Marine Geotechnical Research in Greece: A Review of the Current Knowledge, Challenges and Prospects
Abstract
:1. Introduction
2. Marine Geotechnical Research in Greece and the Supplementary Role of Geological Studies
3. Geotechnical Properties of Quaternary Sedimentary Layers and Mechanisms of Sediment Instability in the Aegean and Ionian Seas
3.1. Geotechnical Study of Quaternary Sedimentary Layers and Sediment Instabilities
Study | Location | Core Equipment and Penetration | Geotechnical Measurements |
---|---|---|---|
[58] | NW Aegean Sea | Gravity cores (1.9–2.4 m) | Grain size, carbonate content, SEM microscopic inspection |
[56] | Aegean Sea (multiple locations) | Short piston cores (unspecified) | Grain size, mineralogy, carbonate content, organic matter, porosity, Atterberg limits, wet bulk density, shear strength |
[59] | Ionian Sea (Zakynthos Channel) | Gravity cores (~1.5 m) | Grain size, organic carbon, calcium carbonate, clay mineralogy |
[60] | NW Aegean Sea (Thermaikos Slope—Sporades Basin) | Gravity cores (~2.5 m) | Grain size, organic carbon, calcium carbonate, clay mineralogy |
[57] | North Evia Gulf | Sediment cores (0.85–2.7 m) | Grain size, water content, carbonate content, wet bulk density, Atterberg limits, shear strength |
[46] | South Aegean Sea | Piston cores (5–10 m) | Grain size, clay mineralogy, Atterberg limits, water content, wet bulk density, shear strength |
[36] | NW Aegean Sea (Thermaikos Shelf/Slope) | Gravity cores (1.5–3 m) | Grain size, carbonate content, water content, Atterberg limits, shear strength |
[29] | Multiple sites (Aegean Sea) | Gravity cores | Shear strength |
[116] | North Aegean Sea (Thermaikos Gulf, North Aegean Shelf) | Gravity cores (~2 m) | Visual description, organic carbon and radiocarbon dates, examination of sapropelic layers |
[48] | Gulf of Corinth | Gravity cores (0.5–1 m), piston cores (7–7.5 m) | Grain size, organic carbon, calcium carbonate |
[37] | South Aegean Sea | Gravity cores (0.12–2.76 m) | Grain size, Atterberg limits, water content, density |
[80] | Ionian Sea (Corfu–Kefalonia Valley System) | Piston cores (3.5 m) | Grain size, organic carbon, X-ray |
[38] | South Aegean Sea (Cretan Sea) | Gravity cores (2–3 m) | Grain size, carbonate content, bulk density, Atterberg limits, water content, shear strength |
[41] | North Aegean Shelf/Slope | Gravity cores (~2.5 m), box cores | Bulk density, carbonate content, Atterberg limits, shear strength |
[49] | Gulf of Corinth | Piston core (Calypso core—30 m) | Physical properties (core logging): magnetic susceptibility, gamma ray, resistivity, etc. |
[50] | North Aegean Sea | Gravity cores (2.1–4.1 m) | Grain size, organic carbon, carbonate content, clay mineralogy, radiocarbon dating |
[26] | Ionian Sea (Zakynthos Canyon/Valley) | Gravity cores (~2 m) | Sedimentological description (geotechnical analysis not presented) |
[42] | NW Aegean Sea (Thermaikos Shelf and Sporades Basin) | Gravity cores (2–3 m) | Water content, wet density, shear strength |
[27,28] | South Aegean Sea | Gravity cores (~2 m) | Grain size, water content, shear strength, Atterberg limits, bulk density |
[44] | South Aegean Sea (Cretan Margin) | Gravity cores (4–4.6 m) | Physical properties (MSCL), shear strength |
[43] | Gulf of Corinth | Gravity cores (~2.5 m), piston cores (max 30 m) | Gravity cores: physical properties (MSCL), grain size, carbonate content, organic carbon Piston cores: physical properties (MSCL), grain size |
[31] | Ionian Sea, western Greece (Gulf of Corinth), NW Aegean Sea (Thermaikos Shelf/Slope) | Gravity core (2–5 m) | Grain size, organic carbon, carbonate content, Atterberg limits, water content, bulk density, overconsolidation ratio (OCR) |
[94] | Gulf of Corinth | Calypso piston core (20 m) | Grain size, magnetic susceptibility and radiocarbon dates, examination of earthquake-induced layers (turbidites) |
[32,33] | South Aegean Sea (Cretan Margin) | Gravity cores (1.5–4.6 m) | Grain size, shear strength, multi-sensor core logging (bulk density) |
[86] | Gulf of Corinth | Gravity cores (1.1–2 m) | Grain size, mineralogy, X-ray diffraction |
[138] | South Aegean Sea | Gravity cores (3.5 m) | Radiocarbon dating, visual description |
[144] | Southeast Mediterranean Sea (south off Crete near Gavdos Island) | Gravity cores (1–2.4 m) | Multi-sensor core logging (magnetic susceptibility, gamma-ray density, p-wave velocity), grain size, shear strength, organic carbon, X-radiography |
[96] | Gulf of Corinth | Drilled core (IODP Expedition 381) | Visual description, grain size, isotope analysis (Th/U) |
3.2. Geotechnical Analysis of Deep Sedimentary Strata and In Situ Testing of Sediments
3.3. Slope Stability Estimations
4. Current Challenges in Marine Geotechnical Surveying
4.1. Core Sampling
4.2. CPTu Testing and Soil Property Estimation
5. Discussion
6. Prospects and Concluding Remarks
- (i)
- Gather existing data from older public surveys as well as unclassified information from private companies, to construct a marine geological (geotechnical and geophysical) inventory.
- (ii)
- Prioritize areas where scheduled core sampling should take place to eliminate gaps in knowledge for the existing lithological units on the seabed and detect potential weak layers that could act as failure planes, as well as collate records of lithostratigraphy that may lead to weak behavior (sapropels, tephra layers, underconsolidated layers, etc.).
- (iii)
- Adopt a systematic protocol of measurements for a minimum set of of parameters (i.e., undrained shear strength (field or laboratory), bulk density, water content, Atterberg limits, grain size) following international standards (ASTM, BS, etc.) for all the cores collected, to assess the geotechnical behavior of subsurface sediments. This is also important in the context of assessing slope stability.
- (iv)
- Wherever feasible, provide CPTu index correlations of shear strength as well as other properties with lab measurements so that reliable estimations and interpretation of in situ data can be established. In the case of cone factor values (Nkt), indicative ranges can be produced and compared among studies (site-specific) so that consistency can be examined. Within that context, the testing method as well as handling of specimens are important.
- (v)
- Finally, the development of an open-access data repository may further improve the above actions, similarly to how other countries have developed their own systems to assess the geotechnical conditions of the seabed. In the case of the Aegean and Ionian Seas, the complex geological regime and the current boom in offshore construction activities make this imperative.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zafeiratou, E.; Spataru, C. Potential economic and environmental benefits from the interconnection of the Greek Islands. Int. J. Glob. Warm. 2017, 13, 426–458. [Google Scholar] [CrossRef]
- Biza, S.; Piromalis, D.; Barkas, D.; Psomopoulos, C.S.; Tsirekis, C.D. Crete—Peloponnese 150kV AC Interconnection. Simulation Results for Transient Phenomena in Main Switches. Energy Procedia 2019, 157, 1366–1376. [Google Scholar] [CrossRef]
- Karystianos, M.E.; Pitas, C.N.; Efstathiou, S.P.; Tsili, M.A.; Mantzaris, J.C.; Leonidaki, E.A.; Voumvoulakis, E.M.; Sakellaridis, N.G. Planning of Aegean Archipelago Interconnections to the Continental Power System of Greece. Energies 2021, 14, 3818. [Google Scholar] [CrossRef]
- Independent Power Transmission Operator (IPTO) Sustainability Report 2022. Available online: https://www.admie.gr/sites/default/files/2023-11/Sustainability-Report-2022.pdf (accessed on 17 July 2024).
- Papadopoulos, M.; Boulaxis, N.; Tsili, M.; Papathanssiou, S. Interconnection of the Cycladic Islands to the Mainland Grid. In Proceedings of the 5th WSEAS International Conference on Power Systems Electromagnetic Compatibility, Corfu, Greece, 23–25 August 2005. [Google Scholar]
- Hatziargyriou, N.D.; Vrontisi, Z.; Tsikalakis, A.G.; Kilias, V. The effect of island interconnections on the increase of Wind Power penetration in the Greek system. In Proceedings of the 2007 IEEE Power Engineering Society General Meeting, Tampa, FL, USA, 24–28 June 2007. [Google Scholar]
- Georgiou, P.Ν.; Mavrotas, G.; Diakoulaki, D. The effect of islands’ interconnection to the mainland system on the development of renewable energy sources in the Greek power sector. Renew. Sustain. Energy Rev. 2011, 15, 2607–2620. [Google Scholar] [CrossRef]
- Soukissian, T.H.; Denaxa, D.; Karathanasi, F.; Prospathopoulos, A.; Sarantakos, K.; Iona, A.; Georgantas, K.; Mavrakos, S. Marine Renewable Energy in the Mediterranean Sea: Status and Perspectives. Energies 2017, 10, 1512. [Google Scholar] [CrossRef]
- Vagiona, D.G.; Kamilakis, M. Sustainable Site Selection for Offshore Wind Farms in the South Aegean—Greece. Sustainability 2018, 10, 749. [Google Scholar] [CrossRef]
- Spyridonidou, S.; Vagiona, D.G.; Loukogeorgaki, E. Strategic Planning of Offshore Wind Farms in Greece. Sustainability 2020, 12, 905. [Google Scholar] [CrossRef]
- Katsaprakakis, D.A.; Proka, A.; Zafirakis, D.; Damasiotis, M.; Kotsampopoulos, P.; Hatziargyriou, N.; Dakanali, E.; Arnaoutakis, G.; Xevgenos, D. Greek Islands’ Energy Transition From Lighthouse Projects to the Emergence of Energy Communities. Energies 2022, 15, 5996. [Google Scholar] [CrossRef]
- Gkeka-Serpetsidaki, P.; Tsoutsos, T. A methodological framework for optimal sitting of offshore wind farms: A case study on the island of Crete. Energy 2022, 239, 122296. [Google Scholar] [CrossRef]
- Vagiona, D.G.; Alexiou, V. Wind Farm Deployment in Uninhabited Islets: A Case Study the Region of the South Aegean (Greece). Wind 2022, 2, 451–465. [Google Scholar] [CrossRef]
- Ferentinos, G. Offshore geological hazards in the Hellenic arc. Mar. Georesources Geotechnol. 1990, 9, 261–277. [Google Scholar] [CrossRef]
- Hasiotis, T.; Papatheodorou, G.; Ferentinos, G. Geological and man made hazards surveying for laying submarine cables in the Aegean and Ionian seas, Greece. In Proceedings of the International Symposium on Engineering Geology and the Environment, Athens, Greece, 23 June 1997. [Google Scholar]
- Young, A.G.; Quiros, G.W.; Ehlers, C.J. Effects of Offshore Sampling and Testing on Undrained Soil Shear Strength. In Proceedings of the Offshore Technology Conferences, Houston TX, USA, 2–5 May 1983. [Google Scholar]
- Mascle, J.; Martin, L. Shallow structure and recent evolution of the Aegean Sea: A synthesis based on continuous reflection profiles. Mar. Geol. 1990, 94, 271–299. [Google Scholar] [CrossRef]
- Taymaz, T.; Jackson, J.; McKenzie, D. Active tectonics of the north and central Aegean Sea. Geophys. J. Int. 1991, 106, 433–490. [Google Scholar] [CrossRef]
- Nomikou, P.; Papanikolaou, D. Extension of active fault zones on Nisyros volcano across the Yali-Nisyros Channel based on onshore and offshore data. Mar. Geophys. Res. 2011, 32, 181–192. [Google Scholar] [CrossRef]
- Ocakoğlu, N.; Nomikou, P.; Işcan, Y.; Loreto, M.F.; Lampridou, D. Evidence of extensional and strike-slip deformation in the offshore Gökova-Kos area affected by the July 2017 Mw6.6 Bodrum-Kos earthquake, eastern Aegean Sea. Geo-Mar. Lett. 2018, 38, 211–225. [Google Scholar] [CrossRef]
- Sakellariou, D.; Tsampouraki-Kraounaki, K. Plio-Quaternary Extension and Strike-Slip Tectonics in the Aegean. In Transform Plate Boundaries and Fracture Zones; Duarte, J.C., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; Chapter 14; pp. 339–374. ISBN 9780128120644. [Google Scholar]
- Papanikolaou, D.; Nomikou, P.; Papanikolaou, I.; Lampridou, D.; Rousakis, G.; Alexandri, M. Active tectonics and seismic Hazard in Skyros Basin, North Aegean Sea, Greece. Mar. Geol. 2019, 407, 94–110. [Google Scholar] [CrossRef]
- Nomikou, P.; Papanikolaou, D.; Lampridou, D.; Blum, M.; Hübscher, C. The active tectonic structures along the southern margin of Lesvos Island, related to the seismic activity of July 2017, Aegean Sea, Greece. Geo-Mar. Lett. 2021, 41, 49. [Google Scholar] [CrossRef]
- Nomikou, P.; Evangelidis, D.; Papanikolaou, D.; Lampridou, D.; Litsas, D.; Tsaparas, Y.; Koliopanos, I.; Petroulia, M. Morphotectonic Structures along the Southwestern Margin of Lesvos Island, and Their Interrelation with the Southern Strand of the North Anatolian Fault, Aegean Sea, Greece. GeoHazards 2021, 2, 415–429. [Google Scholar] [CrossRef]
- Ferentinos, G. Recent gravitative mass movements in a highly tectonically active arc system: The Hellenic Arc. Mar. Geol. 1992, 104, 93–107. [Google Scholar] [CrossRef]
- Hasiotis, T.; Papatheodorou, G.; Ferentinos, G. A high resolution approach in the recent sedimentation processes at the head of Zakynthos Canyon, western Greece. Mar. Geol. 2005, 214, 49–73. [Google Scholar] [CrossRef]
- Hasiotis, T.; Papatheodorou, G.; Charalampakis, M.; Stefatos, A.; Ferentinos, G. High frequency sediment failures in a submarine volcanic environment: The Santorini (Thera) basin in the Aegean Sea. In Submarine Mass Movements and Their Consequences; Lykousis, V., Sakellariou, D., Locat, J., Eds.; Advances in Natural and Technological Hazard Research Series; Springer: Dordrecht, The Netherlands, 2007; Volume 27, pp. 309–316. [Google Scholar]
- Hasiotis, T.; Papatheodorou, G.; Ferentinos, G. Sediment stability conditions west of Milos Island, west Hellenic Volcanic Arc. In Submarine Mass Movements and Their Consequences; Lykousis, V., Sakellariou, D., Locat, J., Eds.; Advances in Natural and Technological Hazard Research Series; Springer: Dordrecht, The Netherlands, 2007; Volume 27, pp. 317–324. [Google Scholar]
- Lykousis, V. Submarine slope instabilities in the Hellenic arc region, northeastern Mediterranean Sea. Mar. Georesources Geotechnol. 1991, 10, 83–96. [Google Scholar] [CrossRef]
- Lykousis, V.; Sakellariou, D.; Rousakis, G.; Alexandri, S.; Kaberi, H.; Nomikou, P.; Georgiou, P.; Balas, D. Sediment failure processes in active grabens: The western Gulf of Corinth (Greece). In Submarine Mass Movements and Their Consequences; Lykousis, V., Sakellariou, D., Locat, J., Eds.; Advances in Natural Hazards Series; Springer: Dordrecht, The Netherlands, 2007; Volume 27, pp. 297–305. [Google Scholar]
- Lykousis, V.; Rousakis, G.; Sakellariou, D. Slope failures and stability analysis of shallow water prodeltas in the active margins of Western Greece, northeastern Mediterranean Sea. Int. J. Earth Sci. (Geol. Rundsch) 2009, 98, 807–822. [Google Scholar] [CrossRef]
- Strozyk, F.; Huhn, K.; Strasser, M.; Krastel, S.; Kock, I.; Kopf, A. New evidence for massive gravitational mass-transport deposits in the southern Cretan Sea, eastern Mediterranean. Mar. Geol. 2009, 263, 97–107. [Google Scholar] [CrossRef]
- Strozyk, F.; Strasser, M.; Förster, A.; Kopf, A.; Huhn, K. Slope failure repetition in active margin environments: Constraints from submarine landslides in the Hellenic fore arc, eastern Mediterranean. J. Geophys. Res. Solid. Earth 2010, 115, B08103. [Google Scholar] [CrossRef]
- Strozyk, F.; Strasser, M.; Krastel, S.; Meyer, M.; Huhn, K. Reconstruction of retreating mass wasting in response to progressive slope steepening of the northeastern Cretan margin, eastern Mediterranean. Mar. Geol. 2010, 271, 44–54. [Google Scholar] [CrossRef]
- Beckers, A.; Hubert-Ferrari, A.; Beck, C.; Papatheodorou, G.; De Batist, M.; Sakellariou, D.; Tripsanas, E.; Demoulin, A. Characteristics and frequency of large submarine landslides at the western tip of the Gulf of Corinth. Nat. Hazards Earth Syst. Sci. 2018, 18, 1411–1425. [Google Scholar] [CrossRef]
- Lykousis, V.; Chronis, G. Mass movements, geotechnical properties and slope stability in the outer shelf—Upper slope, northwestern Aegean Sea. Mar. Geotechnol. 1989, 8, 231–247. [Google Scholar] [CrossRef]
- Perissoratis, C.; Papadopoulos, G. Sediment instability and slumping in the southern Aegean Sea and the case history of the 1956 tsunami. Mar. Geol. 1999, 161, 287–305. [Google Scholar] [CrossRef]
- Chronis, G.; Lykousis, V.; Anagnostou, C.; Karageorgis, A.; Stavrakakis, S.; Poulos, S. Sedimentological processes in the southern margin of the Cretan Sea (NE Mediterranean). Prog. Oceanogr. 2000, 46, 143–162. [Google Scholar] [CrossRef]
- Hasiotis, T.; Papatheodorou, G.; Ferentinos, G. A string of large and deep gas-induced depressions (pockmarks) offshore Killini peninsula, western Greece. Geo-Mar. Lett. 2002, 22, 142–149. [Google Scholar] [CrossRef]
- Hasiotis, T.; Charalampakis, M.; Stefatos, A.; Papatheodorou, G.; Ferentinos, G. Fan delta development and processes offshore a seasonal river in a seismically active region, NW Gulf of Corinth. Geo-Mar. Lett. 2006, 26, 199–211. [Google Scholar] [CrossRef]
- Lykousis, V.; Roussakis, G.; Alexandri, M.; Pavlakis, P.; Papoulia, I. Sliding and regional slope stability in active margins: North Aegean Trough (Mediterranean). Mar. Geol. 2002, 186, 281–298. [Google Scholar] [CrossRef]
- Lykousis, V.; Karageorgis, A.P.; Chronis, G.T. Delta progradation and sediment fluxes since the last glacial in the Thermaikos Gulf and the Sporades Basin, NW Aegean Sea, Greece. Mar. Geol. 2005, 222–223, 381–397. [Google Scholar] [CrossRef]
- Lykousis, V.; Sakellariou, D.; Moretti, I.; Kaberi, H. Late Quaternary basin evolution of the Gulf of Corinth: Sequence stratigraphy, sedimentation, fault-slip and subsidence rates. Tectonophysics 2007, 440, 29–51. [Google Scholar] [CrossRef]
- Kopf, A.; Stegmann, S.; Krastel, S.; Förster, A.; Strasser, M.; Irving, M. Marine deep-water free-fall CPT measurements for landslide characterisation off Crete, Greece (Eastern Mediterranean Sea)-PART 2: Initial data from the western Cretan Sea. In Submarine Mass Movements and Their Consequences; Lykousis, V., Sakellariou, D., Locat, J., Eds.; Advances in Natural Hazards Series; Springer: Dordrecht, The Netherlands, 2007; Volume 27, pp. 199–208. [Google Scholar]
- Ferentinos, G.; Papatheodorou, G.; Geraga, M.; Christodoulou, D.; Fakiris, E.; Iatrou, M. The Disappearance of Helike-Classical Greece-New Remote Sensing and Geological Evidence. Remote Sens. 2015, 7, 1263–1278. [Google Scholar] [CrossRef]
- Chassefiere, B.; Monaco, A. Role of Organic Matter and Particle Fabric in Mass-Physical and Geotechnical Properties: Implications for Undrained Slumping in Aegean Sea and Ionian Sea Modern Sediments. Mar. Geol. 1989, 87, 165–182. [Google Scholar] [CrossRef]
- Anastasakis, G.C.; Piper, D.J.W. The character of seismo-turbidites in the S-1 sapropel, Zakinthos and Strofadhes basins, Greece. Sedimentology 1991, 38, 717–733. [Google Scholar] [CrossRef]
- Poulos, S.E.; Collins, M.B.; Pattiaratchi, C.; Cramp, A.; Gull, W.; Tsimplis, M.; Papatheodorou, G. Oceanography and sedimentation in the semi-enclosed, deep-water, Gulf of Corinth (Greece). Mar. Geol. 1996, 134, 213–235. [Google Scholar] [CrossRef]
- Moretti, I.; Lykousis, V.; Sakellariou, D.; Reynaud, J.; Benziane, B.; Prinzhoffer, A. Sedimentation and subsidence rate in the Gulf of Corinth: What we learn from the Marion Dufresne’s long-piston coring. Comptes Rendus Geosci. 2004, 336, 291–299. [Google Scholar] [CrossRef]
- Roussakis, G.; Karageorgis, A.P.; Conispoliatis, N.; Lykousis, V. Late glacial-Holocene sediment sequences in N. Aegean basins: Structure, accumulation rates and clay mineral distribution. Geo-Mar. Lett. 2004, 24, 97–111. [Google Scholar] [CrossRef]
- Pecker, A.; Teyssandier, J.P. Seismic design for the foundations of the Rion Antirion Bridge. Proc. Inst. Civ. Eng. Geotech. Eng. 1998, 131, 4–11. [Google Scholar] [CrossRef]
- Pecker, A. Enhanced seismic design of shallow foundations: Example of the Rion-Antirion Bridge. In Proceedings of the 4th Athenian Lecture on Geotechnical Engineering, Athens, Greece, 2006. [Google Scholar]
- Hasiotis, T.; Papatheodorou, G.; Bouckovalas, G.; Corbau, C.; Ferentinos, G. Earthquake-induced coastal sediment instabilities in the western Gulf of Corinth, Greece. Mar. Geol. 2002, 186, 319–335. [Google Scholar] [CrossRef]
- Stegmann, S.; Kopf, A. Marine deep-water free-fall CPT measurements for landslide characterisation off Crete, Greece (Eastern Mediterranean Sea)-PART 1: A new 4000M Cone Penetrometer. In Submarine Mass Movements and Their Consequences; Lykousis, V., Sakellariou, D., Locat, J., Eds.; Advances in Natural Hazards Series; Springer: Dordrecht, The Netherlands, 2007; Volume 27, pp. 199–208. [Google Scholar]
- Chtouris, N.K.; Hasiotis, T.; Poulos, A.; Tsavliris, E. Comparison between CPT undrained shear strength and vane test measurements in surficial marine sediments. In Proceedings of the Marine and Inland Waters Research Symposium (HCMR), Porto Heli, Argolida, Greece, 16–20 September 2022. [Google Scholar]
- Lykousis, V.; Pechlivanoglou, K. Geotechnical Properties of Shelf Sediments from Aegean Sea. Rapp. Comm. Int. Mer. Medit. 1985, 29, 2. [Google Scholar]
- Lykousis, V. Aspects of the Geotechnical Properties and Sedimentation Mechanisms in the Shelf and Slope of the North Euboikos Gulf (Aegean Sea, Greece). Thalassographica 1988, 11, 53–63. [Google Scholar]
- Collins, M.B.; Lykousis, V.; Ferentinos, G. Temporal variations in sedimentation patterns: NW Aegean Sea. Mar. Geol. 1981, 43, 39–48. [Google Scholar] [CrossRef]
- Cramp, A.; Collins, M.B.; Wakefield, S.J. Sedimentation in the Zakynthos Channel—A Conduit Link to the Hellenic Trench, Eastern Mediterranean. Mar. Geol. 1987, 76, 71–87. [Google Scholar] [CrossRef]
- Cramp, A.; Collins, M. A Late Pleistocene-Holocene Sapropelic Layer in the Northwest Aegean Sea, Eastern Mediterranean. Geo-Mar. Lett. 1988, 8, 19–23. [Google Scholar] [CrossRef]
- Piper, D.J.W.; Perissoratis, C. Late Quaternary Sedimentation on the North Aegean Continental Margin, Greece. Am. Assoc. Pet. Geol. Bull. 1991, 75, 46–61. [Google Scholar]
- Piper, D.J.W.; Perissoratis, C. Quaternary neotectonics of the South Aegean arc. Mar. Geol. 2003, 198, 259–288. [Google Scholar] [CrossRef]
- Collier, R.E.L.; Leeder, M.R.; Trout, M.; Ferentinos, G.; Lyberis, E.; Papatheodorou, G. High sediment yields and cool, wet winters: Test of last glacial paleoclimates in the northern Mediterranean. Geology 2000, 28, 999–1002. [Google Scholar] [CrossRef]
- Anastasakis, G. The anatomy and provenance of thick volcaniclastic flows in the Cretan Basin, South Aegean Sea. Mar. Geol. 2007, 240, 113–115. [Google Scholar] [CrossRef]
- Poulos, S.E. Origin and distribution of the terrigenous component of the unconsolidated sediment of the Aegean floor: A synthesis. Cont. Shelf Res. 2009, 29, 2045–2060. [Google Scholar] [CrossRef]
- Got, H.; Stanley, D.J.; Sorel, D. Northwestern Hellenic Arc: Concurrent Sedimentation and Deformation in a Compressive Setting. Mar. Geol. 1977, 24, 21–36. [Google Scholar] [CrossRef]
- Brooks, M.; Ferentinos, G. Structure and Evolution of the Sporades Basin of the North Aegean Trough, Northern Aegean Sea. Tectonophysics 1980, 68, 15–30. [Google Scholar] [CrossRef]
- Brooks, M.; Ferentinos, G. Tectonics and sedimentation in the gulf of Corinth and the Zakynthos and Kefallinia channels, western Greece. Tectonophysics 1984, 101, 25–54. [Google Scholar] [CrossRef]
- Ferentinos, G.; Brooks, M.; Collins, M. Gravity-Induced Deformation on the North Flank and Floor of the Sporadhes Basin of the North Aegean Trough. Mar. Geol. 1981, 44, 289–302. [Google Scholar] [CrossRef]
- Ferentinos, G.; Collins, M.B.; Pattiaratchi, C.B.; Taylor, P.G. Mechanisms of Sediment Transport and Dispersion in a Tectonically Active Submarine Valley/Canyon System: Zakynthos Straits, NW Hellenic Trench. Mar. Geol. 1985, 65, 243–269. [Google Scholar] [CrossRef]
- Ferentinos, G.; Papatheodorou, G.; Collins, M.B. Sediment transport processes on an active submarine fault escarpment: Gulf of Corinth, Greece. Mar. Geol. 1988, 83, 43–61. [Google Scholar] [CrossRef]
- Maldonado, A.; Kelling, G.; Anastasakis, G. Late Quaternary Sedimentation in a Zone of Continental Plate Convergence—The Central Hellenic Trench System. Mar. Geol. 1981, 43, 83–110. [Google Scholar] [CrossRef]
- Huson, W.J.; Furton, A.R. The Lithinon Slide: A Large Submarine Slide in the south Cretan Trough, Eastern Mediterranean. Mar. Geol. 1985, 65, 103–111. [Google Scholar] [CrossRef]
- Pavlakis, P.; Papanikolaou, D.; Chronis, G.; Lykoussis, B.; Anagnostou, C. Geological structure of inner Messiniakos Gulf. Delt. Ell. Geol. Etair. 1989, 23, 333–347. [Google Scholar]
- Lykousis, V.; Chronis, G. Mechanisms of sediment transport and deposition: Sediment sequences and accumulation during the Holocene on the Thermaikos Plateau, the continental slope, and basin (Sporadhes Basin), Northwestern Aegean Sea, Greece. Mar. Geol. 1989, 87, 15–26. [Google Scholar] [CrossRef]
- Piper, D.J.W.; Kontopoulos, N.; Anagnostou, C.; Chronis, G.; Panagos, A.G. Modern Fan Deltas in the Western Gulf of Corinth, Greece. Geo-Mar. Lett. 1990, 10, 5–12. [Google Scholar] [CrossRef]
- Papatheodorou, G.; Hasiotis, T.; Ferentinos, G. Gas-charged sediments in the Aegean and Ionian Seas, Greece. Mar. Geol. 1993, 112, 171–184. [Google Scholar] [CrossRef]
- Papatheodorou, G.; Ferentinos, G. Submarine ad coastal sediment failure triggered by the 1995, Ms = 6.1 R Aegion earthquake Gulf of Corinth, Greece. Mar. Geol. 1997, 137, 287–304. [Google Scholar] [CrossRef]
- Hasiotis, T.; Papatheodorou, G.; Kastanos, N.; Ferentinos, G. A pockmark field in the Patras Gulf (Greece) and its activation during the 14/7/93 seismic event. Mar. Geol. 1996, 130, 333–344. [Google Scholar] [CrossRef]
- Poulos, S.E.; Lykousis, V.; Collins, M.B.; Rohling, E.J.; Pattiaratchi, C.B. Sedimentation processes in a tectonically active environment: The Kerkyra-Kefalonia submarine valley system (NE Ionian Sea). Mar. Geol. 1999, 160, 25–44. [Google Scholar] [CrossRef]
- Perissoratis, C.; Piper, D.J.W.; Lykousis, V. Alternating marine and lacustrine sedimentation during late Quaternary in the Gulf of Corinth rift basin, central Greece. Mar. Geol. 2000, 167, 391–411. [Google Scholar] [CrossRef]
- Van Andel, T.; Perissoratis, C. Late Quaternary deposition history of the North Evvoikos Gulf, Aegean Sea, Greece. Mar. Geol. 2006, 232, 157–172. [Google Scholar] [CrossRef]
- Iatrou, M.; Ferentinos, G.; Papatheodorou, G.; Piper, D.; Tripsanas, E. Anthropogenic turbidity current deposits in a seismically active graben, the Gulf of Corinth Greece: A useful tool for studying turbidity current transport processes. In Submarine Mass Movements and Their Consequences; Lykousis, V., Sakellariou, D., Locat, J., Eds.; Advances in Natural and Technological Hazard Research Series; Springer: Dordrecht, The Netherlands, 2007; Volume 27, pp. 149–157. [Google Scholar]
- Papanikolaou, D.; Fountoulis, I.; Metaxas, C. Active faults, deformation rates and Quaternary paleogeography at Kyparissiakos Gulf (SW Greece) deduced from onshore and offshore data. Quat. Int. 2007, 171–172, 14–30. [Google Scholar] [CrossRef]
- Beckers, A.; Hubert-Ferrari, A.; Beck, C.; Bodeux, S.; Tripsanas, E.; Sakellariou, D.; De Batist, M. Active faulting at the western tip of the Gulf of Corinth, Greece, from high-resolution seismic data. Mar. Geol. 2015, 360, 55–69. [Google Scholar] [CrossRef]
- Beckers, A.; Beck, C.; Hubert-Ferrari, A.; Tripsanas, E.; Crouzet, C.; Sakellariou, D.; Papatheodorou, G.; De Batist, M. Influence of bottom currents on the sedimentary processes at the western tip of the Gulf of Corinth, Greece. Mar. Geol. 2016, 378, 312–332. [Google Scholar] [CrossRef]
- Aksu, A.E.; Hall, J.; Yaltirak, C. Giant slope scars and mass transport deposits across the Rhodes Basin, eastern Mediterranean: Depositional and tectonic processes. Sediment. Geol. 2021, 424, 105979. [Google Scholar] [CrossRef]
- Perissoratis, C.; Moorby, S.A.; Papavasiliou, C.; Conan, D.S.; Angelopoulos, I.; Sakellariadou, F.; Mitropoulos, D. The Geology and Geochemistry of the Surficial Sediments Off Thraki, Northern Greece. Mar. Geol. 1987, 74, 209–224. [Google Scholar] [CrossRef]
- Papatheodorou, G.; Ferentinos, G. Sedimentation processes and basin filling depositional architecture in an active assymetric graben: Strava graben, Gulf of Corinth, Greece. Basin Res. 1993, 5, 235–253. [Google Scholar] [CrossRef]
- Kamberis, E.; Rigakis, E.; Tsaila-Monopolis, S.; Ioakim, C.; Sotiropoulos, S. Shallow biogenic gas-accumulations in Late Cenozoic sands of Katakolon peninsula, Western Greece. Bull. Geol. Soc. Greece 2000, 9, 121–138. [Google Scholar] [CrossRef]
- Christodoulou, D.; Papatheodorou, G.; Ferentinos, G.; Masson, M. Active seepage in two contrasting pockmark fields in the Patras and Corinth gulfs, Greece. Geo-Mar. Lett. 2003, 23, 194–199. [Google Scholar] [CrossRef]
- Etiope, G.; Papatheodorou, G.; Christodoulou, D.P.; Ferentinos, G.; Sokos, E.; Favali, P. Methane and hydrogen sulfide seepage in the northwest Peloponnesus petroliferous basin (Greece): Origin and geohazard. AAPG Bull. 2006, 90, 701–713. [Google Scholar] [CrossRef]
- Etiope, G.; Christodoulou, D.; Kordella, S.; Marinaro, G.; Papatheodorou, G. Offshore and onshore seepage of thermogenic gas at Katakolo Bay (Western Greece). Chem. Geol. 2013, 339, 115–126. [Google Scholar] [CrossRef]
- Campos, C.; Beck, C.; Crouzet, C.; Carillo, E.; Van Welden, A.; Tripsanas, E. Late Quaternary paleoseismic sedimentary archive from deep central Gulf of Corinth: Time distribution of inferred earthquake-induced layers. Ann. Geophys. 2013, 56, 1–15. [Google Scholar] [CrossRef]
- De Gelder, G.; Doan, M.L.; Beck, C.; Carlut, J.; Seibert, C.; Feuillet, N.; Carter, G.D.O.; Pechlivanidou, S.; Gawthorpe, R.L. Multi-scale and multi-parametric analysis of Late Quaternary event deposits within the active Corinth Rift (Greece). Sedimentology 2021, 69, 1573–1598. [Google Scholar] [CrossRef]
- Gawthorpe, R.L.; Fabregas, N.; Pechlivanidou, S.; Ford, M.; Collier, R.E.L.; Carter, G.D.O.; McNeill, L.C.; Shillington, D.J. Late Quaternary mud-dominated, sedimentation of the Gulf of Corinth, Greece: Implications for deep-water depositional processes and controls on syn-rift sedimentation. Basin Res. 2022, 34, 1567–1600. [Google Scholar] [CrossRef]
- Proedrou, P.; Papaconstantinou, C. Prinos Basin—A Model for Oil Exploration. Bull. Geol. Soc. Greece 2004, 36, 327–333. [Google Scholar] [CrossRef]
- Karditsa, A. Recent Sedimentation Processes in the Inner Continental Shelf of Alexandroupolis Gulf (North Aegean Sea). Ph.D. Dissertation, National and Kapodistrian University of Athens, Athens, Greece, 2010. [Google Scholar]
- Faugeres, L.; Robert, C. Etude sedimentologique et mineralogique de deux forages du golfe Thermaique (Mer Egee). Ann. Univ. Provence. Geol. Mediter. 1976, 3, 209–218. [Google Scholar] [CrossRef]
- Lykousis, V. Sea-level changes and sedimentary evolution during the Quaternary in the northwest Aegean continental margin, Greece. Spec. Publs. Int. Ass. Sediment. 1991, 12, 123–131. [Google Scholar]
- Makrodimitras, G.; Nikitas, A.; Ktenas, D.; Maravelis, A.G.; Rokana, N.M.; Pasadakis, N.; Tartaras, E.; Stefatos, A. Cenozoic Clastic Deposits in the Thermaikos Basin in Northern Greece and Their Reservoir Potential. Geosciences 2023, 13, 159. [Google Scholar] [CrossRef]
- Skampa, E.; Dimiza, M.D.; Arabas, A.; Gogou, A.; Panagiotopoulos, I.P.; Tsourou, T.; Velaora, D.; Karagiorgas, M.; Baumann, K.-H.; Triantaphylou, M.V. The Cretan Basin (South Aegean Sea, NE Mediterranean) in the Early Pliocene: A paleoceanographic reconstruction. Palaeogeogr. Palaeoclimatol. Palaecol. 2024, 640, 112085. [Google Scholar] [CrossRef]
- Aksu, A.E.; Yaşar, D.; Mudie, P.J.; Gillespie, H. Late glacial-Holocene paleoclimatic and paleoceanographic evolution of the Aegean Sea: Micropaleontological and stable isotopic evidence. Mar. Micropaleontol. 1995, 25, 1–28. [Google Scholar] [CrossRef]
- Aksu, A.E.; Yaşar, D.; Mudie, P.J. Origin of late glacial-Holocene hemipelagic sediments in the Aegean Sea: Clay mineralogy and carbonate cementation. Mar. Geol. 1995, 123, 33–59. [Google Scholar] [CrossRef]
- Aksu, A.E.; Yaşar, D.; Mudie, P.J. Paleoclimatic and paleoceanographic conditions leading to development of sapropel layer S 1 in the Aegean Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1995, 116, 71–101. [Google Scholar] [CrossRef]
- Aksu, A.; Jenner, G.; Hiscott, R.N.; Işler, E.B. Occurrence, stratigraphy and geochemistry of Late Quaternary tephra layers in the Aegean Sea and the Marmara Sea. Mar. Geol. 2008, 252, 174–192. [Google Scholar] [CrossRef]
- Giresse, P.; Buscail, R.; Charrière, B. Late Holocene multisource material input into the Aegean Sea: Depositional and post-depositional processes. Oceanol. Acta 2003, 26, 657–672. [Google Scholar] [CrossRef]
- Ehrmann, W.; Schmiedl, G.; Hamann, Y.; Kuhnt, T.; Hemleben, C.; Siebel, W. Clay minerals in late glacial and Holocene sediments of the northern and southern Aegean Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 249, 36–57. [Google Scholar] [CrossRef]
- Ehrmann, W.; Seidel, M.; Schmiedl, G. Dynamics of Late Quaternary North African humid periods documented in the clay mineral record of central Aegean Sea sediments. Glob. Planet. Chang. 2013, 107, 186–195. [Google Scholar] [CrossRef]
- Triantaphyllou, M.V.; Ziveri, P.; Gogou, A.; Marino, G.; Lykousis, V.; Bouloubassi, I.; Emeis, K.-C.; Kouli, K.; Dimiza, M.; Rosell-Melé, A.; et al. Late Glacial–Holocene climate variability at the south-eastern margin of the Aegean Sea. Mar. Geol. 2009, 266, 182–197. [Google Scholar] [CrossRef]
- Geraga, M.; Ioakim, C.; Lykousis, V.; Tsaila-Monopolis, S.; Mylona, G. The high-resolution palaeoclimatic and palaeoceanographic history of the last 24,000 years in the central Aegean Sea, Greece. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 287, 101–115. [Google Scholar] [CrossRef]
- Leontopoulou, G.; Christidis, G.; Geraga, M.; Papatheodorou, G.; Koutsopoulou, E. A novel mineralogical approach for provenance analysis of late Quaternary marine sediments: The case of Myrtoon Basin and Cretan Sea, Aegean, Greece. Sediment. Geol. 2019, 384, 70–84. [Google Scholar] [CrossRef]
- Leontopoulou, G.; Christidis, G.; Rousakis, G.; Müller, N.; Papatheodorou, G.; Geraga, M. Provenance analysis of sediments in the south-east Aegean during the Upper Quaternary: A composite approach based on bulk and clay mineralogy and geochemistry. Clay Miner. 2021, 56, 229–249. [Google Scholar] [CrossRef]
- Got, H.; Monaco, A.; Vittori, J.; Brambati, A.; Catani, G.; Masoli, M.; Pugliese, N.; Zucchi-Stolfa, M.; Belfiore, A.; Gallo, F.; et al. Sedimentation on the Ionian Active Margin (Hellenic Arc)—Provenance of Sediments and Mechanisms of Deposition. Sediment. Geol. 1981, 28, 243–272. [Google Scholar] [CrossRef]
- Anastasakis, G.C.; Stanley, D.J.W. Sapropels and organic-rich variants in the Mediterranean: Sequence development and classification. Geol. Soc. Lond. Spec. Publ. 1984, 15, 497–510. [Google Scholar] [CrossRef]
- Perissoratis, C.; Piper, D.J.W. Age, Regional Variation, and Shallowest Occurrence of S1 Sapropel in the Northern Aegean Sea. Geo-Mar. Lett. 1992, 12, 49–53. [Google Scholar] [CrossRef]
- Anastasakis, G.; Piper, D. Late Neogene evolution of the western South Aegean volcanic arc: Sedimentary imprint of volcanicity around Milos. Mar. Geol. 2005, 215, 135–158. [Google Scholar] [CrossRef]
- Perissoratis, C. The Santorini volcanic complex and its relation to the stratigraphy and structure of the Aegean Arc, Greece. Mar. Geol. 1995, 128, 37–58. [Google Scholar] [CrossRef]
- Nomikou, P.; Carey, S.; Papanikolaou, D.; Croff Bell, K.; Sakellariou, D.; Alexandi, M.; Bejelou, K. Submarine volcanoes of the Kolumbo volcanic zone NE of Santorini Caldera, Greece. Glob. Planet. Chang. 2012, 90–91, 135–151. [Google Scholar] [CrossRef]
- Karstens, J.; Preine, J.; Crutchley, G.J.; Kutterolf, S.; van der Bilt, W.G.M.; Hooft, E.E.E.; Druitt, T.H.; Schmid, F.; Cederstrøm, J.M.; Hübscher, C.; et al. Revised Minoan Eruption Volume as Benchmark for Large Volcanic Eruptions. Nat. Commun. 2023, 14, 2497. [Google Scholar] [CrossRef]
- Karstens, J.; Preine, J.; Carey, S.; Bell, K.L.C.; Nomikou, P.; Hübscher, C.; Lampridou, D.; Urlaub, M. Formation of Undulating Seafloor Bedforms during the Minoan Eruption and Their Implications for Eruption Dynamics and Slope Stability at Santorini. Earth Planet. Sci. Lett. 2023, 616, 118215. [Google Scholar] [CrossRef]
- Conispoliatis, N.; Lykousis, V. Mineralogy of the Surficial Sediments of Kavala Bay, Northern Aegean Sea. Estuar. Coast. Shelf Sci. 1986, 23, 739–749. [Google Scholar] [CrossRef]
- Pehlivanoglou, K. Evros Delta: Evolution of Continental Shelf Sediments. Mar. Geol. 1989, 87, 27–29. [Google Scholar] [CrossRef]
- Perissoratis, C.; Mitropoulos, D. Late Quaternary Evolution of the Northern Aegean Shelf. Quat. Res. 1989, 32, 36–50. [Google Scholar] [CrossRef]
- Pehlivanoglou, K.; Tsirambides, A.; Trontsios, G. Origin and Distribution of Clay Minerals in the Alexandroupolis Gulf, Aegean Sea, Greece. Estuar. Coast. Shelf Sci. 2000, 51, 61–73. [Google Scholar] [CrossRef]
- Kanellopoulos, T.; Angelidis, M.; Karageorgis, A.; Kaberi, H.; Kapsimalis, V.; Anagnostou, C. Geochemical composition of the uppermost prodelta sediments of the Evros River, northeastern Aegean Sea. J. Mar. Syst. 2006, 64, 63–78. [Google Scholar] [CrossRef]
- Kanellopoulos, T.; Kapsimalis, V.; Poulos, S.; Angelidis, M.; Karageorgis, A.; Pavlopoulos, K. The influence of the Evros River on the recent sedimentation of the inner shelf of the NE Aegean Sea. Environ. Geol. 2008, 53, 1455–1464. [Google Scholar] [CrossRef]
- Karditsa, A.; Poulos, S. Sedimentological investigations in ariver-influenced tideless coastal embayment: The case of inner continental shelf of the NE Aegean Sea. Cont. Shelf Res. 2013, 55, 86–96. [Google Scholar] [CrossRef]
- Karageorgis, A.P.; Anagnostou, C.L.; Kaberi, H. Geochemistry and Mineralogy of the NW Aegean Sea Surface Sediments: Implications for River Runoff and Anthropogenic Impact. Appl. Geochem. 2005, 20, 69–88. [Google Scholar] [CrossRef]
- Vakalas, I.; Zanarini, I. Net Transport Processes of Surficial Marine Sediments in the North Aegean Sea, Greece. J. Mar. Sci. Eng. 2024, 12, 512. [Google Scholar] [CrossRef]
- Lykousis, V.; Collins, M.; Ferentinos, G. Modern sedimentation in the N.W. Aegean Sea. Mar. Geol. 1981, 43, 111–130. [Google Scholar] [CrossRef]
- Lykousis, V.; Collins, M. Sedimentary environments in the Northwestern Aegean Sea, identified from sea-bed photography. Thalassographica 1987, 10, 23–35. [Google Scholar]
- Pehlivanoglou, K. Lithology and mineralogy of surface sediments in the vicinity of the Kafireas Strait (Aegean Sea). Geo-Mar. Lett. 2001, 21, 75–85. [Google Scholar] [CrossRef]
- Kapsimalis, V.; Panagiotopoulos, I.P.; Hatzianestis, I.; Kanellopoulos, T.D.; Tsangaris, C.; Kaberi, E.; Kontoyiannis, H.; Rousakis, G.; Kyriakidou, C.; Hatiris, H.A. A screening procedure for selecting the most suitable dredged material placement site at the sea. The case of the South Euboean Gulf, Greece. Environ. Monit. Assess. 2013, 185, 10049–10072. [Google Scholar] [CrossRef]
- Karageorgis, A.; Ioakim, C.; Rousakis, G.; Sakellariou, D.; Vougioukalakis, G.; Panagiotopoulos, I.; Zimianitis, E.; Koutsopoulou, E.; Kanellopoulos, T.; Papatrechas, C.; et al. Geomorphology, sedimentology and geochemistry in the marine area between Sifnos and Kimolos islands, Greece. Bull. Geol. Soc. Greece 2016, 50, 334–344. [Google Scholar] [CrossRef]
- Anagnostou, C.; Richter, D.K.; Riedel, D.; Trapp, T. Recent sediments in the South Cyclades Marine Area, Aegean Sea. Bull. Geol. Soc. Greece 1998, 32, 193–203. [Google Scholar]
- Lykousis, V. Subaqueous bedforms on the Cyclades Plateau (NE Mediterranean)—Evidence of Cretan Deep Water Formation? Cont. Shelf Res. 2001, 21, 495–507. [Google Scholar] [CrossRef]
- Tripsanas, E.K.; Panagiotopoulos, I.P.; Lykousis, V.; Morfis, I.; Karageorgis, A.P.; Anastasakis, A.; Kontogonis, G. Late quaternary bottom-current activity in the south Aegean Sea reflecting climate-driven dense-water production. Mar. Geol. 2016, 375, 99–119. [Google Scholar] [CrossRef]
- IGME (Institute of Geology and Mineral Exploration). Surficial Sediment Map of the Bottom of the Aegean Sea, Thassos-Samothraki Sheet, Scale 1:200000; IGME: Thessaloniki, Greece, 1986. [Google Scholar]
- Lykousis, V. Prodelta Sediments: Seismic Stratigraphy, Sedimentology, Slope Stability. Ph.D. Dissertation, University of Patras, Patras, Greece, 1990. [Google Scholar]
- Lunne, T.; Bere, T.; Andersen, K.; Strandvik, S.; Sjursen, M. Effects of sample disturbance and consolidation procedures on measured shear strength of soft marine Norwegian clays. Can. Geotech. J. 2006, 43, 726–750. [Google Scholar] [CrossRef]
- Lykousis, V.; Ferentinos, G. Submarine slumping and slope stability on the continental slope off Greece in relation with the seismic activity. Bull. Geol. Soc. Greece 1988, 20, 353–367. [Google Scholar]
- Hasiotis, T. Geophysical Prospecting and Geotechnical Conditions of Submarine Slopes in Seismically Active Regions in Greece. Ph.D. Dissertation, University of Patras, Patras, Greece, 2001. [Google Scholar]
- Manta, K.; Rousakis, G.; Anastasakis, G.; Lykousis, V.; Sakellariou, D.; Panagiotopoulos, I.P. Sediment transport mechanisms from the slopes and canyons to the deep basins south of Crete Island (southeast Mediterranean). Geo-Mar. Lett. 2019, 39, 295–312. [Google Scholar] [CrossRef]
- Hasiotis, T.; Papatheodorou, G.; Ferentinos, G. Surficial mass movements and submarine slope stability analysis between Kerkyra and Paxi slope (Western Greece slope). Bull. Geol. Soc. Greece 2001, 34, 663–670. [Google Scholar]
- Alves, T.; Lykousis, V.; Sakellariou, D.; Alexandri, S.; Nomikou, P. Constraining the origin and evolution of confined turbidite systems: Southern Cretan margin, Eastern Mediterranean Sea (34°30–36°N). Geo-Mar. Lett. 2007, 27, 41–61. [Google Scholar] [CrossRef]
- Dominey-Howes, D.; Cundy, A.; Croudace, I. High energy marine flood deposits on Astypalaea Island, Greece: Possible evidence for the AD 1956 southern Aegean tsunami. Mar. Geol. 2000, 163, 303–315. [Google Scholar] [CrossRef]
- Morgenstern, N.R. Submarine slumping and initiation of turbidity currents. In Marine Geotechnique; Richards, A.F., Ed.; University of Illinois Press: Urbana, IL, USA, 1967; pp. 189–220. [Google Scholar]
- Lee, H.; Edwards, B. Regional Method to Assess Offshore Slope Stability. J. Geotech. Eng. 1986, 112, 489–509. [Google Scholar] [CrossRef]
- Lunne, T.; Robertson, P.; Powell, J. Cone Penetration Testing in Geotechnical Practice; Blackie Academic: New York, NY, USA; Routledge: London, UK, 1997; pp. 981–989. [Google Scholar]
- Robertson, P.; Cabal, K. Guide to Cone Penetration Testing, 7th ed.; Greg. Drilling and Testing: Signal Hill, CA, USA, 2023. [Google Scholar]
- Been, K.; Quiñonez, A.; Sancio, R.B. Interpretation of the CPT in engineering practice. In Proceedings of the 2nd International Symposium on Cone Penetration Testing, Huntington Beach, CA, USA, 9–11 May 2010. [Google Scholar]
- Powell, J.J.M.; Dhimitri, L. Watch out for the Use of Global Correlations and “Black Box” Interpretation of CPTU Data. In Cone Penetration Testing 2022, Proceedings of the 5th International Symposium on Cone Penetration Testing, Bologna, Italy, 8–10 June 2022; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Shan, Z.; Wu, H.; Ni, W.; Sun, M.; Wang, K.; Zhao, L.; Lou, Y.; Liu, A.; Xie, W.; Zheng, X.; et al. Recent Technological and Methodological Advances for the Investigation of Submarine Landslides. J. Mar. Sci. Eng. 2022, 10, 1728. [Google Scholar] [CrossRef]
- Heezen, B.; Ewing, M.; Johnson, G.L. The Gulf of Corinth floor. Deep-Sea Res. 1966, 13, 381–411. [Google Scholar] [CrossRef]
- Gatter, R.; Clare, M.A.; Kuhlmann, J.; Huhn, K. Characterization of weak layers, physical controls on their global distribution and their role in submarine landslide formation. Earth-Sci. Rev. 2021, 223, 103845. [Google Scholar] [CrossRef]
- Peloriadi, K.; Iliadis, P.; Boutikos, P.; Atsonios, K.; Grammelis, P.; Nikolopoulos, A. Technoeconomic Assessment of LNG-Fueled Solid Oxide Fuel Cells in Small Island Systems: The Patmos Isand Case Study. Energies 2022, 15, 3892. [Google Scholar] [CrossRef]
- Peuchen, J.; Gomez Meyer, E. Geo-intelligence from datasets of offshore in-situ tests in public domain. In Proceedings of the 6th International Conference on Geotechnical and Geophysical Site Characterization (ISC2020), Budapest, Hungary, 7–11 September 2020. [Google Scholar]
- Peuchen, J.; Meijninger, B.; Brouwer, D. North Sea as geodatabase. AIMS Geosci. 2019, 5, 66–81. [Google Scholar] [CrossRef]
- Peuchen, J.; van Kesteren, W.; Vandeweijer, V.; Carpentier, S.; van Erp, F. Upscaling 1 500 000 synthetic CPTs to voxel XPT models of offshore sites. In Proceedings of the 5th International Conference for Cone Penetration Testing 2022, Bologna, Italy, 8–10 June 2022. [Google Scholar]
- Mayne, P.; Peuchen, J. Evaluation of CPTU Nkt cone factor for undrained shear strength of clays. In Cone Penetration Testing 2018 (CPT’18); Hicks, M.A., Pisanó, F., Peuchen, J., Eds.; Delft University of Technology: Delft, The Netherlands, 2018; pp. 423–429. [Google Scholar]
- Mayne, P.; Peuchen, J. Undrained shear strength of clays from piezocone tests: A database approach. In Proceedings of the 5th International Conference for Cone Penetration Testing 2022, Bologna, Italy, 8–10 June 2022. [Google Scholar]
- Karlsrud, K.; Lunne, T.; Kort, D.; Strandvik, S. CPTU correlations for clays. In Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering, Osaka, Japan, 12–16 September 2005. [Google Scholar]
- Paniagua, P.; D’Ignazio, M.; L’Heureux, J.-S.; Lunne, T.; Karlsrud, K. CPTU correlations for Norwegian clays: An update. AIMS Geosci. 2019, 5, 82–103. [Google Scholar] [CrossRef]
- Coughlan, M.; Wheeler, A.J.; Dorschel, B.; Long, M.; Doherty, P.; Mörz, T. Stratigraphic model of the Quaternary sediments of the Western Irish Sea Mud Belt from core, geotechnical and acoustic data. Geo-Mar. Lett. 2019, 39, 223–237. [Google Scholar] [CrossRef]
- Coughlan, M.; Long, M.; Doherty, P. Geological and geotechnical constraints in the Irish Sea for offshore renewable energy. J. Maps 2020, 16, 420–431. [Google Scholar] [CrossRef]
Study | Location | Slope Gradient Range (°) | Ground Acceleration (g) | General Assessment |
---|---|---|---|---|
[142] | Ionian Sea (Zakynthos–Kefalonia–Peloponnesus), Gulf of Corinth, NW Aegean Sea (Thermaikos slope), Central Aegean Sea (Saronic Gulf) | 4°–7° | 0.18–0.28 g | General instability for the Zakynthos–Kefalonia–Peloponnesus and Corinth Gulf slopes. Instabilities in the Saronic Gulf and some sections of the Thermaikos slope. |
[36] | NW Aegean Sea (Thermaikos slope) | 1°–4° | 0.18–0.33 g | Slope stability for 10 m layers and instability at 20 m (theoretical approximations). |
[47] | Ionian Sea (Zakynthos continental slope) | 8° (average) | 0.08–0.30 g | Sufficient ground acceleration for failure is 0.08 g for S1 sapropels and 0.30 g for overlying strata. Presentation of critical distances of epicenters for sufficient failure. |
[38] | South Aegean Sea | 1°–4° | 0.07–0.13 g | Ground accelerations 0.07 to 0.13 g are sufficient to trigger failures. |
[145] | Ionian Sea (Paxi and Corfu slopes) | 5°–30° | 0.43–1.26 g | Paxi slope exhibits instability under dynamic conditions. Corfu slope shows instability in both static and dynamic conditions. |
[53] | Gulf of Corinth | 2.5°–11° | 0.30–0.50 g | Stable conditions of coastal sediments under cyclic loading of a Ms = 6.2 R earthquake. Failure is initiated from earthquake-induced pore pressure of subsurface liquefiable layers. |
[41] | North Aegean slope | 0.5°–2.9° | 0.08–0.26 g | Calculated ground accelerations for failure were less than the predicted ones, indicating high instability. |
[28] | South Aegean Sea (Milos slope) | 3°–26° | 0.05 g | General stability of sediments under static conditions. Instability is found in shallow surficial layers (<50 cm). |
[31] | NW Aegean Sea (Thermaikos slope), western Greece (Corinth Gulf, Patraikos Gulf), Ionian Sea (Kyparissiakos Gulf) | 0.5°–5° | 0.12–0.30 g | Instability of prodelta sediments corresponding to the low section of the High System Tract (HST), in addition to the presence of gas. |
[33] | South Aegean Sea (Cretan Margin) | 3°–5° | 0.37–0.67 g | Critical ground accelerations of 0.37 to 0.67 g for 3° slopes and 0.40 to 0.66 g for 5° slopes. |
[45] | Gulf of Corinth | 2°–20° | 0.30–0.55 g | Stable conditions for coastal sediments under static and cyclic loading. Failure is initiated from earthquake-induced pore pressure increase in subsurface liquefiable layers. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chtouris, N.-K.; Hasiotis, T. Marine Geotechnical Research in Greece: A Review of the Current Knowledge, Challenges and Prospects. J. Mar. Sci. Eng. 2024, 12, 1708. https://doi.org/10.3390/jmse12101708
Chtouris N-K, Hasiotis T. Marine Geotechnical Research in Greece: A Review of the Current Knowledge, Challenges and Prospects. Journal of Marine Science and Engineering. 2024; 12(10):1708. https://doi.org/10.3390/jmse12101708
Chicago/Turabian StyleChtouris, Nikolaos-Kimon, and Thomas Hasiotis. 2024. "Marine Geotechnical Research in Greece: A Review of the Current Knowledge, Challenges and Prospects" Journal of Marine Science and Engineering 12, no. 10: 1708. https://doi.org/10.3390/jmse12101708
APA StyleChtouris, N. -K., & Hasiotis, T. (2024). Marine Geotechnical Research in Greece: A Review of the Current Knowledge, Challenges and Prospects. Journal of Marine Science and Engineering, 12(10), 1708. https://doi.org/10.3390/jmse12101708