TLR2/TLR5 Signaling and Gut Microbiota Mediate Soybean-Meal-Induced Enteritis and Declined Growth and Antioxidant Capabilities in Large Yellow Croaker (Larimichthys crocea)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Diets
2.2. Experimental Fish and Rearing Conditions
2.3. Sample Collection
2.4. Antioxidant Parameters and Digestive Enzyme Activity
2.5. Quantitative Real-Time PCR (qRT-PCR)
2.6. Western Blot
2.7. Detection of the Gut Microbiota
2.8. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Digestive Enzyme Activities and Antioxidant Parameters
3.3. Protein and mRNA Expression Levels of Inflammation-Related Factors
3.4. Gut Microbiota
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations (FAO). Blue Transformation in action. In The State of World Fisheries and Aquaculture; FAO: Rome, Italy, 2024. [Google Scholar]
- Wang, Y.T.; Wang, Z.; Zhang, Z.; Tang, Y.H.; He, Y.L.; Mai, K.S.; Ai, Q.H. Effects of dietary fishmeal replacement with soybean meal on growth performance, digestion, hepatic metabolism, antioxidant capacity, and innate immunity of juvenile large yellow croaker (Larimichthys crocea). Aquac. Res. 2023, 2023, 8842781. [Google Scholar] [CrossRef]
- Lin, S.M.; Li, L. Effects of different levels of soybean meal inclusion in replacement for fish meal on growth, digestive enzymes and transaminase activities in practical diets for juvenile tilapia, Oreochromis niloticus × O. aureus. Anim. Feed Sci. Technol. 2011, 168, 80–87. [Google Scholar] [CrossRef]
- Tibaldi, E.; Hakim, Y.; Uni, Z.; Tulli, F.; Francesco, M.D.; Luzzana, U.; Harpaz, S. Effects of the partial substitution of dietary fish meal by differently processed soybean meals on growth performance, nutrient digestibility and activity of intestinal brush border enzymes in the European sea bass (Dicentrarchus labrax). Aquaculture 2006, 261, 182–193. [Google Scholar] [CrossRef]
- Egerton, S.; Wan, A.; Murphy, K.; Collins, F.; Ahern, G.; Sugrue, I.; Busca, K.; Egan, F.; Muller, N.; Whooley, J.; et al. Replacing fishmeal with plant protein in Atlantic salmon (Salmo salar) diets by supplementation with fish protein hydrolysate. Sci. Rep. 2020, 10, 4194. [Google Scholar] [CrossRef] [PubMed]
- Yaghoubi, M.; Mozanzadeh, M.T.; Marammazi, J.G.; Safari, O.; Gisbert, E. Dietary replacement of fish meal by soy products (soybean meal and isolated soy protein) in silvery-black porgy juveniles (Sparidentex hasta). Aquaculture 2016, 464, 50–59. [Google Scholar] [CrossRef]
- Zhang, C.X.; Rahimnejad, S.; Wang, Y.R.; Lu, K.L.; Song, K.; Wang, L.; Mai, K.S. Substituting fish meal with soybean meal in diets for Japanese seabass (Lateolabrax japonicus): Effects on growth, digestive enzymes activity, gut histology, and expression of gut inflammatory and transporter genes. Aquaculture 2018, 483, 173–182. [Google Scholar] [CrossRef]
- Zhou, Z.; Ringø, E.; Olsen, R.E.; Song, S.K. Dietary effects of soybean products on gut microbiota and immunity of aquatic animals: A review. Aquac. Nutri. 2018, 24, 644–665. [Google Scholar] [CrossRef]
- Collins, S.A.; Øverland, M.; Skrede, A.; Drew, M.D. Effect of plant protein sources on growth rate in salmonids: Meta-analysis of dietary inclusion of soybean, pea and canola/rapeseed meals and protein concentrates. Aquaculture 2013, 400–401, 85–100. [Google Scholar] [CrossRef]
- Zhu, W.; Yuan, X.; Luo, H.; Shao, J.; Chen, X. High percentage of dietary soybean meal inhibited growth, impaired intestine healthy and induced inflammation by TLR-MAPK/NF-κB signaling pathway in large yellow croaker (Larimichthys crocea). Aquacult. Rep. 2021, 20, 100735. [Google Scholar] [CrossRef]
- Hartviksen, M.; Vecino, J.L.G.; Ringo, E.; Bakke, A.M.; Wadsworth, S.; Krogdahl, A.; Ruohonen, K.; Kettunen, A. Alternative dietary protein sources for Atlantic salmon (Salmo salar L.) effect on intestinal microbiota, intestinal and liver histology and growth. Aquac. Nutr. 2014, 20, 381–398. [Google Scholar] [CrossRef]
- Zhao, W.; Fang, H.; Gao, B.; Dai, C.; Liu, Z.; Zhang, C.; Niu, J. Dietary Tribonema sp. supplementation increased growth performance, antioxidant capacity, immunity and improved hepatic health in golden pompano (Trachinotus ovatus). Aquaculture 2020, 529, 735667. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Shi, Y.C.; Dong, Y.X.; Lapen, D.R.; Liu, J.H.; Chen, W. Subsoiling and conversion to conservation tillage enriched nitrogen cycling bacterial communities in sandy soils under long-term maize monoculture. Soil Till. Res. 2022, 215, 105197. [Google Scholar] [CrossRef]
- Wang, X.; Luo, H.; Zheng, Y.; Wang, D.; Wang, Y.; Zhang, W.; Chen, Z.; Chen, X.; Shao, J. Effects of poultry by-product meal replacing fish meal on growth performance, feed utilization, intestinal morphology and microbiota communities in juvenile large yellow croaker (Larimichthys crocea). Aquacult. Rep. 2023, 30, 101547. [Google Scholar] [CrossRef]
- Shen, N.; Song, Z.; Xia, C.; Mu, H.; Chen, X.; Cheng, H.; Xu, J.; Sun, Y.; Wei, C.; Zhang, L. Comparative evaluation of soybean meal vs. extruded soybean meal as a replacer for fishmeal in diets of olive flounder (Paralichthys olivaceus): Effects on growth performance and muscle quality. Aquaculture 2024, 578, 740136. [Google Scholar] [CrossRef]
- Tan, C.; Zhou, H.; Wang, X.; Mai, K.; He, G. Resveratrol attenuates oxidative stress and inflammatory response in turbot fed with soybean meal based diet. Fish Shellfish Immunol. 2019, 91, 130–135. [Google Scholar] [CrossRef]
- Liu, H.; Wang, S.; Cai, Y.; Guo, X.; Cao, Z.; Zhang, Y.; Liu, S.; Yuan, W.; Zhu, W.; Zheng, Y.; et al. Dietary administration of Bacillus subtilis HAINUP40 enhances growth, digestive enzyme activities, innate immune responses and disease resistance of tilapia, Oreochromis niloticus. Fish Shellfish Immunol. 2017, 60, 326–333. [Google Scholar] [CrossRef]
- Han, F.; Wang, X.; Guo, J.; Qi, C.; Xu, C.; Luo, Y.; Li, E.; Qin, J.; Chen, L. Effects of glycinin and β-conglycinin on growth performance and intestinal health in juvenile Chinese mitten crabs (Eriocheir sinensis). Fish Shellfish Immunol. 2019, 84, 269–279. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, L.; Feng, L.; Jiang, W.; Kuang, S.; Liu, Y.; Hu, K.; Jiang, J.; Li, S.; Tang, L.; et al. Soybean β-Conglycinin Induces Inflammation and Oxidation and Causes Dysfunction of Intestinal Digestion and Absorption in Fish. PLoS ONE 2013, 8, e58115. [Google Scholar] [CrossRef]
- Lilleeng, E.; Froystad, M.K.; Ostby, G.C.; Valen, E.C.; Krogdahl, A. Effects of diets containing soybean meal on trypsin mRNA expression and activity in Atlantic salmon (Salmo salar L). Comp. Biochem. Physiol. Part A 2007, 147, 25–36. [Google Scholar] [CrossRef]
- Hedrera, M.I.; Galdames, J.A.; Jimenez-Reyes, M.F.; Reyes, A.E.; Avendano-Herrera, R.; Romero, J.; Feijoo, C.G. Soybean Meal Induces Intestinal Inflammation in Zebrafish Larvae. PLoS ONE 2013, 8, e69983. [Google Scholar] [CrossRef]
- He, Y.; Liang, J.; Dong, X.; Liu, H.; Yang, Q.; Zhang, S.; Chi, S.; Tan, B. Soybean β-conglycinin and glycinin reduced growth performance and the intestinal immune defense and altered microbiome in juvenile pearl gentian groupers Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂. Anim. Nutr. 2022, 9, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, A.S.; Belchior, T.; Lira, F.S.; Bishop, N.C.; Wessner, B.; Rosa, J.C.; Festuccia, W.T. Regulation of Metabolic Disease-Associated Inflammation by Nutrient Sensors. Mediat. Inflamm. 2018, 2018, 8261432. [Google Scholar] [CrossRef] [PubMed]
- Powell, J.D.; Pollizzi, K.N.; Heikamp, E.B.; Horton, M.R. Regulation of immune responses by mTOR. Annu. Rev. Immunol. 2012, 30, 39–68. [Google Scholar] [CrossRef]
- Duan, X.; Jiang, W.; Wu, P.; Liu, Y.; Jiang, J.; Tan, B.; Yang, Q.; Kuang, S.; Tang, L.; Zhou, X.; et al. Soybean β-conglycinin caused intestinal inflammation and oxidative damage in association with NF-κB, TOR and Nrf2 in juvenile grass carp (Ctenopharyngodon idella): Varying among different intestinal segments. Fish Shellfish Immunol. 2019, 95, 105–116. [Google Scholar] [CrossRef]
- McGuire, V.A.; Arthur, J.S.C. Subverting Toll-Like Receptor Signaling by Bacterial Pathogens. Front. Immunol. 2015, 6, 607. [Google Scholar] [CrossRef]
- Hoseinifar, S.H.; Yousefi, S.; Doan, H.V.; Ashouri, G.; Gioacchini, G.; Maradonna, F.; Carnevali, O. Oxidative stress and antioxidant defense in fish: The implications of probiotic, prebiotic, and synbiotics. Rev. Fish. Sci. Aquac. 2021, 29, 198–217. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, W.; Duan, X.; Feng, L.; Wu, P.; Liu, Y.; Jiang, J.; Kuang, S.; Tang, L.; Zhou, X. Soybean glycinin caused NADPH-oxidase-regulated ROS overproduction and decreased ROS elimination capacity in the mid and distal intestine of juvenile grass carp (Ctenopharyngodon idella). Aquaculture 2020, 516, 734651. [Google Scholar] [CrossRef]
- Wang, A.R.; Ran, C.; Ringo, E.; Zhou, Z.G. Progress in fish gastrointestinal microbiota research. Rev. Aquacult. 2018, 10, 626–640. [Google Scholar] [CrossRef]
- Nayak, S.K. Role of gastrointestinal microbiota in fish. Aquacult. Res. 2010, 41, 1553–1573. [Google Scholar] [CrossRef]
- Sommer, F.; Backhed, F. The gut microbiota-masters of host development and physiology. Nat. Rev. Microbiol. 2013, 11, 227–238. [Google Scholar] [CrossRef]
- He, M.; Li, X.; Poolsawat, L.; Guo, Z.; Yao, W.; Zhang, C.; Leng, X. Effects of fish meal replaced by fermented soybean meal on growth performance, intestinal histology and microbiota of largemouth bass (Micropterus salmoides). Aquac. Nutr. 2020, 26, 1058–1071. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, P.; Sun, H.; Hou, Y.; Zhang, Y.; Liu, H. Evaluation of extruded full-fat soybean as the substitution for fish meal in diets for juvenile Scophthalmus maximus based on growth performance, intestinal microbiota, and aquaculture water quality. Aquaculture 2023, 562, 738734. [Google Scholar] [CrossRef]
- Zhang, D.; Zheng, Y.; Wang, X.; Wang, D.; Luo, H.; Zhu, W.; Zhang, W.; Chen, Z.; Shao, J. Effects of Dietary Fish Meal Replaced by Fish Steak Meal on Growth Performance, Antioxidant Capacity, Intestinal Health and Microflora, Inflammatory Response, and Protein Metabolism of Large Yellow Croaker Larimichthys crocea. Aquacult. Nutr. 2023, 2023, 2733234. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Liu, Y.; Li, H.; Yin, X.; Wang, P.; Qu, X.; Gao, Y.; Li, W.; Chu, Z. Modulation of Antioxidant Enzymes, Heat Shock Protein, and Intestinal Microbiota of Large Yellow Croaker (Larimichthys crocea) Under Acute Cold Stress. Front. Mar. Sci. 2021, 8, 725899. [Google Scholar] [CrossRef]
- Requena, T.; Cotter, P.; Shahar, D.; Kleiveland, C.; Martinez-Cuesta, M.; Pelaez, C.; Lea, T. Interactions between gut microbiota, food and the obese host. Trends Food Sci. Technol. 2013, 34, 44–53. [Google Scholar] [CrossRef]
- White, J.B.R.; Silale, A.; Feasey, M.; Heunis, T.; Zhu, Y.; Zheng, H.; Gajbhiye, A.; Firbank, S.; Basle, A.; Trost, M.; et al. Outer membrane utilisomes mediate glycan uptake in gut Bacteroidetes. Nature 2023, 618, 583–589. [Google Scholar] [CrossRef]
- Flint, H.J.; Scott, K.P.; Duncan, S.H.; Louis, P.; Forano, E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 2012, 3, 289–306. [Google Scholar] [CrossRef]
- Ma, S.; Yu, D.; Liu, Q.; Zhao, M.; Xu, C.; Yu, J. Relationship between immune performance and the dominant intestinal microflora of turbot fed with different Bacillus species. Aquaculture 2022, 549, 737625. [Google Scholar] [CrossRef]
- Zhan, M.; Huang, Z.; Chen, G.; Yu, Y.; Su, J.; Xu, Z. Alterations of the Mucosal Immune Response and Microbial Community of the Skin upon Viral Infection in Rainbow Trout (Oncorhynchus mykiss). Int. J. Mol. Sci. 2022, 23, 14037. [Google Scholar] [CrossRef]
Ingredient (%) | FM | SBM15 | SBM30 | SBM45 |
---|---|---|---|---|
Fish meal | 45 | 32 | 25 | 18 |
Soybean meal a | 0 | 15 | 30 | 45 |
Wheat gluten | 15 | 15 | 15 | 15 |
Wheat flour | 31.23 | 28.64 | 19.33 | 10.71 |
Fish oil | 2.23 | 3.09 | 4.15 | 4.79 |
Soybean oil | 1.54 | 1.13 | 1.23 | 1.07 |
Soy lecithin | 1.5 | 1.5 | 1.5 | 1.5 |
Ca(H2PO4)2 | 1.5 | 1.5 | 1.5 | 1.5 |
Vitamin premix b | 1 | 1 | 1 | 1 |
Mineral premix c | 1 | 1 | 1 | 1 |
Methionine | 0 | 0.08 | 0.17 | 0.25 |
Lysine | 0 | 0.06 | 0.12 | 0.18 |
Proximate analysis | ||||
Moisture | 9.37 | 9.65 | 9.24 | 9.81 |
Crude protein | 45.34 | 44.86 | 45.22 | 44.76 |
Crude lipid | 10.75 | 10.89 | 9.95 | 10.24 |
Ash | 9.18 | 9.26 | 8.65 | 8.33 |
Gene Name | Primer Sequence (5′-3′) | Accession Number | Efficiency |
---|---|---|---|
TLR1 | F-CTTTGTCAAGAGCGAGTGGT R-GGTTCATCATGGCCTTCAGC | KF318376.1 | 98 |
TLR2A | F-GTCCGACAACCTGCTGACTGA R-CAGGTGGGTGAGTTTGGAGAG | KKF22682.1 | 101 |
TLR2B | F-ATGATGTGCTATGGCGAGGG R-TCGGCAAACATGTGGTCACT | KKF15865.1 | 97 |
TLR5A | F-GGCACAGTGAGGAAAGGT R-TAGCAAGCGTCCACATAC | XM_019267725.2 | 98 |
TLR22 | F-AGCACCGACTTCATCTGCTTTG R-TGGTCTTCCTGCTCGCATAGATG | GU324977 | 102 |
IL-1β | F-CAGCTGTTCTCAAGTATGTGGC R-GTTGTAAATAGTGGGTGTGTCG | XM_010736551.3 | 98 |
IL-4/13A | F-TGGTACTGCTGGTCAATCCG R-TTTTGCCTTCAGCCAGATGT | KU885454 | 98 |
IL-4/13B | F-AGTTCTTCTGTCGCGCTGAG R-GCTATGTATGTGCGGTTGCTG | KU885453 | 98 |
IL-6 | F-GCTGTTCTCAAGTATGTGGCG R-TGTTGTAAATAGTGGGTGTGTCG | XM_010734753.3 | 99 |
IL-10 | F-AGTCGGTTACTTTCTGTGGTG R-TGTATGACGCAATATGGTCTG | XM_010738826.3 | 102 |
TNF-α | F-ACACCTCTCAGCCACAGGAT R-CCGTGTCCCACTCCATAGTT | XM_010745990 | 102 |
TGF-β | F-AGCAACCACCGTACATCCTG R-AGGTATCCCGTTGGCTTGTG | XM_027280465.1 | 99 |
β-Actin | F-GACCTGACAGACTACCTCATG R-AGTTGAAGGTGGTCTCGTGGA | GU584189 | 98 |
FM | SBM15 | SBM30 | SBM45 | |
---|---|---|---|---|
IBW (g) | 47.9 ± 1.9 | 48.6 ± 1.5 | 48.4 ± 1.6 | 48.7 ± 1.7 |
FBW (g) | 103.11 ± 2.54 a | 100.80 ± 4.88 ab | 93.53 ± 2.75 bc | 85.30 ± 6.65 c |
WGR (%) | 112.60 ± 5.23 a | 107.84 ± 10.05 ab | 92.85 ± 5.66 bc | 75.88 ± 13.70 c |
SGR (%/d) | 1.40 ± 0.05 a | 1.35 ± 0.09 ab | 1.22 ± 0.05 bc | 1.05 ± 0.15 c |
PER | 1.28 ± 0.07 a | 1.38 ± 0.04 a | 1.22 ± 0.07 a | 1.14 ± 0.02 b |
FE | 0.58 ± 0.03 a | 0.60 ± 0.02 a | 0.55 ± 0.03 ab | 0.51 ± 0.01 b |
FCR | 1.49 ± 0.08 b | 1.46 ± 0.06 b | 1.55 ± 0.07 b | 1.64 ± 0.05 a |
FM | SBM15 | SBM30 | SBM45 | |
---|---|---|---|---|
α-Amylase (U/mg protein) | 0.83 ± 0.06 ab | 1.03 ± 0.17 a | 0.90 ± 0.14 ab | 0.77 ± 0.04 b |
Lipase (U/g protein) | 149.08 ± 13.45 b | 193.82 ± 8.00 a | 143.55 ± 9.28 b | 109.30 ± 8.32 c |
Chymotrypsin (U/mg protein) | 2.50 ± 0.01 a | 1.81 ± 0.04 b | 1.76 ± 0.34 b | 1.39 ± 0.42 c |
FM | SBM15 | SBM39 | SBM45 | |
---|---|---|---|---|
MDA (nmol/mg protein) | 2.96 ± 0.98 c | 4.85 ± 0.19 b | 5.32 ± 0.42 b | 9.27 ± 0.71 a |
CAT (nmol/mg protein) | 268.50 ± 39.29 a | 185.91 ± 19.30 b | 149.17 ± 8.53 b | 109.56 ± 2.57 c |
SOD (U/mg protein) | 76.67 ± 3.34 a | 77.76 ± 6.39 a | 60.59 ± 5.00 b | 54.76 ± 6.53 b |
Estimators | FM | SBM15 | SBM30 | SBM45 |
---|---|---|---|---|
Ace | 487.86 ± 212.15 | 537.52 ± 283.03 | 418.12 ± 231.15 | 231.8 ± 66.75 |
Chao1 | 488.93 ± 213.18 | 538.16 ± 283.49 | 422.92 ± 230.65 | 232.67 ± 66.91 |
Shannon | 2.37 ± 0.86 | 2.28 ± 1.14 | 3.84 ± 0.73 | 4.00 ± 0.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, L.; Zeng, C.; Zhu, W.; Zhang, J.; Wang, L.; Shao, J.; Zhao, W. TLR2/TLR5 Signaling and Gut Microbiota Mediate Soybean-Meal-Induced Enteritis and Declined Growth and Antioxidant Capabilities in Large Yellow Croaker (Larimichthys crocea). J. Mar. Sci. Eng. 2024, 12, 2016. https://doi.org/10.3390/jmse12112016
Zheng L, Zeng C, Zhu W, Zhang J, Wang L, Shao J, Zhao W. TLR2/TLR5 Signaling and Gut Microbiota Mediate Soybean-Meal-Induced Enteritis and Declined Growth and Antioxidant Capabilities in Large Yellow Croaker (Larimichthys crocea). Journal of Marine Science and Engineering. 2024; 12(11):2016. https://doi.org/10.3390/jmse12112016
Chicago/Turabian StyleZheng, Lei, Chao Zeng, Wanqin Zhu, Jiaonan Zhang, Lei Wang, Jianchun Shao, and Wei Zhao. 2024. "TLR2/TLR5 Signaling and Gut Microbiota Mediate Soybean-Meal-Induced Enteritis and Declined Growth and Antioxidant Capabilities in Large Yellow Croaker (Larimichthys crocea)" Journal of Marine Science and Engineering 12, no. 11: 2016. https://doi.org/10.3390/jmse12112016
APA StyleZheng, L., Zeng, C., Zhu, W., Zhang, J., Wang, L., Shao, J., & Zhao, W. (2024). TLR2/TLR5 Signaling and Gut Microbiota Mediate Soybean-Meal-Induced Enteritis and Declined Growth and Antioxidant Capabilities in Large Yellow Croaker (Larimichthys crocea). Journal of Marine Science and Engineering, 12(11), 2016. https://doi.org/10.3390/jmse12112016