Temperature Has a Greater Effect on Fruit Growth than Defoliation or Fruit Thinning in Strawberries in the Subtropics
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Funding
Conflicts of Interest
References
- Yommi, A.K.; Borquez, A.M.; Quipildor, S.L.; Kirschbaum, D.S. Fruit quality evaluation of strawberry cultivars grown in Argentina. Acta Hortic. 2003, 628, 871–878. [Google Scholar] [CrossRef]
- Agüero, J.J.; Salazar, S.; Kirschbaum, D.S.; Jerez, E.F. Factors affecting fruit quality in strawberries grown in a subtropical environment. Int. J. Fruit Sci. 2015, 15, 223–234. [Google Scholar] [CrossRef]
- Whitaker, V.M.; Chandler, C.K.; Peres, N.; Nunes, M.C.N.; Plotto, A.; Sims, C.A. Sensation™ ‘Florida127’ strawberry. HortScience 2015, 50, 1088–1091. [Google Scholar] [CrossRef]
- Menzel, C.M.; Smith, L.A.; Moisander, J.A. Protected cropping of strawberry plants in subtropical Queensland. Acta Hortic. 2016, 1117, 273–278. [Google Scholar] [CrossRef]
- Faedi, W.; Baruzzi, G. Strawberry breeding. In Strawberry: Growth, Development and Diseases; Husaini, A.M., Neri, D., Eds.; CABI: Wallingford, UK, 2016; pp. 26–40. [Google Scholar]
- Menzel, C.M.; Smith, L. The growth and productivity of ‘Festival’ strawberry plants growing in a subtropical environment. NZ J. Crop Hortic. Sci. 2014, 42, 60–75. [Google Scholar] [CrossRef]
- Webb, R.A.; Terblanche, J.H.; Purves, J.V.; Beech, M.G. Size factors in strawberry fruit. Sci. Hortic. 1978, 9, 347–356. [Google Scholar] [CrossRef]
- Perkins-Veazie, P. Growth and ripening of strawberry fruit. Hortic. Rev. 1995, 17, 267–297. [Google Scholar]
- Ashman, T.-L.; Hitchens, M.S. Dissecting the causes of variation in intra-inflorescence allocation in a sexually polymorphic species, Fragaria virginiana (Rosaceae). Am. J. Bot. 2000, 87, 197–204. [Google Scholar] [CrossRef]
- Darrow, G.M. The Strawberry. History, Breeding and Physiology; Holt, Rinehart and Winston: New York, NY, USA, 1966; p. 447. [Google Scholar]
- Abbott, A.J.; Best, G.R.; Webb, R.A. The relation of achene number to berry weight in strawberry fruit. J. Hortic. Sci. 1970, 45, 215–222. [Google Scholar] [CrossRef]
- Strik, B.C.; Proctor, J.T.A. Relationship between achene number, achene density, and berry fresh weight in strawberry. J. Am. Soc. Hortic. Sci. 1988, 113, 620–623. [Google Scholar]
- Liu, H.; Xie, W.-F.; Zhang, L.; Valpuestra, V.; Ye, Z.-W.; Gao, Q.-H.; Duan, K. Auxin biosynthesis by the YUCCA6 flavin monooxygenase gene in woodland strawberry. J. Integr. Plant Biol. 2014, 56, 350–363. [Google Scholar] [CrossRef] [PubMed]
- Hou, Z.-X.; Huang, W.-D. Immunohistochemical location of IAA and ABP1 in strawberry shoot apexes during floral induction. Planta 2005, 222, 678–687. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.; Darwish, O.; Geretz, A.; Shahan, R.; Alkharouf, N.; Liu, Z. Genome-wide transcriptomic insights into early-stage fruit development in woodland strawberry Fragaria vesca. Plant Cell 2013, 25, 1960–1978. [Google Scholar] [CrossRef] [PubMed]
- Janick, J.; Eggert, D.A. Factors affecting fruit size in the strawberry. Proc. Am. Soc. Hortic. Sci. 1968, 93, 311–316. [Google Scholar]
- Khanizadeh, S.; Lareau, M.; Buszard, D. Effect of flower thinning on strawberry fruit weight and its relationship to achene number. Acta Hortic. 1993, 348, 351–356. [Google Scholar] [CrossRef]
- Lyu, C.-B.; Li, K.-T. Flower thinning effects on annual plasticulture strawberry production in Chinese Taipei. Acta Hortic. 2014, 1049, 557–560. [Google Scholar]
- Lyu, C.-B.; Yang, W.-J.; Li, K.-T. Partial defoliation and runner removal affect runnering, fruiting, leaf photosynthesis and root growth in ‘Toyonoka’ strawberries for subtropical winter production. Hortic. Environ. Biotechnol. 2014, 55, 372–379. [Google Scholar] [CrossRef]
- Miura, H.; Yoshida, M.; Yamasaki, A. Effect of temperature on the size of strawberry fruit. J. Jpn. Soc. Hortic. Sci. 1994, 62, 769–774. [Google Scholar] [CrossRef]
- Kumakura, H.; Shishido, Y. The effect of daytime, nighttime, and mean temperatures on the growth of ‘Morioka-16’ strawberry fruits and plants. J. Jpn. Soc. Hortic. Sci. 1994, 62, 827–832. [Google Scholar] [CrossRef]
- Menzel, C.M.; Gomez, A.; Smith, L.A. Control of grey mould and stem-end rot in strawberry plants growing in a subtropical environment. Australas. Plant Pathol. 2016, 45, 489–498. [Google Scholar] [CrossRef]
- Menzel, C.M. Changes in the concentration of leaf nitrogen over the season affect the diagnosis of deficiency or sufficiency in strawberries in the subtropics. Agriculture 2018, 8, 126. [Google Scholar] [CrossRef]
- Miura, H.; Imada, S.; Yabuuchi, S. Double sigmoid growth curve of strawberry fruit. J. Jpn. Soc. Hortic. Sci. 1990, 59, 527–531. [Google Scholar] [CrossRef]
- Chandler, C.K.; MacKenzie, S.J.; Herrington, M. Fruit development period in strawberry differs among cultivars, and is negatively correlated with average post bloom air temperature. Proc. Fla. State Hortic. Soc. 2004, 117, 83–85. [Google Scholar]
- Ariza, M.T.; Soria, C.; Martinez-Ferri, E. Developmental stages of cultivated strawberry flowers in relation to chilling sensitivity. Ann. Bot. Plants 2015, 7. [Google Scholar] [CrossRef] [PubMed]
- Darnell, R.L.; Martin, G.C. Role of assimilate translocation and carbohydrate accumulation in fruit set of strawberry. J. Am. Soc. Hortic. Sci. 1988, 113, 114–118. [Google Scholar]
- Hortyński, J.A.; Żebrowska, J.; Gawroński, J.; Hulewicz, T. Factors influencing fruit size in the strawberry (Fragaria ananassa Duch.). Euphytica 1991, 56, 67–74. [Google Scholar]
- MacKenzie, S.J.; Chandler, C.K.; Hasing, T.; Whitaker, V.M. The role of temperature in the late-season decline in soluble solids content of strawberry fruit in a subtropical production system. HortScience 2011, 46, 1562–1566. [Google Scholar] [CrossRef]
- Campbell, D.E.; Young, R. Short-term CO2 exchange response to temperature, irradiance, and CO2 concentration in strawberry. Photosynth. Res. 1986, 8, 31–40. [Google Scholar] [CrossRef]
- Jun, H.; Jung, H.; Imai, K. Gas exchange characteristics of a leading cultivar of Korean strawberry (Fragaria × ananassa, ‘Sulhyang’). Sci. Hortic. 2017, 221, 10–15. [Google Scholar] [CrossRef]
- Chandler, C.K.; Legard, D.E.; Dunigan, D.D.; Crocker, T.E.; Sims, C.A. ‘Strawberry Festival’ strawberry. HortScience 2000, 35, 1366–1367. [Google Scholar] [CrossRef]
- Le Mière, P.; Hadley, P.; Darby, J.; Battey, N.H. The effect of thermal environment, planting date and crown size on growth, development and yield of Fragaria × ananassa Duch. cv. Elsanta. J. Hortic. Sci. Biotechnol. 1998, 73, 786–795. [Google Scholar] [CrossRef]
- Josuttis, M.; Dietrich, H.; Patz, C.-D.; Kruger, E. Effect of air and soil temperature on the chemical composition of fruit and agronomic performance in strawberry (Fragaria × ananassa Duch.). J. Hortic. Sci. Biotechnol. 2011, 86, 415–421. [Google Scholar] [CrossRef]
- Shaw, D.V.; Larson, K.D. Performance of early-generation and modern strawberry cultivars from the University of California breeding programme in growing systems simulating traditional and modern horticulture. J. Hortic. Sci. Biotechnol. 2008, 83, 648–652. [Google Scholar] [CrossRef]
- Whitaker, V.M.; Hasing, T.; Chandler, C.K.; Plotto, A.; Baldwin, E. Historical trends in strawberry fruit quality revealed by a trial of University of Florida cultivars and advanced selections. HortScience 2011, 46, 553–557. [Google Scholar] [CrossRef]
Treatment | No. of Leaves/Plant | Leaf Area (cm2/Plant) | Dry Weight (g/Plant) | |||||
---|---|---|---|---|---|---|---|---|
Leaves | Crowns | Roots | Flowers & Immature Fruit | Flowers & All Fruit | Plant | |||
Control | 19.9 ± 1.3 b | 2066 ± 106 c | 16.9 ± 1.3 c | 5.9 ± 0.9 b | 2.4 ± 0.4 b | 8.1 ± 0.7 b | 13.0 ± 0.4 c | 38.3 ± 2.4 c |
Defoliation | 14.6 ± 1.4 a | 1436 ± 149 a | 10.9 ± 0.9 a | 4.9 ± 0.5 a | 1.7 ± 0.1 a | 6.7 ± 0.7 a | 11.1 ± 0.8 b | 28.6 ± 1.9 a |
Thinning | 19.9 ± 1.0 b | 2186 ± 200 c | 18.4 ± 1.9 c | 6.9 ± 0.6 c | 2.3 ± 0.2 b | 7.6 ± 1.2 ab | 10.5 ± 1.4 ab | 38.1 ± 2.9 c |
Defoliation + thinning | 17.6 ± 2.8 ab | 1744 ± 267 b | 14.2 ± 2.2 b | 6.2 ± 0.5 bc | 2.3 ± 0.2 b | 6.9 ± 1.1 a | 9.7 ± 1.2 a | 32.5 ± 3.9 b |
Treatment | Yield (g/Plant) | Number of Fruit/Plant | ||||
---|---|---|---|---|---|---|
MKT | Non-MKT | Total | MKT | Non-MKT | Total | |
Control | 853 ± 60 c | 138 ± 10 b | 991 ± 61 c | 41.9 ± 2.9 b | 16.8 ± 1.4 b | 58.6 ± 3.4 b |
Defoliation | 676 ± 53 a | 157 ± 18 c | 834 ± 71 b | 34.7 ± 2.9 a | 19.7 ± 2.1 c | 54.4 ± 4.8 b |
Thinning | 725 ± 46 b | 118 ± 11 a | 843 ± 52 b | 34.5 ± 1.7 a | 13.4 ± 1.2 a | 47.9 ± 2.6 a |
Defoliation + thinning | 651 ± 68 a | 130 ± 23 ab | 780 ± 89 a | 33.6 ± 3.3 a | 15.2 ± 2.6 ab | 48.8 ± 5.8 a |
Treatment | Average Fruit Fresh Weight (g) | Percentage of Fruit That Were Non-Marketable | ||
---|---|---|---|---|
MKT | Non-MKT | Total | ||
Control | 19.0 ± 0.3 b | 8.9 ± 0.1 a | 16.4 ± 0.3 b | 28.6 ± 1.8 a |
Defoliation | 18.3 ± 0.6 a | 9.1 ± 0.3 a | 15.3 ± 0.8 a | 36.2 ± 0.7 b |
Thinning | 19.9 ± 0.5 c | 8.8 ± 0.2 a | 17.4 ± 0.3 c | 27.9 ± 1.3 a |
Defoliation + thinning | 18.6 ± 0.3 a | 8.8 ± 0.3 a | 15.9 ± 0.5 ab | 31.0 ± 2.2 a |
Treatment | Period | Intercept | Constant | R2 Value |
---|---|---|---|---|
Control | Whole season | 101.3 ± 7.4 | −4.7 ± 0.4 | 0.89 |
Defoliation | Whole season | 96.0 ± 9.9 | −4.5 ± 0.6 | 0.81 |
All data | Whole season | 98.7 ± 6.1 | −4.6 ± 0.3 | 0.85 |
Control | Part season | 105.3 ± 7.5 | −5.0 ± 0.4 | 0.93 |
Defoliation | Part season | 94.0 ± 8.4 | −4.4 ± 0.5 | 0.90 |
Thinning | Part season | 122.7 ± 11.2 | −5.9 ± 0.6 | 0.90 |
Defoliation + thinning | Part season | 104.6 ± 7.6 | −4.9 ± 0.4 | 0.93 |
All data | Part season | 106.7 ± 4.8 | −5.0 ± 0.3 | 0.89 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menzel, C.M. Temperature Has a Greater Effect on Fruit Growth than Defoliation or Fruit Thinning in Strawberries in the Subtropics. Agriculture 2019, 9, 127. https://doi.org/10.3390/agriculture9060127
Menzel CM. Temperature Has a Greater Effect on Fruit Growth than Defoliation or Fruit Thinning in Strawberries in the Subtropics. Agriculture. 2019; 9(6):127. https://doi.org/10.3390/agriculture9060127
Chicago/Turabian StyleMenzel, Christopher M. 2019. "Temperature Has a Greater Effect on Fruit Growth than Defoliation or Fruit Thinning in Strawberries in the Subtropics" Agriculture 9, no. 6: 127. https://doi.org/10.3390/agriculture9060127
APA StyleMenzel, C. M. (2019). Temperature Has a Greater Effect on Fruit Growth than Defoliation or Fruit Thinning in Strawberries in the Subtropics. Agriculture, 9(6), 127. https://doi.org/10.3390/agriculture9060127