Errors of Tropical Cyclone-Induced Ocean Waves in Reanalysis Using Buoy Data
Abstract
:1. Introduction
2. Data
2.1. TC Best Track Dataset
2.2. Global Buoy Data
2.3. Global Ocean Wave Reanalysis Data
3. Evaluation Method
3.1. Observed TC-Induced Ocean Waves
3.2. Errors of TC-Induced Ocean Waves in ERA5 and WAVERYS Reanalysis Datasets
4. Results
4.1. Errors in the Two Reanalysis Datasets
4.2. Possible Causes of Errors in TC-Induced Ocean Wave Intensity, Distance, and Wind Speed
5. Conclusions
6. Discussions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peduzzi, P.; Chatenoux, B.; Dao, H.; De Bono, A.; Herold, C.; Kossin, J.; Mouton, F.; Nordbeck, O. Global trends in tropical cyclone risk. Nat. Clim. Chang. 2012, 2, 289–294. [Google Scholar] [CrossRef]
- Lin, T.-C.; Hamburg, S.P.; Lin, K.-C.; Wang, L.-J.; Chang, C.-T.; Hsia, Y.-J.; Vadeboncoeur, M.A.; McMullen, C.M.M.; Liu, C.-P. Typhoon disturbance and forest dynamics: Lessons from a Northwest Pacific subtropical forest. Ecosystems 2011, 14, 127–143. [Google Scholar] [CrossRef]
- Wu, X.; Xu, Z.; Liu, H.; Guo, J.; Zhou, L. What Are the Impacts of Tropical Cyclones on Employment? An Analysis Based on Meta-Regression. Weather. Clim. Soc. 2019, 11, 259–275. [Google Scholar] [CrossRef]
- Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 2005, 436, 686–688. [Google Scholar] [CrossRef] [PubMed]
- Knutson, T.R.; McBride, J.L.; Chan, J.; Emanuel, K.; Holland, G.; Landsea, C.; Held, I.; Kossin, J.P.; Srivastava, A.K.; Sugi, M. Tropical cyclones and climate change. Nat. Geosci. 2010, 3, 157–163. [Google Scholar] [CrossRef]
- Lin, Y.; Zhao, M.; Zhang, M. Tropical cyclone rainfall area controlled by relative sea surface temperature. Nat. Commun. 2015, 6, 6591. [Google Scholar] [CrossRef]
- Sun, Y.; Zhong, Z.; Li, T.; Yi, L.; Hu, Y.; Wan, H.; Chen, H.; Liao, Q.; Ma, C.; Li, Q. Impact of ocean warming on tropical cyclone size and its destructiveness. Sci. Rep. 2017, 7, 8154. [Google Scholar] [CrossRef]
- Sampson, C.R.; Wittmann, P.A.; Tolman, H.L. Consistent tropical cyclone wind and wave forecasts for the U.S. Navy. Weather Forecast. 2010, 25, 1293–1306. [Google Scholar] [CrossRef]
- Sun, Y.; Zhong, Z.; Li, T.; Yi, L.; Shen, Y. The slowdown tends to be greater for stronger tropical cyclones. J. Clim. 2021, 34, 5741–5751. [Google Scholar] [CrossRef]
- Sharmar, V.; Markina, M. Validation of global wind wave hindcasts using ERA5, MERRA2, ERA-Interim and CFSRv2 reanalyzes. IOP Conf. Ser. Earth Environ. Sci. 2020, 606, 012056. [Google Scholar] [CrossRef]
- Law-Chune, S.; Aouf, L.; Dalphinet, A.; Levier, B.; Drillet, Y.; Drevillon, M. WAVERYS: A CMEMS global wave reanalysis during the altimetry period. Ocean Dyn. 2021, 71, 357–378. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, J.; Yang, J. Error Analysis on ESA’s Envisat ASAR Wave Mode Significant Wave Height Retrievals Using Triple Collocation Model. Remote. Sens. 2014, 6, 12217–12233. [Google Scholar] [CrossRef]
- Caires, S.; Sterl, A. 100-year return value estimates for ocean wind speed and significant wave height from the ERA-40 data. J. Clim. 2005, 18, 1032–1048. [Google Scholar] [CrossRef]
- Morim, J.; Hemer, M.; Wang, X.L.; Cartwright, N.; Trenham, C.; Semedo, A.; Young, I.; Bricheno, L.; Camus, P.; Casas-Prat, M.; et al. Robustness and uncertainties in global multivariate wind-wave climate projections. Nat. Clim. Chang. 2019, 9, 711–718. [Google Scholar] [CrossRef]
- Morim, J.; Vitousek, S.; Hemer, M.; Reguero, B.; Erikson, L.; Casas-Prat, M.; Wang, X.L.; Semedo, A.; Mori, N.; Shimura, T.; et al. Global-scale changes to extreme ocean wave events due to anthropogenic warming. Environ. Res. Lett. 2021, 16, 074056. [Google Scholar] [CrossRef]
- Frölicher, T.L.; Fischer, E.M.; Gruber, N. Marine heatwaves under global warming. Nature 2018, 560, 360–364. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Mentaschi, L.; Voukouvalas, E.; Verlaan, M.; Jevrejeva, S.; Jackson, L.P.; Feyen, L. Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard. Nat. Commun. 2018, 9, 2360. [Google Scholar] [CrossRef]
- Shi, J.; Feng, X.; Toumi, R.; Zhang, C.; Hodges, K.I.; Tao, A.; Zhang, W.; Zheng, J. Global increase in tropical cyclone ocean surface waves. Nat. Commun. 2024, 15, 174. [Google Scholar] [CrossRef]
- Hodges, K.; Cobb, A.; Vidale, P.L. How Well Are Tropical Cyclones Represented in Reanalysis Datasets? J. Clim. 2017, 30, 5243–5264. [Google Scholar] [CrossRef]
- Schenkel, B.A.; Hart, R.E. An Examination of Tropical Cyclone Position, Intensity, and Intensity Life Cycle within Atmospheric Reanalysis Datasets. J. Clim. 2012, 25, 3453–3475. [Google Scholar] [CrossRef]
- Jones, E.; Wing, A.A.; Parfitt, R. A Global Perspective of Tropical Cyclone Precipitation in Reanalyzes. J. Clim. 2021, 34, 8461–8480. [Google Scholar] [CrossRef]
- Bian, G.F.; Nie, G.Z.; Qiu, X. How well is outer tropical cyclone size represented in the ERA5 reanalysis dataset? Atmos. Res. 2021, 249, 105339. [Google Scholar]
- Collins, C.O.; Lund, B.; Ramos, R.J.; Drennan, W.M.; Graber, H.C. Wave Measurement Intercomparison and Platform Evaluation during the ITOP (2010) Experiment. J. Atmos. Ocean. Technol. 2014, 31, 2309–2329. [Google Scholar] [CrossRef]
- Durrant, T.H.; Greenslade, D.J.M.; Simmonds, I. Validation of Jason-1 and envisat remotely sensed wave heights. J. Atmos. Ocean. Technol. 2009, 26, 123–134. [Google Scholar] [CrossRef]
- Abdalla, S. SARAL/AltiKa wind and wave products: Monitoring, validation and assimilation. Mar. Geod. 2015, 38, 365–380. [Google Scholar] [CrossRef]
- Yu, H.; Jiangyu, L.; Kejian, W.; Zhifeng, W.; Haiqing, Y.; Shaoqing, Z.; Yijun, H.; Ryan, M.K. A global high-resolution ocean wave model improved by assimilating the satellite altimeter significant wave height. Int. J. Appl. Earth Observ. Geoinf. 2018, 70, 43–50. [Google Scholar] [CrossRef]
- Houghton, I.A.; Smit, P.B.; Clark, D.; Dunning, C.; Fisher, A.; Nidzieko, N.J.; Chamberlain, P.; Janssen, T.T. Performance Statistics of a Real-Time Pacific Ocean Weather Sensor Network. J. Atmos. Ocean. Technol. 2021, 38, 1047–1058. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Knapp, K.R.; Kruk, M.C.; Levinson, D.H.; Diamond, H.J.; Neumann, C.J. The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc. 2010, 91, 363–376. [Google Scholar] [CrossRef]
- Kossin, J.P.; Emanuel, K.A.; Vecchi, G.A. The poleward migration of the location of tropical cyclone maximum intensity. Nature 2014, 509, 349–352. [Google Scholar] [CrossRef]
- Knapp, K.R.; Kruk, M.C. Quantifying interagency differences in tropical cyclone best-track wind speed estimates. Mon. Weather. Rev. 2010, 138, 1459–1473. [Google Scholar] [CrossRef]
- Alves, J.H.G.M.; Young, I.R. On estimating extreme wave heights using combined Geosat, TOPEX/Poseidon and ERS-1 altimeter data. Appl. Ocean Res. 2003, 25, 167–186. [Google Scholar] [CrossRef]
- Large, W.G.; Morzel, J.; Crawford, G.B. Accounting for surface wave distortion of the marine wind profile in low-level ocean storms wind measurements. J. Phys. Oceanogr. 1995, 25, 2959–2971. [Google Scholar] [CrossRef]
- Vinoth, J.; Young, I.R. Global estimates of extreme wind speed and wave height. J. Clim. 2011, 24, 1647–1665. [Google Scholar] [CrossRef]
- Evans, D.; Conrad, C.; Paul, F. Handbook of Automated Data Quality Control Checks and Procedures; NOAA/NDBC Technical; National Data Buoy Center: Hancock County, MS, USA, 2003; 44p. Available online: https://www.ndbc.noaa.gov/publications/NDBCHandbookofAutomatedDataQualityControl2009.pdf (accessed on 9 June 2024).
- Ribal, A.; Young, I.R. 33 years of globally calibrated wave height and wind speed data based on altimeter observations. Sci. Data 2019, 6, 77. [Google Scholar] [CrossRef] [PubMed]
- Zieger, S.; Babanin, A.V.; Erick Rogers, W.; Young, I.R. Observation-based source terms in the third-generation wave model WAVEWATCH. Ocean Model. 2015, 96, 2–25. [Google Scholar] [CrossRef]
- Ribal, A.; Young, I.R. Calibration and Cross Validation of Global Ocean Wind Speed Based on Scatterometer Observations. J. Atmos. Ocean. Technol. 2020, 37, 279–297. [Google Scholar] [CrossRef]
- Compo, G.P.; Whitaker, J.S.; Sardeshmukh, P.D.; Matsui, N.; Allan, R.J.; Yin, X.; Gleason, B.E.; Vose, R.S.; Rutledge, G.; Bessemoulin, P.; et al. The Twentieth Century Reanalysis Project. Q. J. R. Meteorol. Soc. 2011, 137, 1–28. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Vitart, F. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Copernicus Climate Change Service. ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate. Coper-nicus Climate Change Service Climate Data Store (CDS). 2017. Available online: https://cds.climate.copernicus.eu/#!/search?text=ERA5 (accessed on 10 September 2019).
- Hanna, S.; Heinold, D. Development and Application of a Simple Method for Evaluating Air Quality; American Petroleum Institute: Washington, DC, USA, 1985. [Google Scholar]
- Mentaschi, L.; Besio, G.; Cassola, F.; Mazzino, A. Problems in RMSE-based wave model validations. Ocean Model. 2013, 72, 53–58. [Google Scholar] [CrossRef]
- Gulev, S.K.; Grigorieva, V. Variability of the Winter Wind Waves and Swell in the North Atlantic and North Pacific as Revealed by the Voluntary Observing Ship Data. J. Clim. 2006, 19, 5667–5685. [Google Scholar] [CrossRef]
- Bromirski, P.D.; Kossin, J.P. Increasing hurricane wave power along the U.S. Atlantic and Gulf coasts. J. Geophys. Res. Ocean. 2008, 113. [Google Scholar] [CrossRef]
- Bethel, B.J.; Dong, C.; Wang, J. An empirical wind-wave model for hurricane-forced wind waves in the Caribbean Sea. Earth Space Sci. 2021, 8. [Google Scholar] [CrossRef]
- Langodan, S.; Cavaleri, L.; Viswanadhapalli, Y.; Hoteit, I. Wind-wave source functions in opposing seas. J. Geophys. Res. Ocean. 2015, 120, 6751–6768. [Google Scholar] [CrossRef]
- Sonnewald, M.; Lguensat, R.; Jones, D.C.; Dueben, P.D.; Brajard, J.; Balaji, V. Bridging observations, theory and numerical simulation of the ocean using machine learning. Environ. Res. Lett. 2021, 16, 073008. [Google Scholar] [CrossRef]
- Egbert, G.D.; Erofeeva, S.Y. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Technol. 2002, 19, 183–204. [Google Scholar] [CrossRef]
- Hendricks, E.A.; Peng, M.S.; Ge, X.; Li, T. Performance of a dynamic initialization scheme in the coupled ocean-atmosphere mesoscale prediction system for tropical cyclones (COAMPS-TC). Weather. Forecast. 2011, 26, 650–663. [Google Scholar] [CrossRef]
- Rappin, E.D.; Nolan, D.S.; Majumdar, S.J. A highly configurable vortex initialization method for tropical cyclones. Mon. Weather. Rev. 2013, 141, 3556–3575. [Google Scholar] [CrossRef]
- Cardone, V.J.; Jensen, R.E.; Resio, D.T.; Swail, V.R.; Cox, A.T. Evaluation of Contemporary Ocean Wave Models in Rare Extreme Events: The ‘Halloween storm’ of October 1991 and the ‘Storm of the century’ of March 1993. J. Atmos. Ocean. Technol. 1996, 13, 198–230. [Google Scholar] [CrossRef]
- Lodise, J.; Merrifield, S.; Collins, C.; Behrens, J.; Terrill, E. Performance of ERA5 wind speed and significant wave height within Extratropical cyclones using collocated satellite radar altimeter measurements. Coast. Eng. J. 2024, 66, 89–114. [Google Scholar] [CrossRef]
- Lodise, J.; Merrifield, S.; Collins, C.; Rogowski, P.; Behrens, J.; Terrill, E. Global Climatology of Extratropical Cyclones from a New Tracking Approach and Associated Wave Heights from Satellite Radar Altimeter. J. Geophys. Res. Ocean. 2022, 127. [Google Scholar] [CrossRef]
- Abdalla, S.; Janssen, P.A.; Bidlot, J.R. Jason-2 OGDR Wind and Wave Products: Monitoring, Validation and Assimilation. Mar. Geod. 2010, 33, 239–255. [Google Scholar] [CrossRef]
- Clarence, C.; Hesser, T. Alt WIZ: A System for Satellite Radar Altimeter Evaluation of Modeled Wave Heights; Technical Report; US Army Engineer Research and Development Center: Duck, NC, USA, 2021. [Google Scholar]
- de León, S.P.; Bettencourt, J. Composite Analysis of North Atlantic Extra-Tropical Cyclone Waves from Satellite Altimetry Observations. Adv. Space Res. 2019, 68, 762–772. [Google Scholar] [CrossRef]
- Queffeulou, P. Long-Term Validation of Wave Height Measurements from Altimeters. Mar. Geod. 2004, 27, 495–510. [Google Scholar] [CrossRef]
- Agustinus, R.; Young, I.R. Global Calibration and Error Estimation of Altimeter, Scatterometer, and Radiometerwind Speed Using Triple Collocation. Remote Sens. 2020, 12, 1997. [Google Scholar]
- Yang, J.; Zhang, J.; Jia, Y.; Fan, C.; Cui, W. Validation of Sentinel-3A/3B and Jason-3 Altimeter Wind Speeds and Significant Wave Heights Using Buoy and ASCAT Data. Remote. Sens. 2020, 12, 2079. [Google Scholar] [CrossRef]
- Zieger, S.; Vinoth, J.; Young, I.R. Joint Calibration of Multiplatform Altimeter Measurements of Wind Speed and Wave Height over the Past 20 Years. J. Atmos. Ocean. Technol. 2009, 26, 2549–2564. [Google Scholar] [CrossRef]
- Izaguirre, C.; Méndez, F.J.; Menéndez, M.; Losada, I.J. Global Extreme Wave Height Variability Based on Satellite Data. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Geng, Q.; Sugi, M. Variability of the North Atlantic Cyclone Activity in Winter Analyzed from NCEP–NCAR Reanalysis Data. J. Clim. 2001, 14, 3863–3873. [Google Scholar] [CrossRef]
Error | Data | Ocean | Distance | ||
---|---|---|---|---|---|
0–200 km | 200–400 km | 400–600 km | |||
RMSE (m) | WAVERYS | NP | 1.21 | 0.85 | 0.68 |
NA | 2.16 | 1.17 | 0.85 | ||
ERA5 | NP | 1.40 | 0.90 | 0.67 | |
NA | 2.19 | 1.17 | 0.82 | ||
Bias (m) | WAVERYS | NP | 0.89 | 0.61 | 0.47 |
NA | 1.41 | 0.80 | 0.59 | ||
ERA5 | NP | 0.92 | 0.60 | 0.46 | |
NA | 1.42 | 0.79 | 0.57 | ||
C (%) | WAVERYS | NP | 10.26 | 0.68 | −10.55 |
NA | 43.17 | 17.71 | 0.17 | ||
ERA5 | NP | 16.07 | 6.24 | −4.57 | |
NA | 43.96 | 19.21 | 1.36 |
Error | Data | Ocean | SWH (m) | ||||||
---|---|---|---|---|---|---|---|---|---|
ALL | 0.5–1.0 | 1.0–1.5 | 1.5–2.0 | 2.0–2.5 | 2.5–3.0 | >3.0 | |||
RMSE (m) | WAVERYS | NP | 0.66 | 0.19 | 0.36 | 0.6 | 0.56 | 1.15 | 1.22 |
NA | 0.82 | 0.61 | 0.83 | 0.96 | 0.89 | 1.15 | 2.68 | ||
ERA5 | NP | 0.65 | 0.25 | 0.41 | 0.6 | 0.53 | 1.09 | 1.23 | |
NA | 0.8 | 0.62 | 0.81 | 0.91 | 0.85 | 1.26 | 2.75 | ||
Bias (m) | WAVERYS | NP | 0.69 | 0.41 | 0.54 | 0.69 | 0.66 | 0.9 | 0.95 |
NA | 0.76 | 0.66 | 0.76 | 0.85 | 0.81 | 0.98 | 1.6 | ||
ERA5 | NP | 0.67 | 0.44 | 0.56 | 0.66 | 0.64 | 0.88 | 0.95 | |
NA | 0.75 | 0.66 | 0.75 | 0.82 | 0.8 | 1.04 | 1.63 | ||
C (%) | WAVERYS | NP | −11.09 | −0.29 | −13.7 | −12.93 | −8.98 | −8.11 | −27.62 |
NA | −0.77 | 4.77 | −0.48 | −5.57 | −15.85 | −49.36 | −89.25 | ||
ERA5 | NP | −4.28 | 13.04 | −3.05 | −0.42 | −7.55 | −8.4 | −30.19 | |
NA | 0.61 | 8.59 | 0.39 | −6.07 | −16.54 | −56.76 | −93.35 |
Error | Data | Basin and Depth | |||
---|---|---|---|---|---|
NP 0–200 (m) | NP 200+ (m) | NA 0–200 (m) | NA 200+ (m) | ||
RMSE (m) | WAVERYS | 0.69 | 0.53 | 0.88 | 0.83 |
ERA5 | 0.68 | 0.51 | 0.80 | 0.83 | |
Bias (m) | WAVERYS | 0.48 | 0.35 | 0.63 | 0.58 |
ERA5 | 0.47 | 0.37 | 0.58 | 0.57 | |
C (%) | WAVERYS | −10.28 | −13.30 | −0.48 | 0.45 |
ERA5 | −4.60 | −4.21 | −3.99 | 3.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhong, W.; Feng, Z.; Wang, R.; Sun, Y.; Bai, Z. Errors of Tropical Cyclone-Induced Ocean Waves in Reanalysis Using Buoy Data. J. Mar. Sci. Eng. 2024, 12, 983. https://doi.org/10.3390/jmse12060983
Zhang Y, Zhong W, Feng Z, Wang R, Sun Y, Bai Z. Errors of Tropical Cyclone-Induced Ocean Waves in Reanalysis Using Buoy Data. Journal of Marine Science and Engineering. 2024; 12(6):983. https://doi.org/10.3390/jmse12060983
Chicago/Turabian StyleZhang, Yalan, Wei Zhong, Zhihao Feng, Ruilin Wang, Yuan Sun, and Zongbao Bai. 2024. "Errors of Tropical Cyclone-Induced Ocean Waves in Reanalysis Using Buoy Data" Journal of Marine Science and Engineering 12, no. 6: 983. https://doi.org/10.3390/jmse12060983
APA StyleZhang, Y., Zhong, W., Feng, Z., Wang, R., Sun, Y., & Bai, Z. (2024). Errors of Tropical Cyclone-Induced Ocean Waves in Reanalysis Using Buoy Data. Journal of Marine Science and Engineering, 12(6), 983. https://doi.org/10.3390/jmse12060983