Time-Series Hourly Sea Surface Temperature Prediction Using Deep Neural Network Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Dataset
2.2. Methodology
- Data collection: Two datasets, including five parameters of SST, air pressure, water temperature, wind direction, and wind speed, were obtained from the Korea Hydrographic and Oceanographic Agency. These parameters were selected according to deficiencies in the literature;
- Data preparation: Datasets were preprocessed to normalize features and remove outliers. Then, data records were transformed into a time-series format for supervised learning;
- Time-series modeling: SST time-series modeling was performed using three deep learning methods—CNN, LSTM, and CNN–LSTM—with different epochs of 10, 20, and 50;
- Prediction assessment: Time-series prediction of SST was performed with created models. Then, models were validated using mean absolute error (MAE) and mean squared error (MSE) metrics;
- Feature importance evaluation: The leave-one-feature-out (LOFO) method was utilized with MEA and MSE metrics to understand the relative importance of features in modeling.
2.3. Materials
2.3.1. Convolutional Neural Network (CNN)
2.3.2. Long Short-Term Memory (LSTM)
2.3.3. Convolutional Neural Network and Long Short-Term Memory (CNN–LSTM)
2.3.4. Validation Metrics
3. Results
- Nan values were replaced with the bfill method;
- Any feature record outside the range of (mean − 3 × STD, mean + 3 × STD) was considered an outlier and replaced with the bfill method;
- All features were normalized in the [0, 1] range.
4. Discussion
5. Conclusions
- According to validation metrics, the highest MAE (0.0261) and MSE (0.0011) for the DT_001 dataset and the highest MAE (0.0145) and MSE (0.0004) for the DT_0008 dataset were related to CNN–LSTM by 10 epochs and CNN–LSTM by 20 epochs, respectively. Considering the calculated MAE and MSE values, the usability of proposed network architectures and modeling features for hourly SST prediction is confirmed. We introduced CNN as a more practical method as it was faster than the other two models. Nevertheless, all three models showed high-performance levels and had slight prediction errors.
- We observed different findings about the validation of CNN, LSTM, and CNN–LSTM models in similar works as neural network architecture differed. This indicates the high importance of adjusting neural network layers.
- Low variant time-series SST data enhanced the modeling. Therefore, the proposed approach may have higher prediction errors if data becomes more variant.
- The LOFO method indicated that on average, air pressure (0.441) and water temperature (0.423) had remarkably higher feature importance weights than wind direction (0.072) and wind speed (0.064). However, there were different statements about the effectiveness of these features in the literature. The best choice is to perform a feature selection method before time-series SST modeling.
- Generally, applying deep neural networks is a suitable method for time-series prediction as it can explain complex relationships between different features.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiao, C.; Chen, N.; Hu, C.; Wang, K.; Gong, J.; Chen, Z. Short and mid-term sea surface temperature prediction using time-series satellite data and LSTM-AdaBoost combination approach. Remote Sens. Environ. 2019, 233, 111358. [Google Scholar] [CrossRef]
- Merchant, C.J.; Embury, O.; Bulgin, C.E.; Block, T.; Corlett, G.K.; Fiedler, E.; Good, S.A.; Mittaz, J.; Rayner, N.A.; Berry, D. Satellite-based time-series of sea-surface temperature since 1981 for climate applications. Sci. Data 2019, 6, 223. [Google Scholar] [CrossRef] [PubMed]
- Bouali, M.; Sato, O.T.; Polito, P.S. Temporal trends in sea surface temperature gradients in the South Atlantic Ocean. Remote Sens. Environ. 2017, 194, 100–114. [Google Scholar] [CrossRef]
- Patil, K.; Deo, M.; Ravichandran, M. Prediction of sea surface temperature by combining numerical and neural techniques. J. Atmos. Ocean. Technol. 2016, 33, 1715–1726. [Google Scholar] [CrossRef]
- Patil, K.R.; Iiyama, M. Deep Learning Models to Predict Sea Surface Temperature in Tohoku Region. IEEE Access 2022, 10, 40410–40418. [Google Scholar] [CrossRef]
- Wu, S.; Fu, F.; Wang, L.; Yang, M.; Dong, S.; He, Y.; Zhang, Q.; Guo, R. Short-Term Regional Temperature Prediction Based on Deep Spatial and Temporal Networks. Atmosphere 2022, 13, 1948. [Google Scholar] [CrossRef]
- Aparna, S.; D’souza, S.; Arjun, N. Prediction of daily sea surface temperature using artificial neural networks. Int. J. Remote Sens. 2018, 39, 4214–4231. [Google Scholar] [CrossRef]
- Manessi, F.; Rozza, A. Learning Combinations of Activation Functions. In Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018; pp. 61–66. [Google Scholar]
- Milliff, R.F.; Large, W.G.; Morzel, J.; Danabasoglu, G.; Chin, T.M. Ocean general circulation model sensitivity to forcing from scatterometer winds. J. Geophys. Res. Ocean. 1999, 104, 11337–11358. [Google Scholar] [CrossRef]
- Xue, Y.; Leetmaa, A. Forecasts of tropical Pacific SST and sea level using a Markov model. Geophys. Res. Lett. 2000, 27, 2701–2704. [Google Scholar] [CrossRef]
- Kug, J.S.; Kang, I.S.; Lee, J.Y.; Jhun, J.G. A statistical approach to Indian Ocean sea surface temperature prediction using a dynamical ENSO prediction. Geophys. Res. Lett. 2004, 31, L09212. [Google Scholar] [CrossRef]
- Lins, I.D.; Araujo, M.; das Chagas Moura, M.; Silva, M.A.; Droguett, E.L. Prediction of sea surface temperature in the tropical Atlantic by support vector machines. Comput. Stat. Data Anal. 2013, 61, 187–198. [Google Scholar] [CrossRef]
- Patil, K.; Deo, M.C. Prediction of daily sea surface temperature using efficient neural networks. Ocean. Dyn. 2017, 67, 357–368. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, H.; Dong, J.; Zhong, G.; Sun, X. Prediction of sea surface temperature using long short-term memory. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1745–1749. [Google Scholar] [CrossRef]
- Al Shehhi, M.R.; Kaya, A. Time series and neural network to forecast water quality parameters using satellite data. Cont. Shelf Res. 2021, 231, 104612. [Google Scholar] [CrossRef]
- Aydınlı, H.O.; Ekincek, A.; Aykanat-Atay, M.; Sarıtaş, B.; Özenen-Kavlak, M. Sea surface temperature prediction model for the Black Sea by employing time-series satellite data: A machine learning approach. Appl. Geomat. 2022, 14, 669–678. [Google Scholar] [CrossRef]
- Xu, L.; Li, Q.; Yu, J.; Wang, L.; Xie, J.; Shi, S. Spatio-temporal predictions of SST time series in China’s offshore waters using a regional convolution long short-term memory (RC-LSTM) network. Int. J. Remote Sens. 2020, 41, 3368–3389. [Google Scholar] [CrossRef]
- Xiao, C.; Chen, N.; Hu, C.; Wang, K.; Xu, Z.; Cai, Y.; Xu, L.; Chen, Z.; Gong, J. A spatiotemporal deep learning model for sea surface temperature field prediction using time-series satellite data. Environ. Model. Softw. 2019, 120, 104502. [Google Scholar] [CrossRef]
- Patil, K.; Deo, M.; Ghosh, S.; Ravichandran, M. Predicting sea surface temperatures in the North Indian Ocean with nonlinear autoregressive neural networks. Int. J. Oceanogr. 2013, 2013, 11. [Google Scholar] [CrossRef]
- Qiao, B.; Wu, Z.; Tang, Z.; Wu, G. Sea surface temperature prediction approach based on 3D CNN and LSTM with attention mechanism. In Proceedings of the 2022 24th International Conference on Advanced Communication Technology (ICACT), Pyeongchang, Korea, 13–16 February 2022; pp. 342–347. [Google Scholar]
- Jonnakuti, P.K.; Bhaskar Tata Venkata Sai, U. A hybrid CNN-LSTM based model for the prediction of sea surface temperature using time-series satellite data. In Proceedings of the EGU General Assembly Conference Abstracts, Sessions, Vienna, 15 January 2020; p. 817. [Google Scholar]
- Yang, Y.; Dong, J.; Sun, X.; Lima, E.; Mu, Q.; Wang, X. A CFCC-LSTM model for sea surface temperature prediction. IEEE Geosci. Remote Sens. Lett. 2017, 15, 207–211. [Google Scholar] [CrossRef]
- Ghosh, A.; Sufian, A.; Sultana, F.; Chakrabarti, A.; De, D. Fundamental concepts of convolutional neural network. Recent Trends Adv. Artif. Intell. Internet Things 2020, 172, 519–567. [Google Scholar]
- Agga, A.; Abbou, A.; Labbadi, M.; El Houm, Y.; Ali, I.H.O. CNN-LSTM: An efficient hybrid deep learning architecture for predicting short-term photovoltaic power production. Electr. Power Syst. Res. 2022, 208, 107908. [Google Scholar] [CrossRef]
- Kordi, F.; Yousefi, H. Crop classification based on phenology information by using time series of optical and synthetic-aperture radar images. Remote Sens. Appl. Soc. Environ. 2022, 27, 100812. [Google Scholar] [CrossRef]
- Ghanbari, R.; Sobhani, B.; Aghaee, M.; Oshnooei Nooshabadi, A.; Safarianzengir, V. Monitoring and evaluation of effective climate parameters on the cultivation and zoning of corn agricultural crop in Iran (case study: Ardabil province). Arab. J. Geosci. 2021, 14, 387. [Google Scholar] [CrossRef]
- Khosravi, Y.; Bahri, A.; Tavakoli, A. Investigation of Sea Surface Temperature (SST) and its spatial changes in Gulf of Oman for the period of 2003 to 2015. J. Earth Space Phys. 2020, 45, 165–179. [Google Scholar]
- Tang, C.; Hao, D.; Wei, Y.; Zhao, F.; Lin, H.; Wu, X. Analysis of Influencing Factors of SST in Tropical West Indian Ocean Based on COBE Satellite Data. J. Mar. Sci. Eng. 2022, 10, 1057. [Google Scholar] [CrossRef]
- Ghanbari, R.; Heidarimozaffar, M.; Soltani, A.; Arefi, H. Land surface temperature analysis in densely populated zones from the perspective of spectral indices and urban morphology. Int. J. Environ. Sci. Technol. 2023, 20, 2883–2902. [Google Scholar] [CrossRef]
- Habeck, C.; Gazes, Y.; Razlighi, Q.; Stern, Y. Cortical thickness and its associations with age, total cognition and education across the adult lifespan. PLoS ONE 2020, 15, e0230298. [Google Scholar] [CrossRef]
- Aksan, F.; Li, Y.; Suresh, V.; Janik, P. CNN-LSTM vs. LSTM-CNN to Predict Power Flow Direction: A Case Study of the High-Voltage Subnet of Northeast Germany. Sensors 2023, 23, 901. [Google Scholar] [CrossRef]
- Aslam, S.; Herodotou, H.; Mohsin, S.M.; Javaid, N.; Ashraf, N.; Aslam, S. A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids. Renew. Sustain. Energy Rev. 2021, 144, 110992. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Alhussein, M.; Aurangzeb, K.; Haider, S.I. Hybrid CNN-LSTM model for short-term individual household load forecasting. IEEE Access 2020, 8, 180544–180557. [Google Scholar] [CrossRef]
- Farhangi, F.; Sadeghi-Niaraki, A.; Razavi-Termeh, S.V.; Choi, S.-M. Evaluation of Tree-Based Machine Learning Algorithms for Accident Risk Mapping Caused by Driver Lack of Alertness at a National Scale. Sustainability 2021, 13, 10239. [Google Scholar] [CrossRef]
- Khorrami, M.; Khorrami, M.; Farhangi, F. Evaluation of tree-based ensemble algorithms for predicting the big five personality traits based on social media photos: Evidence from an Iranian sample. Personal. Individ. Differ. 2022, 188, 111479. [Google Scholar] [CrossRef]
- Ozbek, A.; Sekertekin, A.; Bilgili, M.; Arslan, N. Prediction of 10-min, hourly, and daily atmospheric air temperature: Comparison of LSTM, ANFIS-FCM, and ARMA. Arab. J. Geosci. 2021, 14, 622. [Google Scholar] [CrossRef]
- Tran, T.T.K.; Bateni, S.M.; Ki, S.J.; Vosoughifar, H. A review of neural networks for air temperature forecasting. Water 2021, 13, 1294. [Google Scholar] [CrossRef]
- Sunny, M.A.I.; Maswood, M.M.S.; Alharbi, A.G. Deep learning-based stock price prediction using LSTM and bi-directional LSTM model. In Proceedings of the 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES), Giza, Egypt, 24–26 October 2020; pp. 87–92. [Google Scholar]
- Zahroh, S.; Hidayat, Y.; Pontoh, R.S.; Santoso, A.; Sukono, F.; Bon, A. Modeling and forecasting daily temperature in Bandung. In Proceedings of the international conference on industrial engineering and operations management, Riyadh, Saudi Arabia, 26–28 November 2019; pp. 406–412. [Google Scholar]
- Toharudin, T.; Pontoh, R.S.; Caraka, R.E.; Zahroh, S.; Lee, Y.; Chen, R.C. Employing long short-term memory and Facebook prophet model in air temperature forecasting. Commun. Stat.-Simul. Comput. 2023, 52, 279–290. [Google Scholar] [CrossRef]
- Hou, J.; Wang, Y.; Zhou, J.; Tian, Q. Prediction of hourly air temperature based on CNN–LSTM. Geomat. Nat. Hazards Risk 2022, 13, 1962–1986. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, Y. Temperature forecasting via convolutional recurrent neural networks based on time-series data. Complexity 2020, 2020, 8. [Google Scholar] [CrossRef]
- Roy, D.S. Forecasting the air temperature at a weather station using deep neural networks. Procedia Comput. Sci. 2020, 178, 38–46. [Google Scholar] [CrossRef]
- Choi, H.-M.; Kim, M.-K.; Yang, H. Deep-learning model for sea surface temperature prediction near the Korean Peninsula. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2023, 208, 105262. [Google Scholar] [CrossRef]
- Wei, L.; Guan, L. Seven-day Sea Surface Temperature Prediction using a 3DConv-LSTM model. Front. Mar. Sci. 2022, 9, 2606. [Google Scholar] [CrossRef]
- Heryadi, Y.; Warnars, H.L.H.S. Learning temporal representation of transaction amount for fraudulent transaction recognition using CNN, Stacked LSTM, and CNN-LSTM. In Proceedings of the 2017 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom), Phuket, Thailand, 20–22 November 2017; pp. 84–89. [Google Scholar]
- Garcia, C.I.; Grasso, F.; Luchetta, A.; Piccirilli, M.C.; Paolucci, L.; Talluri, G. A comparison of power quality disturbance detection and classification methods using CNN, LSTM and CNN-LSTM. Appl. Sci. 2020, 10, 6755. [Google Scholar] [CrossRef]
- Smith, B.A.; McClendon, R.W.; Hoogenboom, G. Improving air temperature prediction with artificial neural networks. Int. J. Comput. Intell. 2006, 3, 179–186. [Google Scholar]
- Fahimi Nezhad, E.; Fallah Ghalhari, G.; Bayatani, F. Forecasting maximum seasonal temperature using artificial neural networks “Tehran case study”. Asia-Pac. J. Atmos. Sci. 2019, 55, 145–153. [Google Scholar] [CrossRef]
- Park, I.; Kim, H.S.; Lee, J.; Kim, J.H.; Song, C.H.; Kim, H.K. Temperature prediction using the missing data refinement model based on a long short-term memory neural network. Atmosphere 2019, 10, 718. [Google Scholar] [CrossRef]
- Guo, X.; He, J.; Wang, B.; Wu, J. Prediction of Sea Surface Temperature by Combining Interdimensional and Self-Attention with Neural Networks. Remote Sens. 2022, 14, 4737. [Google Scholar] [CrossRef]
- Qu, B.; Gabric, A.J.; Zhu, J.-n.; Lin, D.-R.; Qian, F.; Zhao, M. Correlation between sea surface temperature and wind speed in Greenland Sea and their relationships with NAO variability. Water Sci. Eng. 2012, 5, 304–315. [Google Scholar]
- Rugg, A.; Foltz, G.R.; Perez, R.C. Role of mixed layer dynamics in tropical North Atlantic interannual sea surface temperature variability. J. Clim. 2016, 29, 8083–8101. [Google Scholar] [CrossRef]
- Al-Shehhi, M.R. Uncertainty in satellite sea surface temperature with respect to air temperature, dust level, wind speed and solar position. Reg. Stud. Mar. Sci. 2022, 53, 102385. [Google Scholar] [CrossRef]
- Gaube, P.; Chickadel, C.; Branch, R.; Jessup, A. Satellite observations of SST-induced wind speed perturbation at the oceanic submesoscale. Geophys. Res. Lett. 2019, 46, 2690–2695. [Google Scholar] [CrossRef]
- O’Neill, L.W.; Chelton, D.B.; Esbensen, S.K. The effects of SST-induced surface wind speed and direction gradients on midlatitude surface vorticity and divergence. J. Clim. 2010, 23, 255–281. [Google Scholar] [CrossRef]
- Wick, G.A.; Emery, W.J.; Kantha, L.H.; Schlüssel, P. The behavior of the bulk–skin sea surface temperature difference under varying wind speed and heat flux. J. Phys. Oceanogr. 1996, 26, 1969–1988. [Google Scholar] [CrossRef]
Datasets | |||||
---|---|---|---|---|---|
DT_0001 | DT_0008 | ||||
Number of Data Records | 83592 | 87575 | |||
Features | SST (°C) | Mean: 11.48 | STD: 10.13 | Mean: 12.29 | STD: 10.18 |
Max: 38.57 | Min: −43.50 | Max: 35.48 | Min: −43.90 | ||
Air pressure (hPa) | Mean: 1015.01 | STD: 8.29 | Mean: 1015.91 | STD: 8.77 | |
Max: 1059.69 | Min: 913.00 | Max: 1042.62 | Min: 914.20 | ||
Water temperature (°C) | Mean: 13.75 | STD: 8.48 | Mean: 14.18 | STD: 8.72 | |
Max: 31.45 | Min: −1.60 | Max: 31.93 | Min: −5.00 | ||
Wind direction (Deg) | Mean: 194.38 | STD: 96.68 | Mean: 173.99 | STD: 97.61 | |
Max: 356.00 | Min: 0.00 | Max: 359.00 | Min: 0.00 | ||
Wind speed (m/s) | Mean: 3.51 | STD: 2.12 | Mean: 2.06 | STD: 1.56 | |
Max: 43.07 | Min: 0.00 | Max: 18.68 | Min: 0.00 |
Datasets | Features | Winter | Spring | Summer | Autumn | |
---|---|---|---|---|---|---|
DT_001 | SST | STD | 0.09 | 0.09 | 0.05 | 0.14 |
Min | 0.09 | 0.30 | 0.57 | 0.07 | ||
Max | 0.62 | 0.85 | 1.00 | 0.81 | ||
Air pressure | STD | 0.11 | 0.11 | 0.10 | 0.12 | |
Min | 0.11 | 0.00 | 0.00 | 0.10 | ||
Max | 0.94 | 0.83 | 0.68 | 1.00 | ||
Water temperature | STD | 0.06 | 0.13 | 0.05 | 0.18 | |
Min | 0.06 | 0.22 | 0.60 | 0.11 | ||
Max | 0.46 | 0.77 | 1.00 | 0.77 | ||
Wind direction | STD | 0.30 | 0.22 | 0.25 | 0.31 | |
Min | 0.30 | 0.00 | 0.00 | 0.00 | ||
Max | 1.00 | 1.00 | 0.99 | 1.00 | ||
Wind speed | STD | 0.22 | 0.19 | 0.18 | 0.21 | |
Min | 0.22 | 0.00 | 0.00 | 0.00 | ||
Max | 1.00 | 1.00 | 1.00 | 1.00 | ||
DT_008 | SST | STD | 0.10 | 0.10 | 0.06 | 0.15 |
Min | 0.10 | 0.17 | 0.49 | 0.01 | ||
Max | 0.70 | 0.91 | 1.00 | 0.86 | ||
Air pressure | STD | 0.12 | 0.11 | 0.11 | 0.11 | |
Min | 0.12 | 0.01 | 0.00 | 0.03 | ||
Max | 0.99 | 0.78 | 0.66 | 1.00 | ||
Water temperature | STD | 0.08 | 0.12 | 0.05 | 0.17 | |
Min | 0.08 | 0.31 | 0.00 | 0.10 | ||
Max | 0.47 | 0.81 | 1.00 | 0.79 | ||
Wind direction | STD | 0.29 | 0.24 | 0.25 | 0.27 | |
Min | 0.29 | 0.00 | 0.00 | 0.00 | ||
Max | 1.00 | 1.00 | 1.00 | 0.99 | ||
Wind speed | STD | 0.21 | 0.22 | 0.22 | 0.21 | |
Min | 0.21 | 0.00 | 0.00 | 0.00 | ||
Max | 1.00 | 1.00 | 1.00 | 1.00 |
CNN | Model: Sequential | ||
Layer (type) | Output shape | Parameter | |
Conv1D | (None, 32, 64) | 704 | |
Conv1D | (None, 22, 64) | 8256 | |
MaxPooling1D | (None, 11,64) | 0 | |
Flatten | (None, 704) | 0 | |
Dense | (None, 50) | 35,250 | |
Dense | (None, 1) | 51 | |
Total parameters: 44,264 Trainable parameters: 44,261 Non-trainable parameters: 0 | |||
LSTM | Model: Sequential | ||
Layer (type) | Output shape | Parameter | |
LSTM | (None, 24, 128) | 68,608 | |
Dropout | (None, 24, 128) | 0 | |
Activation | (None, 24, 128) | 0 | |
LSTM | (None, 128) | 131,584 | |
Dropout | (None, 128) | 0 | |
Dense | (None, 1) | 129 | |
Total parameters: 200,321 Trainable parameters: 200,321 Non-trainable parameters: 0 | |||
CNN–LSTM | Model: Sequential | ||
Layer (type) | Output shape | Parameter | |
Conv1D | (None, 23, 64) | 704 | |
Conv1D | (None, 22, 64) | 8256 | |
MaxPooling1D | (None, 11,64) | 0 | |
LSTM | (None, 11, 128) | 98,816 | |
LSTM | (None, 11, 128) | 131,584 | |
Flatten | (None, 1408) | 0 | |
Dense | (None, 64) | 90,176 | |
Dropout | (None, 64) | 0 | |
Dense | (None, 16) | 1040 | |
Dropout | (None, 16) | 0 | |
Dense | (None, 1) | 17 | |
Total parameters: 330,593 Trainable parameters: 330,593 Non-trainable parameters: 0 |
Model | Epoch | Train Time (min) | DT_0001 Dataset | DT_0008 Dataset | ||||||
---|---|---|---|---|---|---|---|---|---|---|
MAE | MSE | MAE | MSE | |||||||
Train Data | Test Data | Train Data | Test Data | Train Data | Test Data | Train Data | Test Data | |||
CNN | 10 | ≈1′ | 0.0066 | 0.0068 | 0.0001 | 0.0001 | 0.0086 | 0.0089 | 0.0002 | 0.0002 |
20 | ≈2′ | 0.0069 | 0.0070 | 0.0001 | 0.0001 | 0.0105 | 0.0104 | 0.0002 | 0.0002 | |
50 | ≈5′ | 0.0063 | 0.0064 | 0.0001 | 0.0001 | 0.0096 | 0.0097 | 0.0002 | 0.0002 | |
LSTM | 10 | ≈2.5′ | 0.0094 | 0.0099 | 0.0002 | 0.0002 | 0.0110 | 0.0117 | 0.0002 | 0.0003 |
20 | ≈5′ | 0.0066 | 0.0070 | 0.0001 | 0.0001 | 0.0099 | 0.0100 | 0.0002 | 0.0002 | |
50 | ≈13′ | 0.0083 | 0.0086 | 0.0001 | 0.0002 | 0.0097 | 0.0100 | 0.0002 | 0.0002 | |
CNN–LSTM | 10 | ≈3′ | 0.0242 | 0.0261 | 0.0010 | 0.0011 | 0.0109 | 0.0116 | 0.0002 | 0.0003 |
20 | ≈5′ | 0.0192 | 0.0204 | 0.0006 | 0.0007 | 0.0139 | 0.0145 | 0.0003 | 0.0004 | |
50 | ≈12′ | 0.0176 | 0.0191 | 0.0007 | 0.0008 | 0.0105 | 0.0113 | 0.0002 | 0.0002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farhangi, F.; Sadeghi-Niaraki, A.; Safari Bazargani, J.; Razavi-Termeh, S.V.; Hussain, D.; Choi, S.-M. Time-Series Hourly Sea Surface Temperature Prediction Using Deep Neural Network Models. J. Mar. Sci. Eng. 2023, 11, 1136. https://doi.org/10.3390/jmse11061136
Farhangi F, Sadeghi-Niaraki A, Safari Bazargani J, Razavi-Termeh SV, Hussain D, Choi S-M. Time-Series Hourly Sea Surface Temperature Prediction Using Deep Neural Network Models. Journal of Marine Science and Engineering. 2023; 11(6):1136. https://doi.org/10.3390/jmse11061136
Chicago/Turabian StyleFarhangi, Farbod, Abolghasem Sadeghi-Niaraki, Jalal Safari Bazargani, Seyed Vahid Razavi-Termeh, Dildar Hussain, and Soo-Mi Choi. 2023. "Time-Series Hourly Sea Surface Temperature Prediction Using Deep Neural Network Models" Journal of Marine Science and Engineering 11, no. 6: 1136. https://doi.org/10.3390/jmse11061136
APA StyleFarhangi, F., Sadeghi-Niaraki, A., Safari Bazargani, J., Razavi-Termeh, S. V., Hussain, D., & Choi, S.-M. (2023). Time-Series Hourly Sea Surface Temperature Prediction Using Deep Neural Network Models. Journal of Marine Science and Engineering, 11(6), 1136. https://doi.org/10.3390/jmse11061136