Seasonal Variability in the Influence of Coastal Aquaculture Operation on Benthic–Pelagic Coupling Processes in Shallow Aquatic Ecosystems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Sediment Sampling for Benthic Macrofauna and Sediment Properties (6 Months)
2.3. Water Column and Underwater Camera Monitoring (13 Months)
2.4. Data Analysis
3. Results
3.1. Benthic Macrofaunal Community Structure
3.2. Sediment Organic Matter Content and Particle Size Composition
3.3. Observation of Epibenthic Megafauna Based on the Video Data
3.4. Observation of the Water Column Based on the CTD-Probe
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2024; FAO: Rome, Italy, 2024. [Google Scholar] [CrossRef]
- Borja, Á.; Rodríguez, J.G.; Black, K.; Bodoy, A.; Emblow, C.; Fernandes, T.F.; Forte, J.; Karakassis, I.; Muxika, I.; Nickell, T.D.; et al. Assessing the suitability of a range of benthic indices in the evaluation of environmental impact of fin and shellfish aquaculture located in sites across Europe. Aquaculture 2009, 293, 231–240. [Google Scholar] [CrossRef]
- Dumbauld, B.R.; Ruesink, J.L.; Rumrill, S.S. The ecological role of bivalve shellfish aquaculture in the estuarine environment: A review with application to oyster and clam culture in West Coast (USA) estuaries. Aquaculture 2009, 290, 196–223. [Google Scholar] [CrossRef]
- Forrest, B.M.; Keeley, N.B.; Hopkins, G.A.; Webb, S.C.; Clement, D.M. Bivalve aquaculture in estuaries: Review and synthesis of oyster cultivation effects. Aquaculture 2009, 298, 1–15. [Google Scholar] [CrossRef]
- McKindsey, C.W.; Archambault, P.; Callier, M.D.; Olivier, F. Influence of suspended and off-bottom mussel culture on the sea bottom and benthic habitats: A review. Can. J. Zool. 2011, 89, 622–646. [Google Scholar] [CrossRef]
- Barrett, L.T.; Theuerkauf, S.J.; Rose, J.M.; Alleway, H.K.; Bricker, S.B.; Parker, M.; Petrolia, D.R.; Jones, R.C. Sustainable growth of non-fed aquaculture can generate valuable ecosystem benefits. Ecosyst. Serv. 2022, 53, 101396. [Google Scholar] [CrossRef]
- Forchino, A.; Borja, A.; Brambilla, F.; Rodríguez, J.G.; Muxika, I.; Terova, G.; Saroglia, M. Evaluating the influence of offshore cage aquaculture on the benthic ecosystem in Alghero Bay (Sardinia, Italy) using AMBI and M-AMBI. Ecol. Indic. 2011, 11, 1112–1122. [Google Scholar] [CrossRef]
- Tomassetti, P.; Gennaro, P.; Lattanzi, L.; Mercatali, I.; Persia, E.; Vani, D.; Porrello, S. Benthic community response to sediment organic enrichment by Mediterranean fish farms: Case studies. Aquaculture 2016, 450, 262–272. [Google Scholar] [CrossRef]
- Tovar, A.; Moreno, C.; Manuel-Vez, M.P.; Garcia-Vargas, M. Environmental impacts of intensive aquaculture in marine waters. Water Res. 2000, 34, 334–342. [Google Scholar] [CrossRef]
- Sarà, G.; Martire, M.L.; Sanfilippo, M.; Pulicanò, G.; Cortese, G.; Mazzola, A.; Manganaro, A.; Pusceddu, A. Impacts of marine aquaculture at large spatial scales: Evidences from N and P catchment loading and phytoplankton biomass. Mar. Environ. Res. 2011, 71, 317–324. [Google Scholar] [CrossRef]
- Farmaki, E.; Thomaidis, N.; Pasias, I.; Baulard, C.; Papaharisis, L.; Efstathiou, C. Environmental impact of intensive aquaculture: Investigation on the accumulation of metals and nutrients in marine sediments of Greece. Sci. Total Environ. 2014, 485, 554–562. [Google Scholar] [CrossRef]
- Shumway, S.E.; Davis, C.; Downey, R.; Karney, R.; Kraeuter, J.; Parsons, J.; Rheault, R.; Wikfors, G. Shellfish aquaculture–in praise of sustainable economies and environments. World Aquac. 2003, 34, 8–10. [Google Scholar]
- McKindsey, C.W.; Anderson, M.R.; Barnes, P.; Courtenay, S.; Landry, T.; Skinner, M. Effects of Shellfish Aquaculture on Fish Habitat; Canadian Science Advisory Secretariat Research Document 2006/011; Fisheries and Oceans: Ottawa, ON, Canada, 2006; p. 84. [Google Scholar]
- Weise, A.M.; Cromey, C.J.; Callier, M.D.; Archambault, P.; Chamberlain, J.; McKindsey, C.W. Shellfish-DEPOMOD: Modelling the biodeposition from suspended shellfish aquaculture and assessing benthic effects. Aquaculture 2009, 288, 239–253. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, S.H.; Kim, Y.T.; Hong, S.J.; Han, J.H.; Hyun, J.H.; Shin, K.H. Influence of sea squirt (Halocynthia roretzi) aquaculture on benthic–pelagic coupling in coastal waters: A study of the South Sea in Korea. Estuar. Coast. Shelf Sci. 2012, 99, 10–20. [Google Scholar] [CrossRef]
- Dimitriou, P.D.; Santi, I.; Moraitis, M.L.; Tsikopoulou, I.; Pitta, P.; Karakassis, I. Benthic–Pelagic Coupling in the Oligotrophic Eastern Mediterranean: A Synthesis of the HYPOXIA Project Results. Front. Mar. Sci. 2022, 9, 886335. [Google Scholar] [CrossRef]
- Alonso-Pérez, F.; Ysebaert, T.; Castro, C.G. Effects of suspended mussel culture on benthic–pelagic coupling in a coastal upwelling system (Ría de Vigo, NW Iberian Peninsula). J. Exp. Mar. Biol. Ecol. 2010, 382, 96–107. [Google Scholar]
- Christensen, P.B.; Glud, R.N.; Dalsgaard, T.; Gillespie, P. Impacts of longline mussel farming on oxygen and nitrogen dynamics and biological communities of coastal sediments. Aquaculture 2003, 218, 567–588. [Google Scholar] [CrossRef]
- Fujii, T.; Kaneko, K.; Murata, H.; Yonezawa, C.; Katayama, A.; Kuraishi, M.; Nakamura, Y.; Takahashi, D.; Gomi, Y.; Abe, H.; et al. Spatio-Temporal Dynamics of Benthic Macrofaunal Communities in Relation to the Recovery of Coastal Aquaculture Operations Following the 2011 Great East Japan Earthquake and Tsunami. Front. Mar. Sci. 2019, 5, 535. [Google Scholar] [CrossRef]
- Fujii, T.; Kaneko, K.; Nakamura, Y.; Murata, H.; Kuraishi, M.; Kijima, A. Assessment of coastal anthropo-ecological system dynamics in response to a tsunami catastrophe of an unprecedented magnitude encountered in Japan. Sci. Total Environ. 2021, 783, 146998. [Google Scholar] [CrossRef]
- Pasternack, G.B.; Brush, G.S. Sedimentation cycles in a river-mouth tidal freshwater marsh. Estuaries 1998, 21, 407–415. [Google Scholar] [CrossRef]
- Clarke, K.R.; Warwick, R.M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation; Primer-E: Plymouth, UK, 2001. [Google Scholar]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Herman, P.M.J.; Middelburg, J.J.; Van De Koppel, J.; Heip, C.H.R. Ecology of estuarine macrobenthos. Adv. Ecol. Res. 1999, 29, 195–240. [Google Scholar]
- Meysman, F.J.R.; Middelburg, J.J.; Heip, C.H.R. Bioturbation: A fresh look at Darwin’s last idea. Trends Ecol. Evol. 2006, 21, 688–695. [Google Scholar] [CrossRef] [PubMed]
- Ehrnsten, E.; Norkko, A.; Timmermann, K.; Gustafsson, B.G. Benthic-pelagic coupling in coastal seas–Modelling macrofaunal biomass and carbon processing in response to organic matter supply. J. Mar. Syst. 2019, 196, 36–47. [Google Scholar] [CrossRef]
- Martins, R.; Carrera-Parra, L.F.; Quintino, V.; Rodrigues, A.M. Lumbrineridae (Polychaeta) from the Portuguese Continental Shelf (NE Atlantic) with the Description of Four New Species. Zootaxa 2012, 3416, 1–21. [Google Scholar] [CrossRef]
- Mills, K.; Mortimer, K. Observations on the tubicolous annelid Magelona alleni (Magelonidae), with discussions on the relationship between morphology and behaviour of European magelonids. J. Mar. Biol. Assoc. UK 2019, 99, 715–727. [Google Scholar] [CrossRef]
- Blake, J.A. Bitentaculate Cirratulidae (Annelida, Polychaeta) collected chiefly during cruises of the R/V Anton Bruun, USNS Eltanin, USCG Glacier, R/V Hero, RVIB Nathaniel B. Palmer, and R/V Polarstern from the Southern Ocean, Antarctica, and off Western South America. Zootaxa 2018, 4537, 1–130. [Google Scholar] [CrossRef]
- Dean, H.K. The use of polychaetes (Annelida) as indicator species of marine pollution: A review. Rev. Biol. Trop. 2008, 56, 11–38. [Google Scholar]
- Abe, H.; Kobayashi, G.; Sato-Okoshi, W. Impacts of the 2011 tsunami on the subtidal polychaete assemblage and the following recolonization in Onagawa Bay, northeastern Japan. Mar. Environ. Res. 2015, 112, 86–95. [Google Scholar]
- Hilliard, J.; Hajduk, M.; Méndez, N.; Schulze, A. Capitella (Annelida: Capitellidae) species in the Gulf of Mexico: Delimitation, phylogeography and phylogeny. Zool. Scr. 2024, 53, 461–472. [Google Scholar] [CrossRef]
- Steckbauer, A.; Duarte, C.M.; Carstensen, J.; Vaquer-Sunyer, R.; Conley, D.J. Ecosystem impacts of hypoxia: Thresholds of hypoxia and pathways to recovery. Environ. Res. Lett. 2011, 6, 025003. [Google Scholar] [CrossRef]
- Theuerkauf, S.J.; Barrett, L.T.; Alleway, H.K.; Costa-Pierce, B.A.; St. Gelais, A.; Jones, R.C. Habitat value of bivalve shellfish and seaweed aquaculture for fish and invertebrates: Pathways, synthesis and next steps. Rev. Aquac. 2021, 14, 54–72. [Google Scholar] [CrossRef]
- Levin, L.; Blair, N.; DeMaster, D.; Plaia, G.; Fornes, W.; Martin, C.; Thomas, C. Rapid subduction of organic matter by maldanid polychaetes on the North Carolina slope. J. Mar. Res. 1997, 55, 2237. [Google Scholar] [CrossRef]
- Sanders, H.L.; Goudsmit, E.M.; Mills, E.L.; Hampson, G.E. A study of the intertidal fauna of Barnstable Harbor, Massachusetts. Limnol. Oceanogr. 1962, 7, 63–79. [Google Scholar] [CrossRef]
- Mach, M.E.; Levings, C.D.; McDonald, P.S.; Chan, K.M. An Atlantic infaunal engineer is established in the northeast Pacific: Clymenella torquata (Polychaeta: Maldanidae) on the British Columbia and Washington Coasts. Biol. Invasions 2012, 14, 503–507. [Google Scholar] [CrossRef]
- Constable, A.J. Ecology of benthic macro-invertebrates in soft-sediment environments: A review of progress towards quantitative models and predictions. Aust. J. Ecol. 1999, 24, 452–476. [Google Scholar] [CrossRef]
- Thrush, S.F.; Hewitt, J.E.; Cummings, V.J.; Ellis, J.I.; Hatton, C.; Lohrer, A.; Norkko, A. Muddy waters: Elevating sediment input to coastal and estuarine habitats. Front. Ecol. Environ. 2004, 2, 299–306. [Google Scholar] [CrossRef]
- Reiss, H.; Degraer, S.; Duineveld, G.C.A.; Kröncke, I.; Aldridge, J.; Craeymeersch, J.A.; Eggleton, J.D.; Hillewaert, H.; Lavaleye, M.S.S.; Moll, A.; et al. Spatial patterns of infauna, epifauna, and demersal fish communities in the North Sea. ICES J. Mar. Sci. 2010, 67, 278–293. [Google Scholar] [CrossRef]
- Fujii, T. Climate change, sea-level rise and implications for coastal and estuarine shoreline management with particular reference to the ecology of intertidal benthic macrofauna in NW Europe. Biology 2012, 1, 597–616. [Google Scholar] [CrossRef]
- Fujii, T. Potential influence of offshore oil and gas platforms on the feeding ecology of fish assemblages in the North Sea. Mar. Ecol. Prog. Ser. 2016, 542, 167–186. [Google Scholar] [CrossRef]
- Meyer-Gutbrod, E.L.; Love, M.S.; Claisse, J.T.; Page, H.M.; Schroeder, D.M.; Miller, R.J. Decommissioning impacts on biotic assemblages associated with shell mounds beneath southern California offshore oil and gas platforms. Bull. Mar. Sci. 2019, 95, 683–701. [Google Scholar] [CrossRef]
- Crawford, C.M.; Macleod, C.K.A.; Mitchell, I.M. Effects of shellfish farming on the benthic environment. Aquaculture 2003, 224, 117–140. [Google Scholar] [CrossRef]
- Kalantzi, I.; Rico, A.; Mylona, K.; Pergantis, S.A.; Tsapakis, M. Fish farming, metals and antibiotics in the eastern Mediterranean Sea: Is there a threat to sediment wildlife? Sci. Total Environ. 2021, 764, 142843. [Google Scholar] [CrossRef]
- Han, D.; Chen, Y.; Zhang, C.; Ren, Y.; Xue, Y.; Wan, R. Evaluating impacts of intensive shellfish aquaculture on a semi-closed marine ecosystem. Ecol. Model. 2017, 359, 193–200. [Google Scholar] [CrossRef]
- Rabalais, N.N.; Turner, R.E.; JustiĆ, D.; Dortch, Q.; Wiseman, W.J.; SenGupta, B.K. Nutrient changes in the Mississippi River and system responses on the adjacent continental shelf. Estuaries 1994, 19, 386–407. [Google Scholar] [CrossRef]
- Hagy, J.D.; Boynton, W.R.; Keefe, C.W.; Wood, K.V. Hypoxia in Chesapeake Bay, 1951–2001: Long-term change in relation to nutrient loading and river flow. Estuaries 2004, 27, 634–658. [Google Scholar] [CrossRef]
- Ho, A.Y.; Xu, J.; Yin, K.; Yuan, X.; He, L.; Jiang, Y.; Lee, J.H.; Anderson, D.M.; Harrison, P.J. Seasonal and spatial dynamics of nutrients and phytoplankton biomass in Victoria Harbour and its vicinity before and after sewage abatement. Mar. Pollut. Bull. 2008, 57, 313–324. [Google Scholar] [CrossRef]
- Lohrer, A.; Thrush, S.; Gibbs, M. Bioturbators enhance ecosystem function through complex biogeochemical interactions. Nature 2004, 431, 1092–1095. [Google Scholar] [CrossRef]
- Baustian, M.M.; Hansen, G.J.A.; Kluijver, A.D.; Robinson, K.; Henry, E.N.; Knoll, L.B.; Rose, K.C.; Carey, C. Linking the bottom to the top in aquatic ecosystems: Mechanisms and stressors of benthic-pelagic coupling. In Eco-DAS X Symposium Proceedings; Kemp, P.F., Ed.; Association for the Sciences of Limnology and Oceanography: Washington, DC, USA, 2014; Volume 3, pp. 25–47. [Google Scholar] [CrossRef]
Station | Position | Depth | Distance | |
---|---|---|---|---|
Lat | Lon | (m) | (m) | |
St.Far | 38.4388 | 141.4606 | 24.0 | 165.7 |
St.Mid | 38.4381 | 141.4602 | 19.8 | 79.8 |
St.Close | 38.4376 | 141.4595 | 12.6 | 0.0 |
Taxonomic Group | St.Far | St.Mid | St.Close | Total | ||||
---|---|---|---|---|---|---|---|---|
N (ind.) | (%) | N (ind.) | (%) | N (ind.) | (%) | N (ind.) | (%) | |
Polychaeta | 283 | 95.3 | 195 | 87.8 | 151 | 71.9 | 629 | 86.3 |
Gastropoda | 2 | 0.7 | 4 | 1.8 | 28 | 13.3 | 34 | 4.7 |
Malacostraca | 4 | 1.3 | 5 | 2.3 | 11 | 5.2 | 20 | 2.7 |
Ophiuroidea | - | - | 6 | 2.7 | 9 | 4.3 | 15 | 2.1 |
Bivalvia | 7 | 2.4 | 2 | 0.9 | 2 | 1.0 | 11 | 1.5 |
Nemertea | 1 | 0.3 | 4 | 1.8 | 1 | 0.5 | 6 | 0.8 |
Asteroidea | - | - | 1 | 0.5 | 4 | 1.9 | 5 | 0.7 |
Holothuroidea | - | - | 3 | 1.4 | - | - | 3 | 0.4 |
Actinopterygii | - | - | 1 | 0.5 | 1 | 0.5 | 2 | 0.3 |
Pycnogonida | - | - | - | - | 2 | 1.0 | 2 | 0.3 |
Polycladida | - | - | 1 | 0.5 | - | - | 1 | 0.1 |
Sipuncula | - | - | - | - | 1 | 0.5 | 1 | 0.1 |
Total | 297 | 100 | 222 | 100 | 210 | 100 | 729 | 100 |
Taxonomic Group | St.Far | St.Mid | St.Close | Total | ||||
---|---|---|---|---|---|---|---|---|
B (g) | (%) | B (g) | (%) | B (g) | (%) | B (g) | (%) | |
Asteroidea | - | - | 28.25 | 72.6 | 147.05 | 72.3 | 175.3 | 70.3 |
Gastropoda | 2.29 | 31.9 | 4.30 | 11.1 | 34.37 | 16.9 | 41.0 | 16.4 |
Polychaeta | 4.34 | 60.6 | 3.90 | 10.0 | 11.72 | 5.8 | 20.0 | 8.0 |
Malacostraca | 0.09 | 1.3 | 0.63 | 1.6 | 8.52 | 4.2 | 9.24 | 3.7 |
Ophiuroidea | - | - | 0.37 | 1.0 | 1.21 | 0.6 | 1.58 | 0.6 |
Actinopterygii | - | - | 0.80 | 2.0 | 0.22 | 0.1 | 1.02 | 0.4 |
Bivalvia | 0.44 | 6.2 | 0.14 | 0.4 | 0.23 | 0.1 | 0.81 | 0.3 |
Nemertea | 0.004 | 0.1 | 0.30 | 0.8 | 0.04 | 0.02 | 0.34 | 0.1 |
Holothuroidea | - | - | 0.23 | 0.6 | - | - | 0.23 | 0.1 |
Pycnogonida | - | - | - | - | 0.03 | 0.01 | 0.03 | 0.01 |
Sipuncula | - | - | - | - | 0.02 | 0.01 | 0.02 | 0.01 |
Polycladida | - | - | 0.013 | 0.03 | - | - | 0.01 | 0.01 |
Total | 7.2 | 100 | 38.9 | 100 | 203.4 | 100 | 249.5 | 100 |
Global Test | Pairwise Test | R | p |
---|---|---|---|
Global | 0.510 | <0.001 | |
St.Far × St.Mid | 0.380 | <0.01 | |
St.Far × St.Close | 0.872 | <0.01 | |
St.Mid × St.Close | 0.372 | <0.05 |
Station | Av. Sim. % | Taxonomic Group | Class | Av. Abund. | Contrib.% | Cum.% |
---|---|---|---|---|---|---|
St.Far | 73.22 | Lumbrineridae | Polychaeta | 2.06 | 18.94 | 18.94 |
Cirratulidae | Polychaeta | 1.54 | 13.31 | 32.25 | ||
Ampharetidae | Polychaeta | 1.51 | 12.69 | 44.94 | ||
Capitellidae | Polychaeta | 1.41 | 12.51 | 57.46 | ||
Magelonidae | Polychaeta | 1.40 | 11.96 | 69.42 | ||
Spionidae | Polychaeta | 1.15 | 10.49 | 79.91 | ||
St.Mid | 59.32 | Magelonidae | Polychaeta | 1.62 | 16.93 | 16.93 |
Cirratulidae | Polychaeta | 1.49 | 16.48 | 33.41 | ||
Capitellidae | Polychaeta | 1.48 | 15.84 | 49.25 | ||
Lumbrineridae | Polychaeta | 1.26 | 10.16 | 59.41 | ||
Maldanidae | Polychaeta | 0.99 | 8.39 | 67.8 | ||
Other polychaeta | Polychaeta | 1.03 | 7.97 | 75.77 | ||
St.Close | 58.69 | Cirratulidae | Polychaeta | 1.57 | 16.3 | 16.3 |
Lumbrineridae | Polychaeta | 1.59 | 15.12 | 31.42 | ||
Other polychaeta | Polychaeta | 1.28 | 12.89 | 44.31 | ||
Maldanidae | Polychaeta | 1.31 | 12.85 | 57.16 | ||
Ophiuroidea | Ophiuroidea | 0.94 | 7.28 | 64.44 | ||
Muricidae | Gastropoda | 0.73 | 4.78 | 69.22 | ||
Asterinidae | Asteroidea | 0.67 | 4.73 | 73.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deen, A.; Kitajima, S.; Sato-Okoshi, W.; Fujii, T. Seasonal Variability in the Influence of Coastal Aquaculture Operation on Benthic–Pelagic Coupling Processes in Shallow Aquatic Ecosystems. J. Mar. Sci. Eng. 2024, 12, 1293. https://doi.org/10.3390/jmse12081293
Deen A, Kitajima S, Sato-Okoshi W, Fujii T. Seasonal Variability in the Influence of Coastal Aquaculture Operation on Benthic–Pelagic Coupling Processes in Shallow Aquatic Ecosystems. Journal of Marine Science and Engineering. 2024; 12(8):1293. https://doi.org/10.3390/jmse12081293
Chicago/Turabian StyleDeen, Alexander, Shu Kitajima, Waka Sato-Okoshi, and Toyonobu Fujii. 2024. "Seasonal Variability in the Influence of Coastal Aquaculture Operation on Benthic–Pelagic Coupling Processes in Shallow Aquatic Ecosystems" Journal of Marine Science and Engineering 12, no. 8: 1293. https://doi.org/10.3390/jmse12081293
APA StyleDeen, A., Kitajima, S., Sato-Okoshi, W., & Fujii, T. (2024). Seasonal Variability in the Influence of Coastal Aquaculture Operation on Benthic–Pelagic Coupling Processes in Shallow Aquatic Ecosystems. Journal of Marine Science and Engineering, 12(8), 1293. https://doi.org/10.3390/jmse12081293