Long-Term Evolution of Significant Wave Height in the Eastern Tropical Atlantic between 1940 and 2022 Using the ERA5 Dataset
Abstract
:1. Introduction
2. Study Area, Data and Methods
2.1. Eastern Tropical Atlantic
2.2. Data
2.3. Methodology
2.3.1. Analysis of Mean Significant Wave Height
2.3.2. Interannual Trend and Seasonal Trend
2.3.3. Spectral Analysis and Teleconnection Assessment
3. Results
3.1. Spatial Distribution of the Mean Significant Wave Height in the Eastern Tropical Atlantic
3.2. Seasonal Distribution of SWH
3.3. Temporal Trends of SWH in the ETA between 1940 and 2022
3.3.1. Interannual Trends
3.3.2. Seasonal Trends
3.3.3. Analysis of Uncertainty
3.3.4. Decadal Trends in SWH Variability in the ETA
3.4. Climatic Teleconnection with SWH in the ETA
4. Discussion
4.1. Causes of the Observed Trends
4.2. Implications of the Observed Trends
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dada, O.A.; Almar, R.; Morand, P. Coastal Vulnerability Assessment of the West African Coast to Flooding and Erosion. Sci. Rep. 2024, 14, 890. [Google Scholar] [CrossRef] [PubMed]
- Dahunsi, A.M.; Foli, B.A.K. Assessment of Past and Future Potential of Ocean Wave Power in the Gulf of Guinea. Int. J. Sustain. Eng. 2023, 16, 302–323. [Google Scholar] [CrossRef]
- Sirimanne, S.N.; Hoffman, J.; Juan, W.; Asariotis, R.; Assaf, M.; Ayala, G.; Benamara, H.; Chantrel, D.; Hoffmann, J.; Premti, A. Review of Maritime Transport 2019. In Proceedings of the United Nations Conference on Trade and Development, Geneva, Switzerland, 30 October 2019. [Google Scholar]
- Amuwo, K. Oil and Gas: National Sovereignty, Foreign Interests and Local Bunkering in the Gulf of Guinea (GoG). Covenant Univ. J. Politics Int. Aff. 2013, 1, 148–178. [Google Scholar]
- Nyemah, R.G.M. Economics of Oil Discovery in West Africa: The Nigerian Experience. Reg. Marit. Univ. Res. Consult. 2011. Available online: https://www.ajol.info/index.php/rmuj/article/view/112005 (accessed on 31 March 2024).
- Smedman, A.; Högström, U.; Sahlée, E.; Drennan, W.M.; Kahma, K.K.; Pettersson, H.; Zhang, F. Observational Study of Marine Atmospheric Boundary Layer Characteristics during Swell. J. Atmos. Sci. 2009, 66, 2747–2763. [Google Scholar] [CrossRef]
- Chen, G.; Ezraty, R.; Fang, C.; Fang, L. A New Look at the Zonal Pattern of the Marine Wind System from TOPEX Measurements. Remote Sens. Environ. 2002, 79, 15–22. [Google Scholar] [CrossRef]
- Chen, G.; Chapron, B.; Ezraty, R.; Vandemark, D. A Global View of Swell and Wind Sea Climate in the Ocean by Satellite Altimeter and Scatterometer. J. Atmos. Ocean. Technol. 2002, 19, 1849–1859. [Google Scholar] [CrossRef]
- Young, I.R. Seasonal Variability of the Global Ocean Wind and Wave Climate. Int. J. Climatol. 1999, 19, 931–950. [Google Scholar] [CrossRef]
- Young, I.R.; Zieger, S.; Babanin, A.V. Global Trends in Wind Speed and Wave Height. Science 2011, 332, 451–455. [Google Scholar] [CrossRef]
- Group, T.W. The WAM Model—A Third Generation Ocean Wave Prediction Model. J. Phys. Oceanogr. 1988, 18, 1775–1810. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Meehl, G.A.; Boer, G.J.; Covey, C.; Latif, M.; Stouffer, R.J. The Coupled Model Intercomparison Project (CMIP). Bull. Am. Meteorol. Soc. 2000, 81, 313–318. [Google Scholar] [CrossRef]
- Semedo, A.; SušElj, K.; Rutgersson, A.; Sterl, A. A Global View on the Wind Sea and Swell Climate and Variability from ERA-40. J. Clim. 2011, 24, 1461–1479. [Google Scholar] [CrossRef]
- Campos, R.M.; Alves, J.H.G.M.; Guedes Soares, C.; Guimaraes, L.G.; Parente, C.E. Extreme Wind-Wave Modeling and Analysis in the South Atlantic Ocean. Ocean Model. 2018, 124, 75–93. [Google Scholar] [CrossRef]
- Dada, O.A.; Li, G.; Qiao, L.; Ma, Y.; Ding, D.; Xu, J.; Li, P.; Yang, J. Response of Waves and Coastline Evolution to Climate Variability off the Niger Delta Coast during the Past 110 Years. J. Mar. Syst. 2016, 160, 64–80. [Google Scholar] [CrossRef]
- Dahunsi, A.M.; Bonou, F.; Dada, O.A.; Baloïtcha, E. Spatio-Temporal Trend of Past and Future Extreme Wave Climates in the Gulf of Guinea Driven by Climate Change. J. Mar. Sci. Eng. 2022, 10, 1581. [Google Scholar] [CrossRef]
- Osinowo, A.A.; Okogbue, E.C.; Eresanya, E.O.; Akande, O.S. Extreme Significant Wave Height Climate in the Gulf of Guinea. Afr. J. Mar. Sci. 2018, 40, 407–421. [Google Scholar] [CrossRef]
- Semedo, A.; Vettor, R.; Breivik, Ø.; Sterl, A.; Reistad, M.; Soares, C.G.; Lima, D. The Wind Sea and Swell Waves Climate in the Nordic Seas. Ocean Dyn. 2015, 65, 223–240. [Google Scholar] [CrossRef]
- Semedo, A. Seasonal Variability of Wind Sea and Swell Waves Climate along the Canary Current: The Local Wind Effect. J. Mar. Sci. Eng. 2018, 6, 28. [Google Scholar] [CrossRef]
- Wang, J.; Dong, C.; He, Y. Wave Climatological Analysis in the East China Sea. Cont. Shelf Res. 2016, 120, 26–40. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, K.; Zhou, L.; Wu, L. Wave Characteristics and Extreme Parameters in the Bohai Sea. China Ocean Eng. 2012, 26, 341–350. [Google Scholar] [CrossRef]
- Woolf, D.K.; Challenor, P.G.; Cotton, P.D. Variability and Predictability of the North Atlantic Wave Climate. J. Geophys. Res. C Ocean. 2002, 107, 9-1–9-14. [Google Scholar] [CrossRef]
- Muhammed Naseef, T.; Sanil Kumar, V. Climatology and Trends of the Indian Ocean Surface Waves Based on 39-Year Long ERA5 Reanalysis Data. Int. J. Climatol. 2020, 40, 979–1006. [Google Scholar] [CrossRef]
- Sreelakshmi, S.; Bhaskaran, P.K. Wind-Generated Wave Climate Variability in the Indian Ocean Using ERA-5 Dataset. Ocean Eng. 2020, 209, 107486. [Google Scholar] [CrossRef]
- Tarek, M.; Brissette, F.P.; Arsenault, R. Evaluation of the ERA5 Reanalysis as a Potential Reference Dataset for Hydrological Modelling over North America. Hydrol. Earth Syst. Sci. 2020, 24, 2527–2544. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests against Trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; American Psychological Association: Washington, DC, USA, 1948. [Google Scholar]
- Wang, F.; Shao, W.; Yu, H.; Kan, G.; He, X.; Zhang, D.; Ren, M.; Wang, G. Re-Evaluation of the Power of the Mann-Kendall Test for Detecting Monotonic Trends in Hydrometeorological Time Series. Front. Earth Sci. 2020, 8, 14. [Google Scholar] [CrossRef]
- He, M. Assessing Changes in 21st Century Mean and Extreme Climate of the Sacramento–San Joaquin Delta in California. Climate 2022, 10, 16. [Google Scholar] [CrossRef]
- Lilly, J.M.; Olhede, S.C. Higher-Order Properties of Analytic Wavelets. IEEE Trans. Signal Process. 2008, 57, 146–160. [Google Scholar] [CrossRef]
- Jiang, Y.; Tang, B.; Qin, Y.; Liu, W. Feature Extraction Method of Wind Turbine Based on Adaptive Morlet Wavelet and SVD. Renew. Energy 2011, 36, 2146–2153. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Goupillaud, P.; Grossmann, A.; Morlet, J. Cycle-Octave and Related Transforms in Seismic Signal Analysis. Geoexploration 1984, 23, 85–102. [Google Scholar] [CrossRef]
- Kirikkaleli, D.; Sowah, J.K. A Wavelet Coherence Analysis: Nexus between Urbanization and Environmental Sustainability. Environ. Sci. Pollut. Res. 2020, 27, 30295–30305. [Google Scholar] [CrossRef] [PubMed]
- Le Cozannet, G.; Lecacheux, S.; Delvallee, E.; Desramaut, N.; Oliveros, C.; Pedreros, R. Teleconnection Pattern Influence on Sea-Wave Climate in the Bay of Biscay. J. Clim. 2011, 24, 641–652. [Google Scholar] [CrossRef]
- Gutiérrez, O.; Panario, D.; Nagy, G.J.; Bidegain, M.; Montes, C. Climate Teleconnections and Indicators of Coastal Systems Response. Ocean Coast. Manag. 2016, 122, 64–76. [Google Scholar] [CrossRef]
- Shimura, T.; Mori, N.; Mase, H. Ocean Waves and Teleconnection Patterns in the Northern Hemisphere. J. Clim. 2013, 26, 8654–8670. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). The Ocean and Cryosphere in a Changing Climate; Cambridge University Press: Cambridge, UK, 2022; ISBN 978-1-00-915796-4. [Google Scholar]
- Liu, J.; Meucci, A.; Young, I.R. A Comparison of Multiple Approaches to Study the Modulation of Ocean Waves Due to Climate Variability. J. Geophys. Res. Ocean. 2023, e2023JC019843. [Google Scholar] [CrossRef]
- Daramola, S.; Li, H.; Omonigbehin, O.; Faruwa, A.; Gong, Z. Recent Retreat and Flood Dominant Areas along the Muddy Mahin Coastline of Ilaje, Nigeria. Reg. Stud. Mar. Sci. 2022, 52, 102272. [Google Scholar] [CrossRef]
- Daramola, S.; Li, H.; Otoo, E.; Idowu, T.; Gong, Z. Coastal Evolution Assessment and Prediction Using Remotely Sensed Front Vegetation Line along the Nigerian Transgressive Mahin Mud Coast. Reg. Stud. Mar. Sci. 2022, 50, 102167. [Google Scholar] [CrossRef]
- Hemer, M.A.; Katzfey, J.; Trenham, C.E. Global Dynamical Projections of Surface Ocean Wave Climate for a Future High Greenhouse Gas Emission Scenario. Ocean Model. 2013, 70, 221–245. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, L.; Guo, Y.; Gan, B.; Cai, W.; Huang, G.; Li, X.; Geng, T.; Jing, Z.; Li, S. Greenhouse Warming Intensifies North Tropical Atlantic Climate Variability. Sci. Adv. 2021, 7, eabg9690. [Google Scholar] [CrossRef] [PubMed]
- Alves, B.; Angnuureng, D.B.; Morand, P.; Almar, R. A Review on Coastal Erosion and Flooding Risks and Best Management Practices in West Africa: What Has Been Done and Should Be Done. J. Coast. Conserv. 2020, 24, 38. [Google Scholar] [CrossRef]
- Dada, O.A.; Almar, R.; Oladapo, M.I. Recent Coastal Sea-Level Variations and Flooding Events in the Nigerian Transgressive Mud Coast of Gulf of Guinea. J. Afr. Earth Sci. 2020, 161, 103668. [Google Scholar] [CrossRef]
S/N | Climatic Indices | Duration Used |
---|---|---|
1. | Atmospheric Mass Oscillation (AMON) | 1951–2022 |
2. | Atlantic Multidecadal Meridional Sea Surface Temperature (AMMSST) | 1951–2022 |
3. | Antarctic Oscillation (AAO) | 1979–2022 |
4. | Tropical Southern/(TSA) | 1948–2022 |
5. | North Oscillation Index (NOI) | 1948–2022 |
6. | North Atlantic Oscillation (NAO) | 1951–2022 |
7. | East Atlantic Pattern (EA) | 1951–2022 |
8. | Southern Oscillation Index (SOI) | 1951–2022 |
9. | Tropical Northern Atlantic (TNA) | 1951–2022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omonigbehin, O.; Eresanya, E.O.; Tao, A.; Setordjie, V.E.; Daramola, S.; Adebiyi, A. Long-Term Evolution of Significant Wave Height in the Eastern Tropical Atlantic between 1940 and 2022 Using the ERA5 Dataset. J. Mar. Sci. Eng. 2024, 12, 714. https://doi.org/10.3390/jmse12050714
Omonigbehin O, Eresanya EO, Tao A, Setordjie VE, Daramola S, Adebiyi A. Long-Term Evolution of Significant Wave Height in the Eastern Tropical Atlantic between 1940 and 2022 Using the ERA5 Dataset. Journal of Marine Science and Engineering. 2024; 12(5):714. https://doi.org/10.3390/jmse12050714
Chicago/Turabian StyleOmonigbehin, Olorunfemi, Emmanuel OlaOluwa Eresanya, Aifeng Tao, Victor Edem Setordjie, Samuel Daramola, and Abiola Adebiyi. 2024. "Long-Term Evolution of Significant Wave Height in the Eastern Tropical Atlantic between 1940 and 2022 Using the ERA5 Dataset" Journal of Marine Science and Engineering 12, no. 5: 714. https://doi.org/10.3390/jmse12050714
APA StyleOmonigbehin, O., Eresanya, E. O., Tao, A., Setordjie, V. E., Daramola, S., & Adebiyi, A. (2024). Long-Term Evolution of Significant Wave Height in the Eastern Tropical Atlantic between 1940 and 2022 Using the ERA5 Dataset. Journal of Marine Science and Engineering, 12(5), 714. https://doi.org/10.3390/jmse12050714