Fishing Area Prediction Using Scene-Based Ensemble Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.2.1. Fishing Catch Points
2.2.2. Environmental Factors from Remote Sensing
2.3. Method
2.3.1. Fishing Catch Point Density Map
2.3.2. Fishing Area Prediction Model Construction
2.3.3. Scene-Based Prediction
2.3.4. Accuracy Assessment
3. Results
3.1. Fishing Catch Point Density Maps
3.2. Fishing Area Model in DT and GLM
3.3. Scene-Based Prediction in Fishing Area
4. Discussion
4.1. Ensemble Model
4.2. Tuna and Environmental Variables
5. Conclusions, Limitations, and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
DT | GLM | |||||
---|---|---|---|---|---|---|
Weeks | CC | Kappa | AUC | CC | Kappa | AUC |
Week 1 | 0.922 | 0.823 | 0.925 | 0.845 | 0.638 | 0.849 |
Week 2 | 0.913 | 0.807 | 0.894 | 0.874 | 0.712 | 0.816 |
Week 3 | 0.956 | 0.905 | 0.958 | 0.857 | 0.689 | 0.840 |
Week 4 | 0.946 | 0.882 | 0.941 | 0.929 | 0.845 | 0.932 |
Week 5 | 0.911 | 0.804 | 0.907 | 0.899 | 0.774 | 0.869 |
Week 6 | 0.885 | 0.869 | 0.917 | 0.879 | 0.729 | 0.843 |
Week 7 | 0.898 | 0.733 | 0.872 | 0.879 | 0.734 | 0.900 |
Week 8 | 0.983 | 0.925 | 0.976 | 0.922 | 0.838 | 0.974 |
Week 9 | 0.919 | 0.612 | 0.924 | 0.859 | 0.707 | 0.912 |
Week 10 | 0.938 | 0.803 | 0.947 | 0.918 | 0.826 | 0.947 |
Week 11 | 0.911 | 0.870 | 0.888 | 0.931 | 0.847 | 0.903 |
Week 12 | 0.933 | 0.833 | 0.958 | 0.878 | 0.733 | 0.891 |
Week 13 | 0.876 | 0.669 | 0.872 | 0.832 | 0.626 | 0.854 |
Week 14 | 0.846 | 0.759 | 0.863 | 0.901 | 0.781 | 0.908 |
Week 15 | 0.848 | 0.736 | 0.88 | 0.840 | 0.628 | 0.764 |
Week 16 | 0.92 | 0.735 | 0.935 | 0.860 | 0.680 | 0.893 |
Week 17 | 0.899 | 0.808 | 0.874 | 0.871 | 0.708 | 0.841 |
Week 18 | 0.874 | 0.722 | 0.845 | 0.859 | 0.678 | 0.813 |
Week 19 | 0.9 | 0.725 | 0.907 | 0.813 | 0.585 | 0.840 |
Week 20 | 0.873 | 0.807 | 0.925 | 0.878 | 0.726 | 0.833 |
Week 21 | 0.935 | 0.824 | 0.923 | 0.915 | 0.814 | 0.928 |
Week 22 | 0.91 | 0.791 | 0.919 | 0.802 | 0.603 | 0.889 |
Week 23 | 0.885 | 0.835 | 0.914 | 0.885 | 0.745 | 0.897 |
Week 24 | 0.887 | 0.793 | 0.881 | 0.850 | 0.658 | 0.831 |
Week 25 | 0.817 | 0.614 | 0.781 | 0.824 | 0.608 | 0.841 |
Week 26 | 0.859 | 0.778 | 0.905 | 0.890 | 0.753 | 0.887 |
Week 27 | 0.836 | 0.614 | 0.845 | 0.815 | 0.580 | 0.827 |
Week 28 | 0.894 | 0.741 | 0.902 | 0.813 | 0.600 | 0.867 |
Week 29 | 0.868 | 0.671 | 0.89 | 0.795 | 0.573 | 0.881 |
Week 30 | 0.835 | 0.761 | 0.893 | 0.897 | 0.771 | 0.881 |
Week 31 | 0.809 | 0.594 | 0.852 | 0.766 | 0.445 | 0.715 |
Week 32 | 0.823 | 0.656 | 0.891 | 0.839 | 0.624 | 0.805 |
Week 33 | 0.333 | 0.000 | 0.5 | 1.000 | 1.000 | 1.000 |
Week 34 | 0.914 | 0.798 | 0.944 | 0.829 | 0.616 | 0.881 |
Week 35 | 0.9 | 0.802 | 0.884 | 0.876 | 0.727 | 0.892 |
Week 36 | 0.921 | 0.785 | 0.907 | 0.835 | 0.616 | 0.750 |
Week 37 | 0.871 | 0.709 | 0.864 | 0.821 | 0.589 | 0.811 |
Week 38 | 0.903 | 0.782 | 0.916 | 0.866 | 0.707 | 0.884 |
Week 39 | 0.914 | 0.857 | 0.919 | 0.905 | 0.797 | 0.923 |
Week 40 | 0.857 | 0.734 | 0.829 | 0.881 | 0.739 | 0.899 |
Week 41 | 0.848 | 0.683 | 0.846 | 0.856 | 0.675 | 0.827 |
Week 42 | 0.92 | 0.808 | 0.929 | 0.902 | 0.785 | 0.912 |
Week 43 | 0.927 | 0.781 | 0.933 | 0.863 | 0.697 | 0.863 |
Week 44 | 0.902 | 0.806 | 0.892 | 0.872 | 0.745 | 0.967 |
Week 45 | 0.911 | 0.798 | 0.925 | 0.876 | 0.738 | 0.938 |
Week 46 | 0.888 | 0.743 | 0.897 | 0.885 | 0.737 | 0.905 |
Weeks | Chl-a | SST | SSH |
---|---|---|---|
Week 1 | 12% | 43% | 45% |
Week 2 | 17% | 52% | 31% |
Week 3 | 13% | 47% | 40% |
Week 4 | 23% | 42% | 35% |
Week 5 | 22% | 47% | 31% |
Week 6 | 9% | 47% | 45% |
Week 7 | 20% | 65% | 15% |
Week 8 | 22% | 53% | 25% |
Week 9 | 27% | 48% | 25% |
Week 10 | 17% | 59% | 25% |
Week 11 | 22% | 56% | 22% |
Week 12 | 23% | 43% | 34% |
Week 13 | 22% | 56% | 22% |
Week 14 | 25% | 58% | 17% |
Week 15 | 26% | 49% | 25% |
Week 16 | 25% | 46% | 29% |
Week 17 | 25% | 47% | 29% |
Week 18 | 38% | 29% | 33% |
Week 19 | 27% | 39% | 34% |
Week 20 | 25% | 21% | 54% |
Week 21 | 44% | 20% | 37% |
Week 22 | 42% | 18% | 40% |
Week 23 | 23% | 29% | 48% |
Week 24 | 17% | 18% | 64% |
Week 25 | 24% | 3% | 72% |
Week 26 | 21% | 13% | 65% |
Week 27 | 18% | 22% | 60% |
Week 28 | 48% | 13% | 39% |
Week 29 | 51% | 17% | 31% |
Week 30 | 31% | 22% | 47% |
Week 31 | 27% | 16% | 57% |
Week 32 | 10% | 18% | 72% |
Week 33 | 28% | 16% | 55% |
Week 34 | 21% | 20% | 59% |
Week 35 | 13% | 49% | 39% |
Week 36 | 53% | 8% | 39% |
Week 37 | 32% | 21% | 47% |
Week 38 | 43% | 28% | 29% |
Week 39 | 45% | 23% | 32% |
Week 40 | 13% | 56% | 31% |
Week 41 | 27% | 45% | 28% |
Week 42 | 25% | 46% | 29% |
Week 43 | 20% | 43% | 38% |
Week 44 | 12% | 55% | 33% |
Week 45 | 26% | 45% | 29% |
Week 46 | 19% | 50% | 31% |
Weeks | Variables | ||
---|---|---|---|
Chl-a | SST | SSH | |
Week 1 | 0.921 | 1.58 × 10−10 *** | 0.221 |
Week 2 | 3.42 × 10−14 *** | <2 × 10−16 *** | 0.002 ** |
Week 3 | 2.55 × 10−8 *** | <2 × 10−16 *** | 1.96 × 10−6 *** |
Week 4 | <2 × 10−16 *** | <2 × 10−16 *** | 0.145 |
Week 5 | 0.120 | <2 × 10−16 *** | 0.476 |
Week 6 | 0.727 | 1.65 × 10−13 *** | 4.47 × 10−5 *** |
Week 7 | 0.757 | <2 × 10−16 *** | 0.033 * |
Week 8 | 0.044 * | 2.54 × 10−11 *** | 1.00 × 10−5 *** |
Week 9 | 0.211 | <2 × 10−16 *** | 3.48 × 10−5 *** |
Week 10 | 0.102 | <2 × 10−16 *** | 0.006 ** |
Week 11 | 0.216 | <2 × 10−16 *** | 1.15 × 10−11 *** |
Week 12 | 0.836 | <2 × 10−16 *** | 5.85 × 10−9 *** |
Week 13 | 0.769 | <2 × 10−16 *** | 2.27 × 10−5 *** |
Week 14 | 0.688 | <2 × 10−16 *** | 0.029 * |
Week 15 | 0.591 | <2 × 10−16 *** | 0.002 ** |
Week 16 | 0.814 | 1.96 × 10−15 *** | <2 × 10−16 *** |
Week 17 | <2 × 10−16 *** | 9.08 × 10−15 *** | 0.389 |
Week 18 | 2.37 × 10−8 *** | <2 × 10−16 *** | 6.07 × 10−13 *** |
Week 19 | 0.467 | <2 × 10−16 *** | 0.013 * |
Week 20 | 0.177 | <2 × 10−16 *** | <2 × 10−16 *** |
Week 21 | <2 × 10−16 *** | <2 × 10−16 *** | <2 × 10−16 *** |
Week 22 | <2 × 10−16 *** | 1.55 × 10−10 *** | <2 × 10−16 *** |
Week 23 | 3.07 × 10−6 *** | 6.71 × 10−16 *** | 1.96 × 10−11 *** |
Week 24 | 1.21 × 10−7 *** | 2.49 × 10−6 *** | 1.03 × 10−15 *** |
Week 25 | 0.646 | 0.491 | <2 × 10−16 *** |
Week 26 | <2 × 10−16 *** | <2 × 10−16 *** | <2 × 10−16 *** |
Week 27 | <2 × 10−16 *** | <2 × 10−16 *** | <2 × 10−16 *** |
Week 28 | <2 × 10−16 *** | <2 × 10−16 *** | 2.44 × 10−13 *** |
Week 29 | <2 × 10−16 *** | <2 × 10−16 *** | <2 × 10−16 *** |
Week 30 | 2.07 × 10−8 *** | 2.14 × 10−6 *** | 0.064 |
Week 31 | 1.21 × 10−7 *** | <2 × 10−16 *** | <2 × 10−16 *** |
Week 32 | <2 × 10−16 *** | 0.001 ** | <2 × 10−16 *** |
Week 33 | 0.112 | 0.848 | 0.845 |
Week 34 | <2 × 10−16 *** | <2 × 10−16 *** | <2 × 10−16 *** |
Week 35 | 8.05 × 10−9 *** | <2 × 10−16 *** | <2 × 10−16 *** |
Week 36 | 2.26 × 10−8 *** | <2 × 10−16 *** | <2 × 10−16 *** |
Week 37 | 0.00356** | <2 × 10−16 *** | <2 × 10−16 *** |
Week 38 | 1.98 × 10−14 *** | <2 × 10−16 *** | <2 × 10−16 *** |
Week 39 | <2 × 10−16 *** | 9.67 × 10−14 *** | 0.016 * |
Week 40 | 0.013 * | <2 × 10−16 *** | 2.21 × 10−5 *** |
Week 41 | 4.4 × 10−11 *** | <2 × 10−16 *** | 0.217 |
Week 42 | 1.77 × 10−8 *** | <2 × 10−16 *** | 0.881 |
Week 43 | 0.733 | <2 × 10−16 *** | 0.066 |
Week 44 | 0.344 | 3.95 × 10−14 *** | 0.083 |
Week 45 | 0.055 | <2 × 10−16 *** | 0.001 ** |
Week 46 | 0.748 | <2 × 10−16 *** | 0.700 |
References
- Galland, G.; Rogers, A.; Nickson, A. Netting billions: A Global Valuation of Tuna. The Pew Charitable Trusts. 2016. Available online: http://hdl.handle.net/1957/60217 (accessed on 10 July 2020).
- Mahaliyana, A.S.; Jinadasa, B.K.K.K.; Liyanage, N.P.P.; Jayasinghe, G.D.T.M.; Jayamanne, S.C. Nutritional Composition of Skipjack Tuna (Katsuwonus pelamis) Caught from the Oceanic Waters around Sri Lanka. Am. J. Food Nutr. 2015, 3, 106–111. [Google Scholar] [CrossRef]
- Miyake, M.P.; Guillotreau, P.; Sun, C.-H.; Ishimura, G. Recent Developments in the Tuna Industry; FAO: Rome, Italy, 2010. [Google Scholar]
- Cimino, M.A.; Anderson, M.; Schramek, T.; Merrifield, S.; Terrill, E.J. Towards a fishing pressure prediction system for a western Pacific EEZ. Sci. Rep. 2019, 9, 461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Indian Ocean Tuna Commission. Executive Summary of The Status of The Skipjack Tuna Resource; Indian Ocean Tuna Commission: Victoria, Seychelles, 2005. [Google Scholar]
- Stuart, V.; Platt, T.; Sathyendranath, S. The future of fisheries science in management: A remote-sensing perspective. ICES J. Mar. Sci. 2011, 68, 644–650. [Google Scholar] [CrossRef] [Green Version]
- Armas, E.; Arancibia, H.; Neira, S. Identification and Forecast of Potential Fishing Grounds for Anchovy (Engraulis ringens) in Northern Chile Using Neural Networks Modeling. Fishes 2022, 7, 204. [Google Scholar] [CrossRef]
- Brandoli, B.; Raffaetà, A.; Simeoni, M.; Adibi, P.; Bappee, F.K.; Pranovi, F.; Rovinelli, G.; Russo, E.; Silvestri, C.; Soares, A.; et al. From multiple aspect trajectories to predictive analysis: A case study on fishing vessels in the Northern Adriatic sea. GeoInformatica 2022, 26, 551–579. [Google Scholar] [CrossRef]
- Mugo, R.; Saitoh, S.I.; Nihira, A.; Kuroyama, T. Habitat characteristics of skipjack tuna (Katsuwonus pelamis) in the western North Pacific: A remote sensing perspective. Fish. Oceanogr. 2010, 19, 382–396. [Google Scholar] [CrossRef]
- Barkley, R.A.; Neill, W.H.; Gooding, R.M. Skipjack Tuna, Katsuwonus Pelamzs, Habitat Based on Temperature and Oxygen Requirements. Fish. Bull. 1978, 76, 653–662. [Google Scholar]
- Zainuddin, M.; Nelwan, A.; Farhum, S.A.; Hajar, M.A.I.; Kurnia, M. Characterizing Potential Fishing Zone of Skipjack Tuna during the Southeast Monsoon in the Bone Bay-Flores Sea Using Remotely Sensed Oceanographic Data. Int. J. Geosci. 2013, 4, 259–266. [Google Scholar] [CrossRef] [Green Version]
- Dueri, S.; Faugeras, B.; Maury, O. Modelling the skipjack tuna dynamics in the Indian Ocean with APECOSM-E: Part 1. Model formulation. Ecol. Modell. 2012, 245, 41–54. [Google Scholar] [CrossRef]
- Lehodey, P.; Andre, J.M.; Bertignac, M.; Hampton, J.; Stoens, A.; Menkes, C.; Memery, L.; Grima, N. Predicting skipjack tuna forage distributions in the equatorial Pacific using a coupled dynamical bio-geochemical model. Fish. Oceanogr. 1998, 7, 317–325. [Google Scholar] [CrossRef]
- Hsu, T.Y.; Chang, Y.; Lee, M.A.; Wu, R.F.; Hsiao, S.C. Predicting skipjack tuna fishing grounds in the Western and Central Pacific Ocean based on high-spatial-temporal-resolution satellite data. Remote Sens. 2021, 13, 861. [Google Scholar] [CrossRef]
- Putri, A.R.S.; Zainuddin, M. Application of remotely sensed satellite data to identify Skipjack Tuna distributions and abundance in the coastal waters of Bone Gulf. IOP Conf. Ser. Earth Environ. Sci. 2019, 241, 012012. [Google Scholar] [CrossRef]
- Mugo, R.; Saitoh, S.I.; Igarashi, H.; Toyoda, T.; Masuda, S.; Awaji, T.; Ishikawa, Y. Identification of skipjack tuna (Katsuwonus pelamis) pelagic hotspots applying a satellite remote sensing-driven analysis of ecological niche factors: A short-term run. PLoS ONE 2020, 15, e0237742. [Google Scholar] [CrossRef] [PubMed]
- Dietterich, T.G. Ensemble methods in machine learning. In International Workshop on Multiple Classifier Systems; Springer: Berlin/Heidelberg, Germany, 2000; pp. 1–15. [Google Scholar]
- Hunt, E.B. Experiments in Induction; Hunt, E.B., Marin, J., Stone, P.J., Eds.; Academic Press: New York, NY, USA, 1966. [Google Scholar]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Routledge: New York, NY, USA, 1984. [Google Scholar] [CrossRef]
- Nelder, J.A.; Wedderburn, R.W. Generalized linear models. J. R. Stat. Soc. Ser. A 1972, 135, 370–384. [Google Scholar] [CrossRef]
- Faraway, J.J. Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models; Chapman and Hall/CRC: Boca Raton, FL, USA, 2016. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef] [Green Version]
- DeGaridel-Thoron, T.; Rosenthal, Y.; Bassinot, F.; Beaufort, L. Stable sea surface temperatures in the western Pacific warm pool over the past 1.75 million years. Nature 2005, 433, 294–298. [Google Scholar] [CrossRef]
- Hampton, J. Tuna Fisheries Status and Management in the Western and Central Pacific Ocean; Oceanic Fisheries Programme; Secretariat of the Pacific Community: Noumea, New Caledoni, 2010; p. 23. Available online: https://tuvalu-data.sprep.org/resource/tuna-fisheries-status-and-management-western-and-central-pacific-ocean-hampton-spc-2011 (accessed on 10 July 2020).
- Laevastu, T.; Hayes, M.L. Fisheries Oceanography and Ecology; Fishing News Books Ltd.: Surrey, UK, 1981; Available online: https://books.google.com.tw/books?id=-mNvQgAACAAJ (accessed on 10 July 2020).
- Scaillet, O. Density estimation using inverse and reciprocal inverse Gaussian kernels. J. Nonparametr. Stat. 2004, 16, 217–226. [Google Scholar] [CrossRef] [Green Version]
- Weglarczyk, S. Kernel density estimation and its application. ITM Web Conf. 2018, 23, 37. [Google Scholar] [CrossRef] [Green Version]
- Izenman, A.J. Modern Multivariate Statistical Techniques; Springer: London, UK, 2008; Available online: https://link.springer.com/book/10.1007/978-0-387-78189-1 (accessed on 10 July 2020).
- Wang, X.; Tsokos, C.P.; Saghafi, A. Improved parameter estimation of Time Dependent Kernel Density by using Artificial Neural Networks. J. Financ. Data Sci. 2018, 4, 172–182. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Gupta, A.K.; Johnson, B.E.; Nagar, D.K. Testing Equality of Several Correlation Matrices. Rev. Colomb. Estadística 2013, 36, 239–260. [Google Scholar]
- Pham-Gia, T.; Choulakian, V. Distribution of the Sample Correlation Matrix and Applications. Open J. Stat. 2014, 4, 330–344. [Google Scholar] [CrossRef] [Green Version]
- Leclere, J.; Oberdorff, T.; Belliard, J.; Leprieur, F. A comparison of modeling techniques to predict juvenile 0+ fish species occurrences in a large river system. Ecol. Inform. 2011, 6, 276–285. [Google Scholar] [CrossRef]
- Manel, S.; Williams, H.C.; Ormerod, S.J. Evaluating presence–absence models in ecology: The need to account for prevalence. J. Appl. Ecol. 2001, 38, 921–931. [Google Scholar] [CrossRef]
- Thuiller, W.; Araújo, M.B.; Lavorel, S. Generalized models vs. classification tree analysis: Predicting spatial distributions of plant species at different scales. J. Veg. Sci. 2003, 14, 669–680. [Google Scholar] [CrossRef]
- Alexander, R.E. A Comparison of GLM, GAM, and GWR Modeling of Fish Distribution and Abundance in Lake Ontario. Ph.D. Thesis, University of Southern California, Los Angeles, CA, USA, 2016. [Google Scholar]
- McKenna, J.E., Jr.; Castiglione, C. Model distribution of Silver Chub (Macrhybopsis storeriana) in western Lake Erie. Am. Midl. Nat. 2014, 171, 301–310. [Google Scholar] [CrossRef]
- Gladju, J.; Kamalam, B.S.; Kanagaraj, A. Applications of data mining and machine learning framework in aquaculture and fisheries: A review. Smart Agric. Technol. 2022, 2, 100061. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, S.; Liu, J.; Wang, H.; Zhu, J.; Li, D.; Zhao, R. Application of machine learning in intelligent fish aquaculture: A review. Aquaculture 2021, 540, 736724. [Google Scholar] [CrossRef]
- Lynham, J.; Nikolaev, A.; Raynor, J.; Vilela, T.; Villaseñor-Derbez, J.C. Impact of two of the world’s largest protected areas on longline fishery catch rates. Nat. Commun. 2020, 11, 979. [Google Scholar] [CrossRef] [Green Version]
- Nicol, S.; Menkes, C.; Jurado-Molina, J.; Lehodey, P.; Usu, T.; Kumasi, B.; Muller, B.; Bell, J.; Tremblay-Boyer, L.; Briand, K. Oceanographic characterisation of the Pacific Ocean and the potential impact of climate variability on tuna stocks and tuna fisheries. SPC Fish. Newsl. 2014, 145, 37–48. [Google Scholar]
- Kim, J.; Na, H.; Park, Y.G.; Kim, Y.H. Potential predictability of skipjack tuna (Katsuwonus pelamis) catches in the Western Central Pacific. Sci. Rep. 2020, 10, 3193. [Google Scholar] [CrossRef] [Green Version]
Var | Information Details |
---|---|
Chl-a | MODIS-Aqua Level 3 SMI; Temporal: 8 Days; Spatial: 9 km; Unit: mgm−3 |
SST | MODIS Level 3 SMI; Temporal: 8 Days; Spatial: 9 km; Unit: °C |
SSH | Global Ocean Analysis; Temporal: Daily mean; Spatial: 0.083° × 0.083°; Unit: Meter (m) |
Cohen’s Kappa Value | Agreement Categorization |
---|---|
<0.01 | No agreement |
0.01−0.20 | Slight agreement |
0.21–0.40 | Fair agreement |
0.41–0.60 | Moderate agreement |
0.61–0.80 | Substantial agreement |
>0.80 | Almost perfect agreement |
CC | Kappa | AUC | |
---|---|---|---|
Test 1 | 0.8814 | 0.7315 | 0.8455 |
Test 2 | 0.8308 | 0.6311 | 0.8087 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfatinah, A.; Chu, H.-J.; Tatas; Patra, S.R. Fishing Area Prediction Using Scene-Based Ensemble Models. J. Mar. Sci. Eng. 2023, 11, 1398. https://doi.org/10.3390/jmse11071398
Alfatinah A, Chu H-J, Tatas, Patra SR. Fishing Area Prediction Using Scene-Based Ensemble Models. Journal of Marine Science and Engineering. 2023; 11(7):1398. https://doi.org/10.3390/jmse11071398
Chicago/Turabian StyleAlfatinah, Adillah, Hone-Jay Chu, Tatas, and Sumriti Ranjan Patra. 2023. "Fishing Area Prediction Using Scene-Based Ensemble Models" Journal of Marine Science and Engineering 11, no. 7: 1398. https://doi.org/10.3390/jmse11071398
APA StyleAlfatinah, A., Chu, H. -J., Tatas, & Patra, S. R. (2023). Fishing Area Prediction Using Scene-Based Ensemble Models. Journal of Marine Science and Engineering, 11(7), 1398. https://doi.org/10.3390/jmse11071398