Effects of Frequency of Irrigation on Dry-Season Furrow-Irrigated Maize and Peanut Production in the Rice-Growing Lowlands of the Lower Mekong Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Locations
2.2. Experimental Design and Agronomic Trial Management
2.2.1. Dry Season Furrow-Irrigated Maize Study (DS-Maize)
2.2.2. Dry Season Furrow-Irrigated Peanut Study (DS-Peanut)
2.3. Soil Physiochemical Properties
2.4. Meteorological Conditions
2.5. Soil Moisture Monitoring
2.6. Crop Development and Biomass Production
2.7. Maturity, Final Yield and Water Productivity
2.8. Statistical Analysis
3. Results
3.1. Soil Properties
3.2. Irrigation and Crop Water Requirements
3.3. Soil Matric Potential
3.4. Canopy Cover and Biomass Production
3.5. Final Yield, Maturity and Water Productivity
4. Discussion
4.1. Limited Soil Water Availability and Root Expansion
4.2. Canopy Cover Development, Biomass Production and Yield Response to Irrigation
4.3. Water Productivity
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lyon, S.W.; King, K.; Polpanich, O.; Lacombe, G. Assessing hydrologic changes across the lower mekong basin. J. Hydrol. Reg. Stud. 2017, 12, 303–314. [Google Scholar] [CrossRef]
- Mekong River Comission. State of the Basin Report 2010; Mekong River Comission: Vientiane, Laos, 2010. [Google Scholar]
- Yamauchi, K. Climate change impacts on agriculture and irrigation in the lower mekong basin. Paddy Water Environ. 2014, 12, 227–240. [Google Scholar] [CrossRef]
- FAO. Faostat; Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/faostat/en/#home (accessed on 15 June 2019).
- Fukai, S.; Ouk, M. Increased productivity of rainfed lowland rice cropping systems of the mekong region. Crop Pasture Sci. 2012, 63, 944–973. [Google Scholar] [CrossRef]
- Hornbuckle, J.; Bunna, S.; Veasna, T.; Vang, S.; Chantha, O.; Kanthel, P.; Collins, M.; Quayle, W.; Vanndy, L.; Roat, M.P.; et al. Final Report for Lwr/2009/046: Improved Irrigation Water Management to Increase Rice Productivity in Cambodia; Australia Center for International Agricultural Research: Canberra, Australia, 2016. [Google Scholar]
- Newby, J.C.; Manivong, V.; Cramb, R.A. Intensification of lowland rice-based farming systems in Laos in the context of diversified rural livelihoods. In Proceedings of the 57th Australian Agricultural and Resource Economics Society (AARES) Annual Conference, Sydney, Australia, 5–8 February 2013; AARES: Sydney, Australia, 2013. [Google Scholar]
- Mishra, A.; Kumar, P.; Ketelaar, J.W.J.F. Improving rice-based rainfed production systems in southeast asia for contributing towards food security and rural development through sustainable crop production intensification. AIMS Agric. Food 2016, 1, 102–123. [Google Scholar] [CrossRef]
- Mekuria, W.; Noble, A.; Sengtaheuanghoung, O.; Hoanh, C.T.; Bossio, D.; Sipaseuth, N.; McCartney, M.; Langan, S. Organic and clay-based soil amendments increase maize yield, total nutrient uptake, and soil properties in Lao PDR. Agroecol. Sustain. Food Syst. 2014, 38, 936–961. [Google Scholar] [CrossRef]
- Bruand, A.H.C.; Lesturgez, G. Physical properties of tropical sandy soils: A large range of behaviours. In Management of Tropical Sandy Soils for Sustainable Agriculture, Proceedings of the A Holistic Approach for Sustainable Development of Problem Soils in the Tropics, Khon Kaen, Thailand, 27 November 2005–2 December 2005; FAO: Rome, Italy, 2005. [Google Scholar]
- Bunna, S.; Sinath, P.; Makara, O.; Mitchell, J.; Fukai, S. Effects of straw mulch on mungbean yield in rice fields with strongly compacted soils. Field Crop. Res. 2011, 124, 295–301. [Google Scholar] [CrossRef]
- Haefele, S.M.; Nelson, A.; Hijmans, R.J. Soil quality and constraints in global rice production. Geoderma 2014, 235–236, 250–259. [Google Scholar] [CrossRef]
- Linquist, B.S.P. Nutrient Management in Rainfed Lowland Rice in the Lao PDR; International Rice Research Institue: Los Baños, Philippines, 2001. [Google Scholar]
- Mitchell, J.; Cheth, K.; Seng, V.; Lor, B.; Ouk, M.; Fukai, S. Wet cultivation in lowland rice causing excess water problems for the subsequent non-rice crops in the mekong region. Field Crop. Res. 2013, 152, 57–64. [Google Scholar] [CrossRef]
- Seng, V.B.R.; White, P.; Schoknecht, N.; Hin, S.; Vance, W. Sandy soils of cambodia. In Management of Tropical Sandy Soils for Sustainable Agriculture, Proceedings of the A Holistic Approach for Sustainable Development of Problem Soils in the Tropics, Khon Kaen, Thailand, 27 November–5 December, 2005; FAO: Rome, Italy, 2005; pp. 42–48. [Google Scholar]
- Matsuo, K.; Ae, N.; Vorachit, S.; Thadavon, S. Present soil chemical status and constraints for rice-based cropping systems in vientiane plain and neighboring areas, lao pdr au-matsuo, kazuyuki. Plant Prod. Sci. 2015, 18, 314–322. [Google Scholar] [CrossRef]
- Cheth, K. Effect of Irrigation and Soil Amendments on Legume Growth in Rice-Based Cropping System in the Rainfed Lowland; The University of Queensland: Brisbane, QLD, Astralia, 2011. [Google Scholar]
- Cai, X.; Molden, D.; Mainuddin, M.; Sharma, B.; Ahmad, M.-u.-D.; Karimi, P. Producing more food with less water in a changing world: Assessment of water productivity in 10 major river basins. Water Int. 2011, 36, 42–62. [Google Scholar] [CrossRef]
- Frenken, K. Irrigation in Southern and Eastern Asia in Figures: Aquastat Survey, 2011; Food and Agriculture of the United Nations: Rome, Italy, 2012. [Google Scholar]
- DMH. Meteorological Data (1971–2012); Department of Meteorology and Hydrology: Vientiane, Laos, 2013.
- MRC Secretariat. Soil Map of the Lower Mekong Basin; MRC Secretariat, Ed.; Mekong River Comission: Vientiane, Laos, 2002. [Google Scholar]
- Raes, D. Reference Manual—Eto Calculator Version 3.2; Food and Agriculture Organization of the United Nations FAO, Via delle Terme di Caracalla; FAO: Rome, Italy, 2012. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M.J.F. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements-Fao Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Patrignani, A.; Ochsner, T.E. Canopeo: A powerful new tool for measuring fractional green canopy cover. Agron. J. 2015, 107, 2312–2320. [Google Scholar] [CrossRef]
- Measuring Plant-Associated Nitrogen Fixation in Agricultural Systems. Available online: https://www.Aciar.Gov.Au/file/73196 (accessed on 7 June 2019).
- Williams, E.J.; Drexler, J.S. A non-destructive method for determining peanut pod maturity. Peanut Sci. 1981, 8, 134–141. [Google Scholar] [CrossRef]
- Bruand, A.; Hartmann, C.; Ratana-Anupap, S.; Sindhusen, P.; Poss, R.; Hardy, M. Composition, fabric, and porosity of an arenic haplustalf of northeast thailand. Soil Sci. Soc. Am. J. 2004, 68, 185–193. [Google Scholar] [CrossRef]
- Dur, J.C.; Wiriyakitnateekul, W.; Lesturgez, G.; Pernes, M.; Elsass, F.; Tessier, D. Clay mineral dissolution following intensive cultivation in a tropical sandy soil. In Proceedings of the 1st International Symposium on the Managment for Tropical Sandy Soils, Khon Kaen, Thailand, 28 November–2 December 2005. [Google Scholar]
- Wada, H. Managing sandy soils in northeast thailand. In Management of Tropical Sandy Soils for Sustainable Agriculture, Proceedings of the A Holistic Approach for Sustainable Development of Problem Soils in the Tropics, Khon Kaen, Thailand, 27 November–2 December 2005; FAO: Rome, Italy, 2005; pp. 82–92. [Google Scholar]
- Vial, L.K.; Lefroy, R.D.B.; Fukai, S. Effects of hardpan disruption on irrigated dry-season maize and on subsequent wet-season lowland rice in Lao PDR. Field Crop. Res. 2013, 152, 65–73. [Google Scholar] [CrossRef]
- Kirchhof, G.; Priyono, S.; Utomo, W.H.; Adisarwanto, T.; Dacanay, E.V.; So, H.B. The effect of soil puddling on the soil physical properties and the growth of rice and post-rice crops. Soil Tillage Res. 2000, 56, 37–50. [Google Scholar] [CrossRef]
- Ringrose-Voase, A.J.; Kirby, J.M.; Djoyowasito, G.; Sanidad, W.B.; Serrano, C.; Lando, T.M. Changes to the physical properties of soils puddled for rice during drying. Soil Tillage Res. 2000, 56, 83–104. [Google Scholar] [CrossRef]
- Hartmann, C.; Poss, R.; Noble, A.D.; Jongskul, A.; Bourdon, E.; Brunet, D.; Lesturgez, G. Subsoil improvement in a tropical coarse textured soil: Effect of deep-ripping and slotting. Soil Tillage Res. 2008, 99, 245–253. [Google Scholar] [CrossRef]
- Vilayvong, S.; Banterng, P.; Patanothai, A.; Pannangpetch, K. Csm-ceres-rice model to determine management strategies for lowland rice production. J. Sci. Agric. 2015, 72, 229–236. [Google Scholar] [CrossRef]
- Tsubo, M.; Fukai, S.; Tuong, T.P.; Ouk, M. A water balance model for rainfed lowland rice fields emphasising lateral water movement within a toposequence. Ecol. Model. 2007, 204, 503–515. [Google Scholar] [CrossRef]
- Inthavong, T.; Tsubo, M.; Fukai, S. A water balance model for characterization of length of growing period and water stress development for rainfed lowland rice. Field Crops Res. 2011, 121, 291–301. [Google Scholar] [CrossRef]
- Tsubo, M.; Fukai, S.; Basnayake, J.; Tuong, T.P.; Bouman, B.; Harnpichitvitaya, D. Estimating percolation and lateral water flow on sloping land in rainfed lowland rice ecosystem. Plant Prod. Sci. 2005, 8, 354–357. [Google Scholar] [CrossRef]
- Noble, A.D.; Ruaysoongnern, S.; de Vries, F.P.; Hartmann, C.; Webb, M.J. Enhancing the Agronomic Productivity of Degraded Soils in North-East Thailand through Clay-Based Interventions; Australian Centre for International Agricultural Research: Canberra, Australia, 2004; p. 116. [Google Scholar]
- Sitthaphanit, S.; Bell, R.W.; Limpinuntana, V. Effect of clay amendments on nitrogen leaching and forms in a sandy soil. In Soil Solutions for a Changing World, Proceedings of the 19th World Congress of Soil Science, Brisbane, Australia, 1–6 August 2010; Gilkes, R.J., Prakongkep, N., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2010; pp. 107–110. [Google Scholar]
- Uzoma, K.C.; Inoue, M.; Andry, H.; Fujimaki, H.; Zahoor, A.; Nishihara, E. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag. 2011, 27, 205–212. [Google Scholar] [CrossRef]
- Mekuria, W.; Sengtaheuanghoung, O.; Hoanh, C.T.; Noble, A. Economic contribution and the potential use of wood charcoal for soil restoration: A case study of village-based charcoal production in central laos. Int. J. Sustain. Dev. World Ecol. 2012, 19, 415–425. [Google Scholar] [CrossRef]
- Mekuria, W.; Getnet, K.; Noble, A.; Hoanh, C.T.; McCartney, M.; Langan, S. Economic valuation of organic and clay-based soil amendments in small-scale agriculture in Lao PDR. Field Crops Res. 2013, 149, 379–389. [Google Scholar] [CrossRef]
- Lal, R.; Griffin, M.; Apt, J.; Lave, L.; Morgan, M.G. Managing soil carbon. Science 2004, 304, 393. [Google Scholar] [CrossRef] [PubMed]
- CARDI. Annual Report 2012; Cambodian Agricultural Research Development Institute: Phnom Penh, Cambodia, 2012. [Google Scholar]
- Vial, L.K. Maize in a Lowland Rice System: Improving Water Productivity in a Lao Context; The University of Queensland: Brisbane, QLD, Australia, 2012. [Google Scholar]
Experiment | Location | Crop | Variety | Row Spacing (m) | Plant Spacing (m) | Planting Density (Plants m−2) | Rate of Fertiliser (kg ha−1) | Date of Sowing | Date of Harvest | Growing Season (No of Days) |
---|---|---|---|---|---|---|---|---|---|---|
DS-maize | CARDI | Maize | CM1 | 0.65 | 0.30 | 5.13 | * | 21 January 2016 | 8 April 2016 | 78 |
DS-peanut | PNG | Peanut | Valencia | 0.30 | 0.25 | 13.3 | ~155 (15:15:15 NPK) | 19 December 2015 | 31 March–21 April 2016 | 103–124 |
Depth cm | pH (H2O) | EC dS m−1 | OM % | Total N % | NH4 mg kg−1 | NO3 mg kg−1 | P mg kg−1 | Exch Ca2+ cmol kg−1 | Exch Mg2+ cmol kg−1 | Exch K+ cmol kg−1 | Exch Na+ cmol kg−1 | Exch Al3+ cmol kg−1 | * CEC cmol—ve Charge kg−1 | Sand % | Silt % | Clay % | Bulk Density g m−3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre-land preparation | |||||||||||||||||
DS-maize | |||||||||||||||||
0–20 | 5.3 | 0.05 | 0.90 a | 0.05 | – | – | 7.33 | 0.46 | 0.13 | 0.10 | 0.46 | 1.15 | 63.00 | 28.00 | 9.00 | 1.66 | |
20–40 | 8.5 | 0.08 | 0.13 b | 0.04 | – | – | 0.52 | 0.39 | 0.13 | 0.06 | 0.26 | 0.84 | 61.00 | 26.00 | 13.00 | ||
DS-peanut | |||||||||||||||||
0–20 | 4.7 | 0.01 | 0.51 a | – | 8.32 | 0.07 | 2.60 | 0.86 | 0.39 | 0.04 | 0.07 | 0.26 | 1.62 a | 59.95 | 29.90 | 10.16 | 1.54 |
20–40 | 5.1 | 0.01 | 0.28 b | – | 5.68 | 0.08 | 0.77 | 0..96 | 0.46 | 0.03 | 0.11 | 0.28 | 1.84 b | 57.72 | 29.23 | 13.05 | 1.80 |
40–60 | 5.2 | 0.01 | 0.23 b | – | 3.73 | 0.07 | 0.82 | 1.06 | 0.58 | 0.05 | 0.42 | 1.38 | 3.49 b | 53.50 | 25.45 | 21.05 | 1.78 |
Post-lime application | |||||||||||||||||
DS-peanut | |||||||||||||||||
0–20 | 5.9 | 0.10 | 0.60 | 35.31 | 0.10 | 13.48 | 1.36 | 0.69 | 0.22 | 0.29 | 0.02 | ||||||
Post-fertiliser application—Flowering | |||||||||||||||||
DS-maize | |||||||||||||||||
0–20 | 5.7 c | 0.23 a | 0.75 a | 0.03 a | 19.13 a | ||||||||||||
20–40 | 7.0 b | 0.04 b | 0.26 b | 0.01 b | 1.17 b | ||||||||||||
40–60 | 8.2 a | 0.08 b | 0.18 b | 0.01 b | 0.50 b | ||||||||||||
60–80 | 8.5 a | 0.11 ab | 0.21 b | 0.01 b | 0.48 b | ||||||||||||
Post-fertiliser application—Harvest | |||||||||||||||||
DS-maize | |||||||||||||||||
0–20 | 5.8 c | 0.16 a | 0.79 a | 0.03 a | 14.98 a | 0.53 | 0.14 | 0.19 a | 0.52 | ||||||||
20–40 | 7.2 b | 0.04 b | 0.28 b | 0.01 b | 1.10 b | 0.53 | 0.13 | 0.09 b | 0.59 | ||||||||
40–60 | 8.3 a | 0.08 ab | 0.23 b | 0.01 b | 0.69 b | ||||||||||||
60–80 | 8.6 a | 0.11 ab | 0.28 b | 0.01 b | 0.91 b |
% Canopy Cover | AGB | Plant Height at | FFW at | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Date | 8 February 2016 | 11 February 2016 | 15 February 2016 | 18 February 2016 | 23 February 2016 | Vegetative | Flowering | Maturity | Maturity | Harvest | Grain Yield | WP |
Irrigation | ns | ns | **** | *** | **** | ** | ns | ** | ** | ** | ns | ns |
W1 | 13.53 | 10.14 | 22.60 a | 28.22 a | 53.89 a | 1.45 a | 3.52 | 2.81 a | 1.90 a | 3.67 a | 2.22 | 0.67 |
W2 | 11.68 | 8.81 | 17.61 b | 22.61 b | 50.65 a | 1.10 b | 3.40 | 2.27 b | 1.79 b | 2.82 b | 1.72 | 0.60 |
W3 | 12.31 | 8.58 | 15.95 b | 21.84 b | 42.67 b | 0.94 b | 3.13 | 1.96 b | 1.69 c | 2.58 b | 1.43 | 0.56 |
Fertiliser | ns | *** | *** | **** | *** | ns | ns | ns | ns | ns | ns | ns |
F1 | 12.15 | 8.05 | 16.91 | 21.55 | 45.87 | 1.07 | 3.26 | 2.32 | 1.79 | 2.98 | 1.69 | 0.58 |
F2 | 12.87 | 10.30 | 20.53 | 26.90 | 52.27 | 1.26 | 3.44 | 2.38 | 1.79 | 3.07 | 1.89 | 0.63 |
Irr × Fert | ns | ns | ** | ns | ns | ns | ns | ns | ns | ns | ns | ns |
AGB | Pod | ||||
---|---|---|---|---|---|
Flowering | Pegging | Pod Development | Yield | WP | |
Irrigation | ns | ns | ns | * | ns |
W1 | 0.41 | 1.28 | 3.25 | 1.75 a | 0.43 |
W2 | 0.43 | 2.01 | 2.65 | 0.87 b | 0.38 |
W3 | 0.39 | 1.17 | 3.04 | 1.04 b | 0.70 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ballester, C.; Vote, C.; Hornbuckle, J.; Inthavong, T.; Lim, V.; Oeurng, C.; Quayle, W.; Seng, V.; Sengxua, P.; Sihathep, V.; et al. Effects of Frequency of Irrigation on Dry-Season Furrow-Irrigated Maize and Peanut Production in the Rice-Growing Lowlands of the Lower Mekong Basin. Agriculture 2019, 9, 128. https://doi.org/10.3390/agriculture9060128
Ballester C, Vote C, Hornbuckle J, Inthavong T, Lim V, Oeurng C, Quayle W, Seng V, Sengxua P, Sihathep V, et al. Effects of Frequency of Irrigation on Dry-Season Furrow-Irrigated Maize and Peanut Production in the Rice-Growing Lowlands of the Lower Mekong Basin. Agriculture. 2019; 9(6):128. https://doi.org/10.3390/agriculture9060128
Chicago/Turabian StyleBallester, Carlos, Camilla Vote, John Hornbuckle, Thavone Inthavong, Vanndy Lim, Chantha Oeurng, Wendy Quayle, Vang Seng, Pheng Sengxua, Vorachith Sihathep, and et al. 2019. "Effects of Frequency of Irrigation on Dry-Season Furrow-Irrigated Maize and Peanut Production in the Rice-Growing Lowlands of the Lower Mekong Basin" Agriculture 9, no. 6: 128. https://doi.org/10.3390/agriculture9060128
APA StyleBallester, C., Vote, C., Hornbuckle, J., Inthavong, T., Lim, V., Oeurng, C., Quayle, W., Seng, V., Sengxua, P., Sihathep, V., Touch, V., & Eberbach, P. (2019). Effects of Frequency of Irrigation on Dry-Season Furrow-Irrigated Maize and Peanut Production in the Rice-Growing Lowlands of the Lower Mekong Basin. Agriculture, 9(6), 128. https://doi.org/10.3390/agriculture9060128