Benthic Opportunistic Polychaete/Amphipod Ratio: An Indicator of Pollution or Modification of the Environment by Macroinvertebrates?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Sampling Method and Analyses
2.3. Indices
2.4. Statistics
3. Results
3.1. Environmental Variables
3.2. Macrozoobenthos
3.3. Correlation between Benthic Indices and Environmental Variables
3.4. Principal Component Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ytreberg, E.; Hansson, K.; Hermansson, A.L.; Parsmo, R.; Lagerström, M.; Jalkanen, J.-P.; Hassellöv, I.-M. Metal and PAH loads from ships and boats, relative other sources, in the Baltic Sea. Mar. Pollut. Bull. 2022, 182, 113904. [Google Scholar] [CrossRef] [PubMed]
- HELCOM. 2018: HELCOM Thematic Assessment of Hazardous Substances 2011–2016. Baltic Sea Environment Proceedings 2018, 157. Available online: http://www.helcom.fi/baltic-sea-trends/holistic-assessments/state-of-the-baltic-sea-2018/reports-and-materials/reports-and-materials/ (accessed on 20 December 2022).
- Leonardsson, K.; Blomqvist, M.; Rosenberg, R. Theoretical and practical aspects on benthic quality assessment according to the EU-Water Framework Directive—Examples from Swedish waters. Mar. Pollut. Bull. 2009, 58, 1286–1296. [Google Scholar] [CrossRef]
- Perus, J.; Bonsdorff, E.; Bäck, S.; Lax, H.-G.; Villnäs, A.; Westberg, V. Zoobenthos as Indicators of Ecological Status in Coastal Brackish Waters: A Comparative Study from the Baltic Sea. Ambio 2007, 36, 250–256. [Google Scholar] [CrossRef]
- Van Hoey, G.; Borja, A.; Birchenough, S.; Buhl-Mortensen, L.; Degraer, S.; Fleischer, D.; Kerckhof, F.; Magni, P.; Muxika, I.; Reiss, H.; et al. The use of benthic indicators in Europe: From the Water Framework Directive to the Marine Strategy Framework Directive. Mar. Pollut. Bull. 2010, 60, 2187–2196. [Google Scholar] [CrossRef] [Green Version]
- Dauvin, J.-C.; Ruellet, T. The estuarine quality paradox: Is it possible to define an ecological quality status for specific modified and naturally stressed estuarine ecosystems? Mar. Pollut. Bull. 2009, 59, 38–47. [Google Scholar] [CrossRef]
- Elliott, M.; Quintino, V. The Estuarine Quality Paradox, Environmental Homeostasis and the difficulty of detecting anthropogenic stress in naturally stressed areas. Mar. Pollut. Bull. 2008, 56, 1880–1889. [Google Scholar] [CrossRef]
- Puente, A.; Diaz, R.J. Is it possible to assess the ecological status of highly stressed natural estuarine environments using macroinvertebrates indices? Mar. Pollut. Bull. 2008, 56, 1880–1889. [Google Scholar] [CrossRef]
- Zettler, M.L.; Proffitt, C.E.; Darr, A.; Degraer, S.; Devriese, L.; Greathead, C.; Kotta, J.; Magni, P.; Martin, G.; Reiss, H.; et al. On the Myths of Indicator Species: Issues and Further Consideration in the Use of Static Concepts for Ecological Applications. PLoS ONE 2013, 8, e78219. [Google Scholar] [CrossRef] [Green Version]
- Schiele, K.; Darr, A.; Zettler, M.; Berg, T.; Blomqvist, M.; Daunys, D.; Jermakovs, V.; Korpinen, S.; Kotta, J.; Nygård, H.; et al. Rating species sensitivity throughout gradient systems—A consistent approach for the Baltic Sea. Ecol. Indic. 2015, 61, 447–455. [Google Scholar] [CrossRef]
- Borja, A.; Muxika, I. Guidelines for the use of AMBI (AZTI’s Marine Biotic Index) in the assessment of the benthic ecological quality. Mar. Pollut. Bull. 2005, 50, 787–789. [Google Scholar] [CrossRef]
- Bonsdorff, E. Zoobenthic diversity-gradients in the Baltic Sea: Continuous post-glacial succession in a stressed ecosystem. J. Exp. Mar. Biol. Ecol. 2006, 330, 383–391. [Google Scholar] [CrossRef]
- Zettler, M.L.; Karlsson, A.; Kontula, T.; Gruszka, P.; Laine, A.O.; Herkül, K.; Schiele, K.S.; Maximov, A.; Haldin, J. Biodiversity gradient in the Baltic Sea: A comprehensive inventory of macrozoobenthos data. Helgol. Mar. Res. 2014, 68, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Maximov, A.A. Large-scale invasion of Marenzelleria spp.(Polychaeta; Spionidae) in the eastern Gulf of Finland, Baltic Sea. Russ. J. Biol. Invasions 2011, 2, 11–19. [Google Scholar] [CrossRef]
- Maximov, A.A. The Long-Term Dynamics and Current Distribution of Macrozoobenthos Communities in the Eastern Gulf of Finland, Baltic Sea. Russ. J. Mar. Biol. 2015, 41, 300–310. [Google Scholar] [CrossRef]
- Pearson, T.; Rosenberg, R. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. Ann. Rev 1978, 16, 229–311. [Google Scholar]
- Pocklington, P.; Wells, P.G. Polychaetes Key taxa for marine environmental quality monitoring. Mar. Pollut. Bull. 1992, 24, 593–598. [Google Scholar] [CrossRef]
- Rodriguez, P.; Reynoldson, T.B. The Pollution Biology of Aquatic Oligochaetes; Springer: Dordrecht, The Netherlands, 2011; p. 265. [Google Scholar]
- Dean, H. The use of polychaetes (Annelida) as indicator species of marine pollution: A review. Rev. Biol. Trop. 2008, 56 (Suppl. 4), 11–38. [Google Scholar]
- Demandt, M.H.; Angeler, D.G.; Goedkoop, W. Genetic diversity of Monoporeia affinis in relationship to environmental and spatial factors in Sweden’s largest lakes. Fundam. Appl. Limnol. Arch. Für Hydrobiol. 2012, 181, 183–195. [Google Scholar] [CrossRef]
- Podlesińska, W.; Dąbrowska, H. Amphipods in estuarine and marine quality assessment—A review. Oceanologia 2019, 61, 179–196. [Google Scholar] [CrossRef]
- Dauvin, J.C.; Ruellet, T. Polychaete/amphipod ratio revisited. Mar. Pollut. Bull. 2007, 55, 215–224. [Google Scholar] [CrossRef]
- Dauvin, J.-C. Twenty years of application of Polychaete/Amphipod ratios to assess diverse human pressures in estuarine and coastal marine environments: A review. Ecol. Indic. 2018, 95, 427–435. [Google Scholar] [CrossRef]
- Maximov, A.; Bonsdorff, E.; Eremina, T.; Kauppi, L.; Norkko, A.; Norkko, J. Context-dependent consequences of Marenzelleria spp. (Spionidae: Polychaeta) invasion for nutrient cycling in the Northern Baltic Sea. Oceanologia 2015, 57, 342–348. [Google Scholar] [CrossRef]
- Berezina, N.A.; Maximov, A.A.; Vladimirova, O.M. Influence of benthic invertebrates on phosphorus flux at the sediment—Water interface in the easternmost Baltic Sea. Mar. Ecol. Prog. Ser. 2019, 608, 33–43. [Google Scholar] [CrossRef]
- Granberg, M.E.; Gunnarsson, J.S.; Hedman, J.E.; Rosenberg, R.; Jonsson, P. Bioturbation-Driven Release of Organic Contaminants from Baltic Sea Sediments Mediated by the Invading Polychaete Marenzelleria neglecta. Environ. Sci. Technol. 2008, 42, 1058–1065. [Google Scholar] [CrossRef] [PubMed]
- Josefsson, S.; Leonardsson, K.; Gunnarsson, J.S.; Wiberg, K. Influence of contaminant burial depth on the bioaccumulation of PCBs and PBDEs by two benthic invertebrates (Monoporeia affinis and Marenzelleria spp.). Chemosphere 2011, 85, 1444–1451. [Google Scholar] [CrossRef] [PubMed]
- The Gulf of Finland Assessment. Reports of the Finnish Environment Institute 27; Finnish Environment Institute: Helsinki, Finland, 2016; p. 363. Available online: http://hdl.handle.net/10138/166296 (accessed on 20 December 2022).
- Maximov, A. Causes of the Bottom Hypoxia in the Eastern Part of the Gulf of Finland in the Baltic Sea. Oceanology 2006, 46, 185–191. [Google Scholar] [CrossRef]
- Eremina, T.; Maximov, A.; Voloshchuk, E. The influence of the climate’s variability on the deep-water oxygen conditions in the east of the Gulf of Finland. Oceanology 2012, 52, 771–779. [Google Scholar] [CrossRef]
- Determination of photosynthetic pigments. Report of SCOR—UNESCO working group 17 on determination of photosynthetic pigments. In Determination of Photosynthetic Pigments in Sea-Water; UNESCO: Paris, France, 1966; pp. 9–18. [Google Scholar]
- Kuprijanov, I.; Väli, G.; Sharov, A.; Berezina, N.; Liblik, T.; Lips, U.; Kolesova, N.; Maanio, J.; Junttila, V.; Lips, I. Hazardous substances in the sediments and their pathways from potential sources in the eastern Gulf of Finland. Mar. Pollut. Bull. 2021, 170, 112642. [Google Scholar] [CrossRef]
- Järvekulg, A. Bottom Fauna of the Eastern Baltic Sea; Valgus: Tallinn, Estonia, 1979; p. 382. (In Russian) [Google Scholar]
- Kauppi, L.; Norkko, A.; Norkko, J. Large-scale species invasion into a low-diversity system: Spatial and temporal distribution of the invasive polychaetes Marenzelleria spp. in the Baltic Sea. Biol. Invasions 2015, 17, 2055–2074. [Google Scholar] [CrossRef]
- Gogina, M.; Nygård, H.; Blomqvist, M.; Daunys, D.; Josefson, A.B.; Kotta, J.; Maximov, A.; Warzocha, J.; Yermakov, V.; Gräwe, U.; et al. The Baltic Sea scale inventory of benthic faunal communities. ICES J. Mar. Sci. 2016, 73, 1196–1213. [Google Scholar] [CrossRef] [Green Version]
- Berezina, N.A.; Maximov, A.A. Abundance and Food Preferences of Amphipods (Crustacea: Amphipoda) in the Eastern Gulf of Finland, Baltic Sea. J. Sib. Fed. Univ. Biol. 2016, 9, 409–426, (In Russian with English Summary). [Google Scholar] [CrossRef]
- Berke, S.K. Functional Groups of Ecosystem Engineers: A Proposed Classification with Comments on Current Issues. Integr. Comp. Biol. 2010, 50, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Hölker, F.; Vanni, M.J.; Kuiper, J.J.; Meile, C.; Grossart, H.-P.; Stief, P.; Adrian, R.; Lorke, A.; Dellwig, O.; Brand, A.; et al. Tube-dwelling invertebrates: Tiny ecosystem engineers have large effects in lake ecosystems. Ecol. Monogr. 2015, 85, 333–351. [Google Scholar] [CrossRef] [Green Version]
- Lopez, G.; Elmgren, R. Feeding depths and organic absorption for the deposit-feeding benthic amphipods Pontoporeia affinis and P. femorata. Limnol. Oceanogr. 1989, 34, 982–991. [Google Scholar] [CrossRef]
- Elmgren, R. Structure and dynamics of Baltic benthic communities, with particular references to the relationship between macro- and meiofauna. Kiel. Meeresforsch. 1978, 4, 1–22. [Google Scholar]
- Sundelin, B. Effects of cadmium on Pontoporeia affinis (Crustacea: Amphipoda) in laboratory soft-bottom microcosms. Mar. Biol. 1983, 74, 203–212. [Google Scholar] [CrossRef]
- Sundelin, B.; Elmgren, R. Meiofauna of an experimental soft bottom ecosystem—Effects of macrofauna and cadmium exposure. Mar. Ecol. Prog. Ser. 1991, 70, 245–255. [Google Scholar] [CrossRef]
- Reible, D.D.; Popov, V.; Valsaraj, K.T.; Thibodeaux, L.J.; Lin, F.; Dikshit, M.; Todaro, M.A.; Fleeger, J.W. Contaminant fluxes from sediment due to tubificid oligochaete bioturbation. Water Res. 1996, 30, 704–714. [Google Scholar] [CrossRef]
- Anschutz, P.; Ciutat, A.; Lecroart, P.; Gèrino, M.; Boudou, A. Effects of Tubificid Worm Bioturbation on Freshwater Sediment Biogeochemistry. Aquat. Geochem. 2012, 18, 475–497. [Google Scholar] [CrossRef]
- Matisoff, G.; Wang, X.S.; McCall, P.L. Biological redistribution of lake sediments by tubificid oligochaetes: Branchiura sowerbyi and Limnodrilus hoffmeisteri/Tubifex tubifex. J. Great Lakes Res. 1999, 25, 205–219. [Google Scholar] [CrossRef]
- Ciutat, A.; Anschutz, P.; Gerino, M.; Boudou, A. The effects of bioturbation on cadmium transfer and distribution into freshwater sediments. Environ. Toxicol. Chem. 2005, 24, 1048–1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renz, J.R.; Forster, S. Effects of bioirrigation by the three sibling species of Marenzelleria spp. on solute fluxes and porewater nutrient profiles. Mar. Ecol. Prog. Ser. 2014, 505, 145–159. [Google Scholar] [CrossRef]
- Josefson, A.; Norkko, J.; Norkko, A. Burial and decomposition of plant pigments in surface sediments of the Baltic Sea: Role of oxygen and benthic fauna. Mar. Ecol. Prog. Ser. 2012, 455, 33–49. [Google Scholar] [CrossRef]
- Aller, R.C. Sedimentary Diagenesis, Depositional Environments, and Benthic Fluxes. In Treatise on Geochemistry (Second Edition); Holland, H.D., Turekian, K.K., Eds.; Elsevier: Oxford, UK, 2014; pp. 293–334. [Google Scholar]
- Xie, M.; Simpson, S.L.; Wang, W.-X. Bioturbation effects on metal release from contaminated sediments are metal-dependent. Environ. Pollut. 2019, 250, 87–96. [Google Scholar] [CrossRef]
- Voloshchuk, E.V.; Maximov, A.A. Assessment of influence of Marenzelleria arctia bioturbation activity on substances content in the sediments of the eastern Gulf of Finland. Fundam. I Prikl. Gidrofiz. 2017, 10, 34–40. [Google Scholar]
- Danielsson, Å.; Rahm, L.; Brüchert, V.; Bonaglia, S.; Raymond, C.; Svensson, O.; Yekta, S.S.; Reyier, H.; Gunnarsson, J.S. Effects of re-oxygenation and bioturbation by the polychaete Marenzelleria arctia on phosphorus, iron and manganese dynamics in Baltic Sea sediments. Boreal Environ. Res. 2018, 23, 15–28. [Google Scholar]
- Norkko, J.; Reed, D.C.; Timmermann, K.; Norkko, A.; Gustafsson, B.G.; Bonsdorff, E.; Slomp, C.P.; Carstensen, J.; Conley, D.J. A welcome can of worms? Hypoxia mitigation by an invasive species. Glob. Chang. Biol. 2012, 18, 422–434. [Google Scholar] [CrossRef]
- Isaev, A.V.; Eremina, T.R.; Ryabchenko, V.A.; Savchuk, O.P. Model estimates of the impact of bioirrigation activity of Marenzelleria spp. on the Gulf of Finland ecosystem in a changing climate. J. Mar. Syst. 2017, 171, 81–88. [Google Scholar] [CrossRef]
- Kauppi, L.; Norkko, J.; Ikonen, J.; Norkko, A. Seasonal variability in ecosystem functions: Quantifying the contribution of invasive species to nutrient cycling in coastal ecosystems. Mar. Ecol. Prog. Ser. 2017, 572, 193–207. [Google Scholar] [CrossRef] [Green Version]
- Daunys, D.; Forster, S.; Schiedek, D.; Olenin, S.; Zettler, M.L. Effect of Species Invasion on Transport of Solutes at Different Levels of Soft Sediment Macrofauna Diversity: Results from an Experimental Approach. Water 2019, 11, 1544. [Google Scholar] [CrossRef] [Green Version]
- Equbal, J.; Lakra, R.K.; Savurirajan, M.; Satyam, K.; Thiruchitrambalam, G. Assessing the benthic quality status of three fine sand tropical beaches from the Andaman Islands through the application of marine biotic indices. Environ. Monit. Assess. 2022, 194, 479. [Google Scholar] [CrossRef] [PubMed]
- Nebra, A.; Caiola, N.; Muñoz-Camarillo, G.; Rodríguez-Climent, S.; Ibáñez, C. Towards a suitable ecological status assessment of highly stratified mediterranean estuaries: A comparison of benthic invertebrate fauna indices. Ecol. Indic. 2014, 46, 177–187. [Google Scholar] [CrossRef]
- Equbal, J.; Thiruchitrambalam, G.; Lakra, R.K.; Savurirajan, M.; Satyam, K. Assessing the ecological quality of the Port Blair coast (South Andaman, India) using different suites of benthic biotic indices. J. Mar. Biol. Assoc. UK 2017, 97, 1007–1021. [Google Scholar] [CrossRef]
- Vallius, H.; Alliksaar, T.; Suuroja, S. Changes in heavy metal concentrations in the sediments of the Gulf of Finland over two decades. Est. J. Earth Sci. 2022, 71, 177. [Google Scholar] [CrossRef]
- Norkko, A.; Jaale, M. Trends in soft sediment macrozoobenthic communities in the open sea areas of the Baltic sea. MERI—Rep. Ser. Finn. Inst. Mar. Res. 2008, 59, 73–79. [Google Scholar]
Site | Marenzelleria | Oligochaeta | M. affinis | S. entomon | M. balthica | Chironomidae | Macrobenthos | BOPA | BO2A |
---|---|---|---|---|---|---|---|---|---|
2019 | |||||||||
4F | 3280 | 160 | 60 | - | 20 | - | 3520 | 0.938 | 0.972 |
2GM | 2800 | 7093 | 4253 | - | 13 | - | 14,160 | 0.204 | 0.620 |
17F | 2020 | 720 | 400 | - | 100 | - | 3240 | 0.637 | 0.810 |
2F5 | 1190 | 4960 | 960 | - | - | - | 7110 | 0.198 | 0.817 |
9F | 960 | 6440 | 1330 | 10 | 10 | - | 8750 | 0.131 | 0.794 |
6K | 5640 | 4440 | 140 | - | 10 | - | 10,230 | 0.627 | 0.980 |
8F | 2230 | 5240 | 380 | - | 110 | - | 7960 | 0.342 | 0.923 |
4F5 | 1040 | 150- | 10 | - | - | - | 1200 | 0.895 | 0.988 |
1F5 | 3960 | 980 | 20 | - | - | 70 | 5030 | 0.835 | 0.984 |
2020 | |||||||||
4F | 3053 | 653 | 387 | - | - | - | 4093 | 0.750 | 0.870 |
2GM | 1013 | 7547 | 2307 | 27 | - | - | 10,894 | 0.107 | 0.721 |
9F | 1440 | 3853 | 1373 | 13 | - | - | 6679 | 0.237 | 0.729 |
6K | 6147 | 6893 | 267 | - | 53 | - | 13,360 | 0.537 | 0.969 |
6L | 5973 | 2080 | 480 | - | 27 | 200 | 8773 | 0.719 | 0.903 |
1L | 5400 | 1693 | 347 | - | - | - | 7440 | 0.760 | 0.934 |
2L | 2173 | 1720 | 627 | - | 347 | - | 4867 | 0.481 | 0.773 |
17F | 1773 | 240 | 1280 | 13 | - | - | 3306 | 0.472 | 0.525 |
20F | 780 | - | 500 | - | - | - | 1280 | 0.524 | 0.524 |
FZ19 | 2947 | 1307 | 160 | - | - | 53 | 4467 | 0.711 | 0.941 |
Variable | BOPA | BO2A | Marenzelleria | Oligochaeta | M. affinis |
---|---|---|---|---|---|
Total HC | 0.20 | 0.58 ** | 0.34 | 0.14 | −0.44 |
TPwat | 0.29 | −0.05 | 0.14 | −0.33 | −0.17 |
Chl-a | 0.28 | 0.11 | 0.35 | −0.12 | −0.18 |
WP | 0.47 * | 0.42 | 0.38 | −0.28 | −0.54 * |
PAH | 0.18 | −0.23 | 0.19 | −0.17 | 0.13 |
TOC | −0.20 | −0.47 * | −0.18 | −0.13 | 0.27 |
Hg | −0.10 | −0.47 * | −0.23 | −0.29 | 0.25 |
Cd | −0.51 * | −0.49 * | −0.36 | 0.29 | 0.61 ** |
Cu | −0.26 | −0.28 | −0.15 | 0.09 | 0.34 |
Pb | −0.43 | −0.35 | −0.27 | 0.32 | 0.49 * |
Zn | −0.50 * | −0.33 | −0.26 | 0.37 | 0.45 |
TPsed | −0.31 | −0.22 | −0.01 | 0.31 | 0.29 |
SP | −0.47 * | −0.68 ** | −0.30 | 0.20 | 0.65 ** |
Depth, m | Tsurf | Tbot | Ssurf | Sbot | O2 surf | O2 bot | |
---|---|---|---|---|---|---|---|
Marenzelleria spp. | −0.767 *** | −0.199 | 0.069 | −0.004 | −0.267 | −0.106 | 0.083 |
Oligochaeta | −0.063 | 0.397 | 0.150 | −0.497 * | 0.004 | −0.031 | 0.129 |
M. affinis | 0.702 *** | 0.082 | 0.252 | −0.215 | 0.005 | 0.270 | 0.287 |
BOPA | −0.569 * | −0.308 | −0.122 | 0.344 | −0.116 | −0.065 | −0.094 |
BO2A | −0.798 *** | 0.105 | −0.241 | −0.002 | 0.026 | −0.288 | −0.261 |
SP | 0.540 * | −0.029 | 0.265 | 0.019 | −0.070 | 0.091 | 0.177 |
WP | −0.528 * | −0.256 | −0.057 | 0.037 | −0.196 | 0.079 | 0.047 |
Variable | Factor 1 | Factor 2 | Factor 3 |
---|---|---|---|
HC | −0.36 | −0.35 | −0.43 |
TP wat | −0.46 | 0.09 | 0.67 |
Chl-a | −0.67 | 0.28 | 0.10 |
WP | −0.80 | 0.01 | 0.18 |
PAH | −0.07 | 0.88 | 0.02 |
TOC | 0.02 | 0.31 | 0.64 |
Hg | 0.23 | −0.01 | 0.64 |
Cd | 0.86 | −0.01 | 0.10 |
Cu | 0.62 | −0.38 | 0.16 |
Pb | 0.81 | −0.35 | 0.02 |
Zn | 0.75 | 0.05 | 0.00 |
TPsed | 0.28 | 0.21 | −0.13 |
SP | 0.83 | 0.17 | 0.35 |
Marenzelleria | −0.34 | 0.24 | −0.63 |
Annelida | 0.32 | 0.13 | −0.74 |
M. affinis | 0.72 | −0.01 | 0.10 |
Macrozoobenthos | 0.48 | 0.12 | −0.63 |
BOPA | −0.73 | −0.05 | −0.07 |
BO2A | −0.46 | −0.15 | −0.75 |
Depth | 0.40 | −0.22 | 0.79 |
Tsurf | 0.42 | −0.54 | −0.34 |
Tbot | 0.04 | 0.98 | 0.07 |
Ssurf | −0.21 | −0.49 | 0.30 |
Sbot | 0.11 | −0.91 | 0.01 |
O2 surf | −0.11 | 0.62 | −0.04 |
O2 bot | 0.02 | 0.97 | −0.15 |
Eigenvalue | 7.07 | 5.00 | 4.32 |
% of the total variance | 27.18 | 19.23 | 16.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maximov, A.A.; Berezina, N.A. Benthic Opportunistic Polychaete/Amphipod Ratio: An Indicator of Pollution or Modification of the Environment by Macroinvertebrates? J. Mar. Sci. Eng. 2023, 11, 190. https://doi.org/10.3390/jmse11010190
Maximov AA, Berezina NA. Benthic Opportunistic Polychaete/Amphipod Ratio: An Indicator of Pollution or Modification of the Environment by Macroinvertebrates? Journal of Marine Science and Engineering. 2023; 11(1):190. https://doi.org/10.3390/jmse11010190
Chicago/Turabian StyleMaximov, Alexey A., and Nadezhda A. Berezina. 2023. "Benthic Opportunistic Polychaete/Amphipod Ratio: An Indicator of Pollution or Modification of the Environment by Macroinvertebrates?" Journal of Marine Science and Engineering 11, no. 1: 190. https://doi.org/10.3390/jmse11010190
APA StyleMaximov, A. A., & Berezina, N. A. (2023). Benthic Opportunistic Polychaete/Amphipod Ratio: An Indicator of Pollution or Modification of the Environment by Macroinvertebrates? Journal of Marine Science and Engineering, 11(1), 190. https://doi.org/10.3390/jmse11010190