics Research in the Field of Sustainable Development" Agriculture 8, no. 12: 200. https://doi.org/10.3390/agriculture8120200
APA StyleBertoni, D., Cavicchioli, D., Donzelli, F., Ferrazzi, G., Frisio, D. G., Pretolani, R., Ricci, E. C., & Ventura, V. (2018). Recent Contributions of Agricultural Economics Research in the Field of Sustainable Development. Agriculture, 8(12), 200. https://doi.org/10.3390/agriculture8120200