A Credibility Monitoring Approach and Software Monitoring System for VHF Data Exchange System Data Link Based on a Combined Detection Method
Abstract
:1. Introduction
- To detect radio interference in the VDES data link, a radio interference detection approach based on message characteristics is put forward. By examining adherence to message formats, parameter validity, content integrity, and transmission coherence, it is determined whether radio interference will impact the correct transmission of VDES messages.
- Due to the lack of encryption in the messages broadcast by VDES base stations and the absence of an identity verification mechanism within VDES itself, malicious entities could deceive vessels within the signal coverage area by illicitly sending false VDES messages using the MMSI code stolen from a legitimate base station. This deceptive practice can mislead vessel navigation decisions, posing a significant threat to maritime safety. This paper employs a method for spoofing source detection based on distance matching analysis. Specifically, the VHF signal propagation loss model in the complex sea environment is employed to calculate the propagation distance of the VDES signal, and the position information in the ship position report is utilized to calculate the ship-to-shore distance. The matching degree analysis of the two distances is adopted to effectively identify the spoofing source, and the spoofing source position and range are then located by using the spoofing source positioning algorithm.
- To automatically monitor the credibility of the VDES data link and issue timely warnings of vulnerabilities to vessels or management centers, this study develops monitoring software based on a tripartite data architecture supported by a client/server (C/S) model, using the front-end interface to display the monitoring results, warning information, and related data visually, facilitating a direct understanding of the credibility of the VDES data link.
- The credibility monitoring approach and monitoring software for the VDES data link proposed in this paper are verified based on various interference scenarios, and the results indicate that the proposed approach and the developed software system can effectively monitor and identify the vulnerability threats such as radio interference and spoofing sources existing in the VDES data link.
2. VDES Data Link Credibility Monitoring Approach
2.1. Radio Interference Detection Based on Message Characteristics
2.1.1. VDES Message Integrity Verification Method Based on the MD5 Algorithm
Algorithm 1 MD5 algorithm |
1: Initialize variables: 2: A ← 0X67452301 3: B ← 0XEFCDAB89 4: C ← 0X98BADCFE 5: D ← 0X10325476 6: Pre-processing: 7: append “1” bit to message 8: append “0” bits until message length in bits ≡ 448 (mod 512) 9: append bit length of message as 64 bits little-endian integer to message 10: for each 512 bits chunk of message do 11: break chunk into sixteen 32 bits little-endian words , 0 ≤ i ≤ 15 12: Initializa hash value for this chunk: 13: a ← A 14: b ← B 15: c ← C 16: d ← D 17: for i from 0 to 63 do 18: if 0 ≤ i ≤ 15 then 19: f ← (b & c)|(~ b & d) 20: g ← i 21: else if 16 ≤ i ≤ 31 then 22: f ← (d & b)|(~ d & c) 23: g ← (5 × i + 1) mod 16 24: else if 32 ≤ i ≤ 47 then 25: f ← b ⊕ c ⊕ d 26: g ← (3 × i + 5) mod 16 27: else if 48 ≤ i ≤ 63 then 28: f ← c ⊕ (b|(~ d)) 29: g ← (7 × i) mod 16 30: end if 31: temp ← d 32: d ← c 33: c ← b 34: b ← 35: a ← temp 36: end for 37: Add this chunk’s hash to result so far: 38: A ← A + a 39: B ← B + b 40: C ← C + c 41: D ← D + d 42: end for 43: digest ← //(expressed as little-endian) |
2.1.2. VDES Message Consistency Detection Method Based on the HMAC Algorithm
2.2. Spoofing Source Identification and Localization Method Based on Distance Matching Analysis
2.2.1. Method for Calculating VDES Signal Propagation Distance and Ship-to-Shore Distance
2.2.2. Spoofing Sources Localization Method
2.2.3. Experimental Testing and Results Analysis
- I.
- Spoofing Source Detection Experiment
- (1)
- No Spoofing Source Detected
- (2)
- Spoofing Source Detected
- II.
- Spoofing Source Localization Experiment
- (1)
- Localization of Spoofing Sources by Single Monitoring Stations
- (2)
- Spoofing Source Localization Using Two Monitoring Stations
- (3)
- Spoofing Source Localization with Three Monitoring Stations
3. Design of Software for Monitoring VDES Data Link Credibility
3.1. Design of Key Modules
3.1.1. VDES Communication Module
3.1.2. VDES Message Processing Module
- (1)
- VDES Message Encapsulation
Algorithm 2 VDES message encapsulation algorithm |
procedure MESSAGE-ENCAPSSULATION (sender, e) String DecimalToBinary(int decimalNumber,int Length) return binaryNumber “” String finalMessage ← “” String strr ← “” String id ← ID switch(Convert.ToInt32(id)) case 4: //When the id is 4, the string value is obtained from the input and a series of processing is performed end switch int srl ← strr.Length int zerosToAdd ← 0 if (srl % 6 ≠ 0) zerosToAdd ← 6 -(srl % 6) strr ← strr + new string(‘0’, zeresToAdd) int Size ← 6 int nums ← strr.Length/Size String binaryChunkk[nums] for i ← 0 to nums do binaryChunkk[i] ← strr.Substring(i * Size, Size) end for for all binaryChunk in binaryChunkk do int asciiValue ← Convert.ToInt32(binaryChunk, 2) if asciiValue < 0x28 then asciiValue ← asciiValue + 0x30 finalMessage ← finalMessage + Convert.ToChar(asciiValue) else if asciiValue < 0x80 then asciiValue ← asciiValue + 0x38 finalMessage ← finalMessage + Convert.ToChar(asciiValue) else asciiValue ← 0 finalMessage ← finalMessage + Convert.ToChar(asciiValue) end if end for VDES_Message ← finalMessage int CalculateChecksun(String sentence) return Convert.ToInt32(checksun.ToString(“X2”), 16) String st ← TextBox22.Text + finalMessage + “,” + zerosToAdd Console.WriteLine(“Checksun: ” + st) int ccc ← CalculateChecksun(st) end procedure |
- (2)
- VDES Message Parsing
3.1.3. VDES Data Link Credibility Monitoring Module
- (1)
- VDES Message Integrity Verification Module
- (2)
- VDES Transmission and Reception Message Consistency Verification Module
Algorithm 3 VDES message integrity and consistency monitoring |
Step 1: Connect database sever = (local); database = DBTESTB; integrated security = true Step 2: Calculate hash value function CALCULATEHASH(data) using MD5 md5 = MD5.Create() hashBytes ← md5.ComputeHash(Encoding.UTF8.GetBytes(data)) return BitConverter.ToString(hashBytes).Replace(“-”, “”) end function Step 3: Message integrity verification vdesMessage ← concatenatedValues valuesString ← Join values11 and replace spaces ProcessVDESMessagel(vdesMessage) dataBlocksForMessage1 ← new List() ProcessVDESMessage2(vuluesString) dataBlocksForMessage2 ← new List() hashValue1 ← CalculateHash(Join dataBlocksForMessage1) hashValue2 ← CalculateHash(Join dataBlocksForMessage2) areHashesEqual ← hashValue1 = = hashValue2 if areHashesEqual then shuchu1 ← “The hash values of the two VDES messages are the same. Data integrity verification passed.” else shuchu1 ← “The hash values of the two VDES messages are different. Data integrity verification failed.” end if Step 4: Message consistency verification function computeHMAC(data, key) using HMACMD5 hmac = new HMACMD5(Encoding.UTF8.GetBytes(key)) hashBytes ← hmac.ComputeHash(Encoding.UTF8.GetBytes(data)) return BitConverter.ToString(hashBytes).Replace(“-”, “”).ToLower() end function data1 ← TDB Message vdesMessage ← data1[5] sharedKey ← Substring(0,7) of data1[5] generatedHMAC1 ← ComputeHMAC(vdesMessage, sharedKey) ReceivedVdes.Split(‘,’) receivedVdes← data [5] generatedHMAC2 ← ComputeHMAC(receivedVdes, sharedKey) if generatedHMAC1 = = generatedHMAC2 then shuchu2 ← “Data consistency validation passes!” else shuchu2 ← “Data consistency validation failed!” end if |
- (3)
- Module for Analyzing the Matching of Ship-to-Shore Distance and Propagation Distance
Algorithm 4 Matching monitoring between ship-to-shore distance and propagation distance |
Step 1: Calculate the distance between the base station and the ship function GETDISTANCE(lng1, lat1, lng2, lat2) radLat1 ← Rad(lat1) radLng1 ← Rad(lng1) radLat2 ← Rad(lat2) radLng2 ← Rad(lng2) a ← radLat1 ← radLat2 b ← radLng1 ← radLng2 result ← ⊲ Haversine formula return result end function Step 2: Calculate the service radius of the base station function SERVICERADIUS(d, u, h, Ta, Ts, Rh) L ← ⊲ Transmission loss S ← A − L if S = 0 then return d end if end function When the system margin is greater than 0, the maximum transmission distance d corresponds to the propagation distance R of the VDES base station. Step 3: Matching monitoring if R ≥ D then shuchu3 ← “located within the propagation distance of the VDES base station” else shuchu3 ← “beyond the propagation distance of the VDES base station” end if |
4. Verification and Analysis of Experimental Results
4.1. Testing of Radio Interference Vulnerability and Threats
- I.
- Compliance Testing of VDES Message Formats
- II.
- Verification Testing of VDES Message Parameter Legitimacy
- III.
- Verification of VDES Message Content Integrity
- IV.
- VDES Transmission and Reception Messages Consistency Check Test
- V.
- Testing of Radio Interference Vulnerability and Threats
4.2. Testing of Spoofing Source Vulnerability and Threats
- I.
- Testing of Ship-to-Shore Distance and Propagation Distance Matching
- (a)
- Match Test Passes the Experiment
- (b)
- Experimental Analysis of Matching Testing Failures
- II.
- Testing of Spoofing Source Localization
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AIS | Automatic Identification System |
AODV | Ad Hoc On-demand Distance Vector |
ASM | Application Specific Messages |
A-VDL | Advanced Very-High-Frequency Data Link |
FBTDMA | Feedback based Time Division Multiple Access |
IALA | The International Organization for Marine Aids to Navigation |
IGO | Intergovernmental Organization |
IMO | International Maritime Organization |
ITU | The International Telecommunication Union |
mARF | Maritime Automatic Rate Fallback |
MCS | Modulation and Coding Scheme |
MMSI | Maritime Mobile Service Identity |
NCSR11 | 11th session of the IMO Sub-Committee on Navigation, Communications, and Search and Rescue |
NGO | Non-governmental Organization |
SOLAS | Safety of Life at Sea |
SOTDMA | Self-Organizing Time Division Multiple Access |
VDE | Wideband Very-High-Frequency Data Exchange |
VDES | Very-High-Frequency Data Exchange System |
VDL | Very-High-Frequency Data Link |
References
- Lázaro, F.; Raulefs, R.; Wang, W.; Clazzer, F.; Plass, S. VHF Data Exchange System (VDES): An enabling technology for maritime communications. CEAS Space J. 2019, 11, 55–63. [Google Scholar] [CrossRef]
- ITU-R M.2092-0; Technical Characteristics for a VHF Data Exchange System in the VHF Maritime Mobile Band. ITU: Geneva, Switzerland, 2015.
- International Maritime Organization. Sub-Committee on Navigation, Communications and Search and Rescue (NCSR), 11th Session [EB/OL]. Available online: https://www.imo.org/en/MediaCentre/MeetingSummaries/Pages/NCSR-11th-session.aspx (accessed on 5 August 2024).
- Raulefs, R. Overview of the VHF Data Exchange System. In Proceedings of the OCEANS 2022, Hampton Roads, VA, USA, 17–20 October 2022; pp. 1–4. [Google Scholar]
- Alagha, N.; Løge, L. IJSC&N Special Issue “Opportunities and challenges of maritime VHF data exchange systems”: Guest editorial message. Int. J. Satell. Commun. Netw. 2023, 41, 99–101. [Google Scholar]
- Dong, H.; Song, L.; Hua, C.Q.; Liu, L.Y.; Tang, J.H. Survey of The Research and Development on The Maritime Communication Technology. Telecommun. Sci. 2022, 38, 1–17. [Google Scholar]
- Kim, W.; Lee, M.S.; Shin, G.; Kim, H.; Lee, C.H.; Kim, Y.; Yoon, I.J. Ferrite-Loaded, Low-Profile Grounded Bowtie-Loop Antenna for VHF Communication. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 3132–3136. [Google Scholar] [CrossRef]
- Chen, X.Q.; Ma, D.F.; Liu, R.W. Application of Artificial Intelligence in Maritime Transportation. J. Mar. Sci. Eng. 2024, 12, 439. [Google Scholar] [CrossRef]
- Gong, G. The Research and Validation on Influencing Factor of AlS Slot Collision. Master’s Thesis, Dalian Maritime University, Dalian, China, 2013. [Google Scholar]
- D’andreagiovanni, F.; Mett, F.; Nardin, A.; Pulaj, J. Integrating LP-guided variable fixing with MIP heuristics in the robust design of hybrid wired-wireless FTTx access networks. Appl. Soft Comput. 2017, 61, 1568–4946. [Google Scholar] [CrossRef]
- Kennington, J.; Olinick, E.; Rajan, D. Wireless Network Design: Optimization Models and Solution Procedures; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Nace, D.; Pióro, M.; Poss, M.; D’Andreagiovanni, F.; Kalesnikau, I.; Shehaj, M.; Tomaszewski, A. An optimization model for robust FSO network dimensioning. Opt. Switch. Netw. 2019, 32, 25–40. [Google Scholar] [CrossRef]
- D’Andreagiovanni, F.; Mannino, C.; Sassano, A. Negative Cycle Separation in Wireless Network Design. In Network Optimization, Proceedings of the 5th International Conference, INOC 2011, Hamburg, Germany, 13–16 June 2011; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- D’Andreagiovanni, F.; Gleixner, A. Towards an accurate solution of wireless network design problems. Comput. Sci. 2016, 9849, 135–147. [Google Scholar]
- Lehto, A.; Sestorp, I.; Khan, S.; Gurtov, A. Controller Pilot Data Link Communication Security: A Practical Study. In Proceedings of the 2021 Integrated Communications Navigation and Surveillance Conference (ICNS), Dulles, VA, USA, 19–23 April 2021; pp. 1–11. [Google Scholar]
- International Association of Lighthouse Authorities. VDES VHF Data Link (VDL) Integrity Monitoring; Guideline G1181; IALA: Saint Germain en Laye, France, 2023. [Google Scholar]
- Li, M.M.; Shi, H.P.; Han, R.; Zhang, X.Y. Study on Co-Channel interference between VDE-Sat System and Land Mobile Communication System. China Radio 2021, 4, 38–42. [Google Scholar]
- Quintana-Diaz, G.; Birkeland, R.; Loge, L.; Andersen, E.; Bolstad, A.; Ekman, T. In-orbit Interference Measurements and Analysis in the VDES-band with the NorSat-2 Satellite. In Proceedings of the 2022 IEEE Aerospace Conference (AERO), Big Sky, MT, USA, 5–12 March 2022; pp. 1–8. [Google Scholar]
- Fei, C.; Zhao, B.; Yu, W.; Wu, C. A routing strategy for software defined satellite networks considering control traffic. J. Beijing Univ. Aeronaut. 2018, 44, 2575–2585. [Google Scholar]
- Yang, Y. Research on Civil Maritime VDES Equipment Authentication and Broadcast Encryption Scheme. Master’s Thesis, Sichuan University, Chengdu, China, 2021. [Google Scholar]
- d’Afflisio, E.; Braca, P.; Willett, P. Malicious AIS Spoofing and Abnormal Stealth Deviations: A Comprehensive Statistical Framework for Maritime Anomaly Detection. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 2093–2108. [Google Scholar] [CrossRef]
- Frasconi, M.; Mando, G. Authentication mechanisms for VHF Data Exchange System (VDES). In Proceedings of the 6th NMIOTC Conference on Cyber Security in Maritime, Chania, Greece, 27–28 September 2022; Available online: https://www.researchgate.net/publication/364410997_Authentication_mechanisms_for_VHF_Data_Exchange_System_VDES (accessed on 5 August 2024).
- Louart, M.; Szkolnik, J.J.; Boudraa, A.O.; Le Lann, J.C.; Le Roy, F. Detection of AIS messages falsifications and spoofing by checking messages compliance with TDMA protocol. Digit. Signal Process. 2023, 136, 1051–2004. [Google Scholar] [CrossRef]
- Wimpenny, G.; Šafář, J.; Grant, A.; Bransby, M. Securing the Automatic Identification System (AIS): Using public key cryptography to prevent spoofing whilst retaining backwards compatibility. J. Navig. 2021, 75, 333–345. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, M.H.; Zhu, L.H. Design of an OFDM-based VDES Ground Subsystem. Telecommun. Eng. 2018, 58, 826–832. [Google Scholar]
- Li, W.Y.; Liu, C.; Ji, X.Y.; Li, J.H. Virtual navigation aids and its message design based on VDE-SAT. China Harb. Eng. 2021, 41, 8–11. [Google Scholar]
- Hu, X.; Lin, B.; Wang, Z. VDES-based Space, Air, Ground and Sea Integrated Communication Networks: Architecture and Key Technologies. Mob. Commun. 2019, 43, 2–8. [Google Scholar]
- Jing, Q.; Sha, J. The Use of SNN for Ultralow-Power RF Fingerprinting Identification with Attention Mechanisms in VDES-SAT. IEEE Internet Things J. 2023, 10, 15594–15603. [Google Scholar] [CrossRef]
- Jamal, H.; Matolak, D.W. Advanced Physical-Layer Technologies in VHF Data Link Communications. In Proceedings of the 2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC), San Antonio, TX, USA, 11–15 October 2020; pp. 1–8. [Google Scholar]
- Hu, X.; Lin, B.; Wang, P.; Wang, Y. A Novel MAC Protocol for VDES in Space-Air Ground-Sea Integrated Networks. In Proceedings of the 2020 International Conference on Space-Air-Ground Computing (SAGC), Beijing, China, 4–6 December 2020; pp. 60–61. [Google Scholar]
- Zeng, Y.; Qing, X.; See, T.S.P.; Peng, X. Circularly Polarized Turnstile Antenna for VHF Data Exchange System (VDES) on Satellite. In Proceedings of the 2020 IEEE International Conference on Computational Electromagnetics (ICCEM), Singapore, 24–26 August 2020; pp. 252–253. [Google Scholar]
- Zheng, H.; Huang, Y.; Chen, L. The Regional Protocol for Local Communications Among Maritime Autonomous Surface Ships Based on VDES. In Proceedings of the 2023 7th International Conference on Transportation Information and Safety (ICTIS), Xi’an, China, 4–6 August 2023; pp. 2223–2229. [Google Scholar]
- Ma, S.; Shi, K.; Meng, X.; Li, X. Frequency Offset Estimation Algorithm of VDES Signals Based on Cross-Correlation. In Proceedings of the 2018 IEEE 4th International Conference on Computer and Communications (ICCC), Chengdu, China, 7–10 December 2018; pp. 1234–1238. [Google Scholar]
- Shim, W.; Kim, B.; Kim, E.-J.; Kim, D. A New Link Adaptation Technique for Very High Frequency Data Exchange System in Future Maritime Communication. Electronics 2024, 13, 323. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, B.; Zhang, S.; Zhao, T.; Zhang, Y. An Improved MAC Protocol Design in VHF Data Exchange System (VDES) For Internet of Vessels. Procedia Comput. Sci. 2018, 129, 45–51. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Fu, L.; Hu, Q. An AIS Base Station Credibility Monitoring Method Based on Service Radius Detection Patterns in Complex Sea Surface Environments. J. Mar. Sci. Eng. 2024, 12, 1352. [Google Scholar] [CrossRef]
- Zhong, L.; Wan, W.; Kong, D. Java Web Login Authentication Based on Improved MD5 Algorithm. In Proceedings of the IEEE International Conference on Audio Language and Image Processing (ICALIP), Shanghai, China, 11–12 July 2016; pp. 131–135. [Google Scholar]
- Stevens, M.; Sotirov, A.; Appelbaum, J.; Lenstra, A.; Molnar, D.; Osvik, D.A.; De Weger, B. Short Chosen-Prefix Collisions for MD5 and The Creation of A Rogue CA Certificate. In Proceedings of the CRYPTO 2009: Proceedings of the 29th Annual International Cryptology Conference, Santa Barbara, CA, USA, 16–20 August 2009; pp. 55–69.
- Cheng, K.; Han, W.B. Improvement on chosen-prefix collisions for MD5 and complexity analysis. J. Comput. Appl. 2014, 34, 2650–2655, 2682. [Google Scholar]
- Huai, S.H. Research on the Theory and Key Technology of Real-time Detection of AIS Autonomous Positioning Information. Ph.D. Thesis, Dalian Maritime University, Dalian, China, 2020. [Google Scholar]
- Gaitan, M.G.; D’Orey, P.M.; Santos, P.M.; Ribeiro, M.; Pinto, L.; Almeida, L.; De Sousa, J.B. Wireless Radio Link Design to Improve Near-Shore Communication with Surface Nodes on Tidal Waters. In Proceedings of the OCEANS 2021: San Diego–Porto, San Diego, CA, USA, 20–23 September 2021; pp. 1–8. [Google Scholar]
- Habib, A.; Moh, S. Wireless Channel Models for Over-the-Sea Communication: A Comparative Study. Appl. Sci. 2019, 3, 443. [Google Scholar] [CrossRef]
- Yang, Q. The Characteristics Analysis of Costal VHF Signal Propagation. Master’s Thesis, Dalian Maritime University, Dalian, China, 2017. [Google Scholar]
Parameters | Explain |
---|---|
MMSI Code | 004132808 |
Longitude | 121°33.32862′ E |
Latitude | 38°52.09008′ N |
Repeat | 0 |
Position accuracy | 1 |
Types of electronic positioning devices | 7 |
Transmission control of long-range broadcast messages | 0 |
Spare | 0 |
Sync State | 0 |
RAIM flag | 1 |
Time slot timeout | 5 |
Received Stations | 31 |
Parameters | Explain |
---|---|
MMSI Code | 004132804 |
Longitude | 106°36.3714′ E |
Latitude | 29°32.1212′ N |
Repeat | 0 |
Position accuracy | 1 |
Types of electronic positioning devices | 5 |
Transmission control of long-range broadcast messages | 0 |
Spare | 0 |
Sync State | 0 |
RAIM flag | 0 |
Time slot timeout | 5 |
Received Stations | 23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Fu, L.; Wang, W.; Hu, Q. A Credibility Monitoring Approach and Software Monitoring System for VHF Data Exchange System Data Link Based on a Combined Detection Method. J. Mar. Sci. Eng. 2024, 12, 1751. https://doi.org/10.3390/jmse12101751
Wang X, Fu L, Wang W, Hu Q. A Credibility Monitoring Approach and Software Monitoring System for VHF Data Exchange System Data Link Based on a Combined Detection Method. Journal of Marine Science and Engineering. 2024; 12(10):1751. https://doi.org/10.3390/jmse12101751
Chicago/Turabian StyleWang, Xiaoye, Leyun Fu, Weichen Wang, and Qing Hu. 2024. "A Credibility Monitoring Approach and Software Monitoring System for VHF Data Exchange System Data Link Based on a Combined Detection Method" Journal of Marine Science and Engineering 12, no. 10: 1751. https://doi.org/10.3390/jmse12101751
APA StyleWang, X., Fu, L., Wang, W., & Hu, Q. (2024). A Credibility Monitoring Approach and Software Monitoring System for VHF Data Exchange System Data Link Based on a Combined Detection Method. Journal of Marine Science and Engineering, 12(10), 1751. https://doi.org/10.3390/jmse12101751