A Discussion on Mehlich-3 Phosphorus Extraction from the Perspective of Governing Chemical Reactions and Phases: Impact of Soil pH
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laboratory Analysis
2.2. Statistical Analysis
3. Results and Discussion
3.1. General Soil Characteristics
3.2. Impact of Soil pH on Water-Soluble Phosphorus
3.3. Impact of Soil pH on Mehlich-3 Extractable Phosphorus
3.3.1. Mehlich-3 Phosphorus Extraction in Low pH Soils (<5.5)
3.3.2. Mehlich-3 Phosphorus Extraction in Medium pH Soils (5.5–7.0)
3.3.3. Mehlich-3 Phosphorus Extraction in High pH Soils (>7.0)
3.4. Relationship between Mehlich-3 and Water-Soluble Phosphorus
3.5. Soil Phosphorus Forms with Changes in pH
4. Conclusions and Implications
Author Contributions
Funding
Conflicts of Interest
References
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Sims, J.T.; Maguire, R.O.; Leytem, A.B.; Gartley, K.L.; Pautler, M.C. Evaluation of Mehlich 3 as an agri-environmental soil phosphorus test for the Mid-Atlantic United States of America. Soil Sci. Soc. Am. J. 2002, 66, 2016–2032. [Google Scholar] [CrossRef]
- Osmond, D.; Bolster, C.; Sharpley, A.; Cabrera, M.; Feagley, S.; Forsberg, A.; Mitchell, C.; Mylavarapu, R.; Oldham, J.L.; Radcliffe, D.E. Southern Phosphorus Indices, water quality data, and modeling (APEX, APLE, and TBET) results: A comparison. J. Environ. Qual. 2017, 46, 1296–1305. [Google Scholar] [CrossRef] [PubMed]
- Lins, I.D.G.; Cox, F.R. Effect of extractant and selected soil properties on predicting the optimum phosphorus fertilizer rate for growing soybeans under field conditions 1. Commun. Soil Sci. Plant Anal. 1989, 20, 319–333. [Google Scholar] [CrossRef]
- Lins, I.D.G.; Cox, F.R. Effect of extractant and selected soil properties on predicting the correct phosphorus fertilization of soybean. Soil Sci. Soc. Am. J. 1989, 53, 813–816. [Google Scholar] [CrossRef]
- Cox, F.R.; Lins, I.D.G. A phosphorus soil test interpretation for corn grown on acid soils varying in crystalline clay content 1. Commun. Soil Sci. Plant Anal. 1984, 15, 1481–1491. [Google Scholar] [CrossRef]
- Michaelson, G.J.; Ping, C.L. Extraction of phosphorus from the major agricultural soils of Alaska 1. Commun. Soil Sci. Plant Anal. 1986, 17, 275–297. [Google Scholar] [CrossRef]
- Fuhrman, J.K.; Zhang, H.; Schroder, J.L.; Davis, R.L.; Payton, M.E. Water-Soluble Phosphorus as Affected by Soil to Extractant Ratios, Extraction Times, and Electrolyte. Commun. Soil Sci. Plant Anal. 2005, 36, 925–935. [Google Scholar] [CrossRef]
- McDowell, R.W.; Sharpley, A.N. Approximating phosphorus release from soils to surface runoff and subsurface drainage. J. Environ. Qual. 2001, 30, 508–520. [Google Scholar] [CrossRef] [PubMed]
- Maguire, R.O.; Sims, J.T. Soil testing to predict phosphorus leaching. J. Environ. Qual. 2002, 31, 1601–1609. [Google Scholar] [CrossRef] [PubMed]
- Penn, C.J.; Mullins, G.L.; Zelazny, L.W. Mineralogy in relation to phosphorus sorption and dissolved phosphorus losses in runoff. Soil Sci. Soc. Am. J. 2005, 69, 1532–1540. [Google Scholar] [CrossRef]
- Penn, C.J.; Mullins, G.L.; Zelazny, L.W.; Sharpley, A.N. Estimating dissolved phosphorus concentrations in runoff from three physiographic regions of Virginia. Soil Sci. Soc. Am. J. 2006, 70, 1967–1974. [Google Scholar] [CrossRef]
- Marschner, H. Marschner’s Mineral Nutrition of Higher Plants; Academic Press: London, UK, 2011; ISBN 0123849063. [Google Scholar]
- Butchee, K.; Arnall, D.B.; Sutradhar, A.; Godsey, C.; Zhang, H.; Penn, C. Determining critical soil pH for grain sorghum production. Int. J. Agron. 2012, 2012, 1–6. [Google Scholar] [CrossRef]
- Sutradhar, A.; Lollato, R.P.; Butchee, K.; Arnall, D.B. Determining critical soil pH for sunflower production. Int. J. Agron. 2014, 2014, 1–13. [Google Scholar] [CrossRef]
- Lollato, R.P. Limits to Winter Wheat (Triticum aestivum L.) Productivity and Resource-Use Efficiency in the Southern Great Plains; Oklahoma State University: Stillwater, OK, USA, 2015. [Google Scholar]
- U.S. Environmental Protection Agency (USEPA). Method 3050B: Acid Digestion of Sediments, Sludges, and Soils; U.S. Environmental Protection Agency: Washington, DC, USA, 1996.
- Day, P.R. Particle fractionation and particle-size analysis. Methods Soil Anal. 1965, 9, 545–567. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis. Part 3. Chemical methods; Sparks, D.L., Ed.; American Society of Agronomy: Madison, WI, USA, 1996. [Google Scholar]
- Kovar, J.L.; Pierzynski, G.M. Methods of phosphorus analysis for soils, sediments, residuals, and waters second edition. South. Coop. Ser. Bull. 2009, 408, 29–33. [Google Scholar]
- Allison, J.D.; Brown, D.S.; Novo-Gradac, K.J. MINTEQA2/PRODEFA2, A Geochemical Assessment model for Environmental Systems: Version 3.0 User’s Manual; U.S. Environmental Protection Agency: Washington, DC, USA, 1991.
- Lindsay, W.L. Chemical Equilibria in Soils; John Wiley and Sons Ltd.: New York, NY, USA, 1979; ISBN 0471027049. [Google Scholar]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://cran.r-project.org/manuals.html (accessed on 28 June 2018).
- SAS Inst. Inc. Guide, S.U. Version 9.1; SAS Inst. Inc.: Cary, NC, USA, 2003. [Google Scholar]
- Natural Resources Conservation Service (NRCS). Keys to Soil Taxonomy; USDA Natural Resources Conservation Service: Washington, DC, USA, 2010.
- Vitosh, M.L.; Johnson, J.W.; Mengel, D.B. TH-State Fertilizer Recommendations for Corn, Soybeans, Wheat and Alfalfa; Purdue University: West Lafayette, IN, USA, 1995. [Google Scholar]
- Jackman, R.H.; Black, C.A. Solubility of iron, aluminum, calcium, and magnesium inositol phosphates at different pH values. Soil Sci. 1951, 72, 179–186. [Google Scholar] [CrossRef]
- He, L.M.; Zelazny, L.W.; Martens, D.C.; Baligar, V.C.; Ritchey, K.D. Ionic strength effects on sulfate and phosphate adsorption on γ-alumina and kaolinite: Triple-layer model. Soil Sci. Soc. Am. J. 1997, 61, 784–793. [Google Scholar] [CrossRef]
- Van Raij, B.; Quaggio, J.A. Extractable phosphorus availability indexes as affected by liming. Commun. Soil Sci. Plant Anal. 1990, 21, 1267–1276. [Google Scholar] [CrossRef]
- Sarker, A.; Kashem, M.A.; Osman, K.T.; Hossain, I.; Ahmed, F. Evaluation of available phosphorus by soil test methods in an acidic soil incubated with different levels of lime and phosphorus. Open J. Soil Sci. 2014, 4, 103. [Google Scholar] [CrossRef]
- Sharpley, A.N.; Jones, C.A.; Gray, C. Relationships among soil p test values for soils of differing pedogenesis 1. Commun. Soil Sci. Plant Anal. 1984, 15, 985–995. [Google Scholar] [CrossRef]
- Thomas, G.W.; Peaslee, D.E. Testing soils for phosphorus. Soil Test. Plant Anal. 1973, 1, 115–132. [Google Scholar]
- Mehlich, A. Influence of fluoride, sulfate and acidity on extractable phosphorus, calcium, magnesium and potassium. Commun. Soil Sci. Plant Anal. 1978, 9, 455–476. [Google Scholar] [CrossRef]
- Swenson, R.M.; Cole, C.V.; Sieling, D.H. Fixation of phosphate by iron and aluminum and replacement by organic and inorganic ions. Soil Sci. 1949, 67, 3–22. [Google Scholar] [CrossRef]
- Chang, S.C.; Jackson, M.L. Fractionation of soil phosphorus. Soil Sci. 1957, 84, 133–144. [Google Scholar] [CrossRef]
- Essington, M.E. Soil and Water Chemistry: An Integrative Approach; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA; Washington, DC, USA, 2004. [Google Scholar]
- Warren, J.G.; Penn, C.J.; McGrath, J.M.; Sistani, K. The impact of alum addition on organic P transformations in poultry litter and litter-amended soil. J. Environ. Qual. 2008, 37, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Dao, T.H. Ligands and phytase hydrolysis of organic phosphorus in soils amended with dairy manure. Agron. J. 2004, 96, 1188–1195. [Google Scholar] [CrossRef]
- He, Z.; Honeycutt, C.W.; Zhang, T.; Bertsch, P.M. Preparation and FT-IR characterization of metal phytate compounds. J. Environ. Qual. 2006, 35, 1319–1328. [Google Scholar] [CrossRef] [PubMed]
- Nathan, M.V.; Mallarino, A.P.; Eliason, R.; Miller, R. ICP vs. colorimetric determination of Mehlich III extractable phosphorus. Commun. Soil Sci. Plant Anal. 2002, 33, 2432–2433. [Google Scholar]
- McGrath, J.M.; Sims, J.T.; Maguire, R.O.; Saylor, W.W.; Angel, C.R.; Turner, B.L. Broiler diet modification and litter storage. J. Environ. Qual. 2005, 34, 1896–1909. [Google Scholar] [CrossRef] [PubMed]
- Shang, C.; Zelazny, L.W.; Berry, D.F.; Maguire, R.O. Orthophosphate and phytate extraction from soil components by common soil phosphorus tests. Geoderma 2013, 209, 22–30. [Google Scholar] [CrossRef]
- Sparks, D.L. Environmental Soil Chemistry; Elsevier: London, UK, 2003; ISBN 0080494803. [Google Scholar]
- Penn, C.J.; Warren, J.G. Investigating phosphorus sorption onto kaolinite using isothermal titration calorimetry. Soil Sci. Soc. Am. J. 2009, 73, 560–568. [Google Scholar] [CrossRef]
- Robarge, W.P.; Corey, R.B. Adsorption of phosphate by hydroxy-aluminum species on a cation exchange resin. Soil Sci. Soc. Am. J. 1979, 43, 481–487. [Google Scholar] [CrossRef]
- Smillie, G.W.; Syers, J.K. Calcium fluoride formation during extraction of calcareous soils with fluoride: II. Implications to the Bray P-1 test. Soil Sci. Soc. Am. J. 1972, 36, 25–30. [Google Scholar] [CrossRef]
- Williams, J.D.H.; Syers, J.K.; Harris, R.F.; Armstrong, D.E. Fractionation of inorganic phosphate in calcareous lake sediments. Soil Sci. Soc. Am. J. 1971, 35, 250–255. [Google Scholar] [CrossRef]
- Ebeling, A.M.; Bundy, L.G.; Kittell, A.W.; Ebeling, D.D. Evaluating the Bray P1 test on alkaline, calcareous soils. Soil Sci. Soc. Am. J. 2008, 72, 985–991. [Google Scholar] [CrossRef]
- Mallarino, A.P. Interpretation of soil phosphorus tests for corn in soils with varying pH and calcium carbonate content. J. Prod. Agric. 1997, 10, 163–167. [Google Scholar] [CrossRef]
- Penn, C.J.; Bryant, R.B. Incubation of dried and sieved soils can induce calcium phosphate precipitation/adsorption. Commun. Soil Sci. Plant Anal. 2006, 37, 1437–1449. [Google Scholar] [CrossRef]
- McDowell, R.W.; Condron, L.M.; Mahieu, N.; Brookes, P.C.; Poulton, P.R.; Sharpley, A.N. Analysis of potentially mobile phosphorus in arable soils using solid state nuclear magnetic resonance. J. Environ. Qual. 2002, 31, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Schwab, A.P.; Lindsay, W.L. The effect of redox on the solubility and availability of manganese in a calcareous soil. Soil Sci. Soc. Am. J. 1983, 47, 217–220. [Google Scholar] [CrossRef]
- Schwab, A.P. Stability of Fe Chelates and the Availability of Fe and Mn to Plants Affected by Redox. Ph.D. Thesis, Colorado State University, Fort Collins, CO, USA, 1981. [Google Scholar]
- Boyle, F.W.; Lindsay, W.L. Manganese phosphate equilibrium relationships in soils. Soil Sci. Soc. Am. J. 1986, 50, 588–593. [Google Scholar] [CrossRef]
- Baker, D.B.; Confesor, R.; Ewing, D.E.; Johnson, L.T.; Kramer, J.W.; Merryfield, B.J. Phosphorus loading to Lake Erie from the Maumee, Sandusky and Cuyahoga rivers: The importance of bioavailability. J. Gt. Lakes Res. 2014, 40, 502–517. [Google Scholar] [CrossRef]
- Barber, S.A. A diffusion and mass-flow concept of soil nutrient availability. Soil Sci. 1962, 93, 39–49. [Google Scholar] [CrossRef]
- Edwards, A.C. Soil acidity and its interactions with phosphorus availability for a range of different crop types. In Plant-Soil Interactions at Low pH; Springer: Dordrecht, The Netherlands, 1991; pp. 299–305. [Google Scholar]
- Luz, J.M.Q; Queiroz, A.A.; Borges, M.; Oliveira, R.C.; Leite, S.S.; Cardoso, R.R. Influence of phosphate fertilization on phosphorus levels in foliage and tuber yield of the potato cv. Ágata. Semina Ciências Agrárias 2013, 34, 649–656. [Google Scholar] [CrossRef] [Green Version]
Location | Soil Series | Sand | Silt | Clay | OM | pH | Total P | WSP | M3-P | M3-Fe | M3-Al | M3-Ca | DPSM3 | DPSOx |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
g 100 g−1 | g kg−1 | mg kg−1 | % | |||||||||||
Chickasha | Dale | 40 | 45 | 15 | 14.5 | 4.6–7.6 (5.9) | 283–336 (320) | 0.46–7.61 (2.29) | 15–34 (25) | 67–103 (82) | 458–1001 (643) | 762–1997 (1212) | 2.1–3.9 (3.1) | 5.9–7.7 (6.9) |
Efaw | Easpur | 60 | 27.5 | 12.5 | 7.6 | 4.3–7.6 (5.64) | 174–210 (186) | 0.27–6.91 (3.48) | 16–58 (40) | 74–139 (107) | 370–704 (514) | 461–2016 (949) | 2.5–9.9 (6.9) | 12.8–16.9 (14.1) |
Lahoma | Grant | 30 | 50 | 20 | 16.9 | 4.8–7.1 (5.6) | 246–302 (278) | 0.35–3.38 (1.91) | 26–64 (48) | 46–100 (81) | 590–1070 (842) | 760–2289 (1232) | 2.4–6.4 (5.0) | 6.1–12.6 (9.5) |
Perkins | Teller | 65 | 25 | 10 | 9.6 | 4.6–7.1 (5.2) | 139–183 (163) | 0.68–2.22 (1.31) | 23–51 (36) | 70–120 (92) | 600–950 (754) | 180–1100 (496) | 2.9–5.2 (4.1) | 5.9–10.5 (7.7) |
Location | Soil pH | Percent Precipitated | Predicted Solid Minerals | ||||
---|---|---|---|---|---|---|---|
Al | Ca | Fe | Mn | P | |||
Lahoma | 4.79 | 99.6 | 0 | 100 | 0 | 92.2 | Var, Hem, Gib |
Lahoma | 4.81 | 99.6 | 0 | 100 | 0 | 90.5 | Var, Hem, Gib |
Lahoma | 4.96 | 99.8 | 0 | 100 | 0 | 86.9 | Var, Hem, Gib |
Lahoma | 5.27 | 100 | 0 | 100 | 39.8 | 82.9 | Var, Hem, Gib, MnHPO4 |
Lahoma | 5.29 | 100 | 0 | 100 | 55.1 | 85 | Var, Hem, Gib, MnHPO4 |
Lahoma | 5.47 | 100 | 0 | 100 | 75.1 | 70.3 | Var, Hem, Gib, MnHPO4 |
Lahoma | 6.33 | 100 | 0 | 100 | 94.1 | 24.9 | Hem, Gib, MnHPO4 |
Lahoma | 6.87 | 100 | 0 | 100 | 99.2 | 18.4 | Hem, Gib, MnHPO4 |
Lahoma | 7.14 | 100 | 1.5 | 100 | 97.3 | 39.4 | Hem, Gib, MnHPO4, HAP |
Perkins | 4.66 | 99.9 | 0 | 100 | 0 | 95.3 | Var, Hem, Gib |
Perkins | 4.64 | 99.9 | 0 | 100 | 0 | 95.8 | Var, Hem, Gib |
Perkins | 4.6 | 99.9 | 0 | 100 | 0 | 94.8 | Var, Hem, Gib |
Perkins | 4.88 | 99.9 | 0 | 100 | 0 | 91.6 | Var, Hem, Gib |
Perkins | 5.15 | 100 | 0 | 100 | 1.4 | 86.8 | Var, Hem, Gib, MnHPO4 |
Perkins | 5.16 | 100 | 0 | 100 | 0 | 86.1 | Var, Hem, Gib |
Perkins | 6.31 | 100 | 0 | 100 | 98.9 | 16.5 | Hem, Gib, MnHPO4 |
Perkins | 6.3 | 100 | 0 | 100 | 98.5 | 20.9 | Hem, Gib, MnHPO4 |
Perkins | 7.1 | 100 | 6.9 | 100 | 98.5 | 67.7 | Hem, Gib, MnHPO4, HAP |
Chickasha | 4.56 | 99.2 | 0 | 100 | 1.1 | 92.1 | Hem, Gib, MnHPO4 |
Chickasha | 4.6 | 99.3 | 0 | 100 | 1.5 | 86.5 | Var, Hem, Gib |
Chickasha | 4.67 | 99.5 | 0 | 100 | 0 | 53 | Var, Hem, Gib |
Chickasha | 5.93 | 100 | 0 | 100 | 94.6 | 63 | Hem, Gib, MnHPO4 |
Chickasha | 5.99 | 100 | 0 | 100 | 94.5 | 67.6 | Hem, Gib, MnHPO4 |
Chickasha | 6.03 | 100 | 0 | 100 | 95.4 | 61.9 | Hem, Gib, MnHPO4 |
Chickasha | 7.25 | 100 | 1.7 | 100 | 99 | 48.1 | Hem, Gib, MnHPO4, HAP |
Chickasha | 7.44 | 100 | 4.8 | 100 | 95.9 | 83.3 | Hem, Gib MnHPO4, HAP |
Chickasha | 7.61 | 100 | 5.4 | 100 | 89.9 | 92.3 | Hem, Gib MnHPO4, HAP |
Efaw | 4.40 | 13 | 0 | 100 | 4.4 | 65.3 | Var, Hem, MnHPO4 |
Efaw | 4.45 | 97.1 | 0 | 100 | 0 | 96.2 | Var, Hem, Gib |
Efaw | 4.47 | 95.6 | 0 | 100 | 0 | 94.8 | Var, Hem, Gib |
Efaw | 5.82 | 100 | 0 | 100 | 96.5 | 36.4 | Var, Hem, Gib, MnHPO4 |
Efaw | 5.99 | 100 | 0 | 100 | 98.4 | 36.4 | Hem, Gib, MnHPO4 |
Efaw | 6.08 | 100 | 0 | 100 | 97.4 | 39.5 | Hem, Gib, MnHPO4 |
Efaw | 7.50 | 98.2 | 0 | 100 | 8.2 | 99.9 | Hem, Gib, MnHPO4 |
Efaw | 7.48 | 100 | 6.5 | 100 | 95.8 | 93.9 | Hem, Gib, MnHPO4, HAP |
Efaw | 7.59 | 100 | 4.5 | 100 | 87 | 97.1 | Hem, Gib, MnHPO4, HAP |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Penn, C.J.; Rutter, E.B.; Arnall, D.B.; Camberato, J.; Williams, M.; Watkins, P. A Discussion on Mehlich-3 Phosphorus Extraction from the Perspective of Governing Chemical Reactions and Phases: Impact of Soil pH. Agriculture 2018, 8, 106. https://doi.org/10.3390/agriculture8070106
Penn CJ, Rutter EB, Arnall DB, Camberato J, Williams M, Watkins P. A Discussion on Mehlich-3 Phosphorus Extraction from the Perspective of Governing Chemical Reactions and Phases: Impact of Soil pH. Agriculture. 2018; 8(7):106. https://doi.org/10.3390/agriculture8070106
Chicago/Turabian StylePenn, Chad J., E. Bryan Rutter, D. Brian Arnall, James Camberato, Mark Williams, and Patrick Watkins. 2018. "A Discussion on Mehlich-3 Phosphorus Extraction from the Perspective of Governing Chemical Reactions and Phases: Impact of Soil pH" Agriculture 8, no. 7: 106. https://doi.org/10.3390/agriculture8070106
APA StylePenn, C. J., Rutter, E. B., Arnall, D. B., Camberato, J., Williams, M., & Watkins, P. (2018). A Discussion on Mehlich-3 Phosphorus Extraction from the Perspective of Governing Chemical Reactions and Phases: Impact of Soil pH. Agriculture, 8(7), 106. https://doi.org/10.3390/agriculture8070106