Diagenetic Evolution of Syngenetic Volcanogenic Sediment and Their Influence on Sandstone Reservoir: A Case Study in the Southern Huizhou Sag, Pearl River Mouth Basin, Northern South China Sea
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
4.1. Lithofacies and Petrography of the Wenchang-Enping Formation
4.2. Diagenetic Events
4.2.1. Compaction
4.2.2. Cementation
- Carbonate Cementation
- Clay Mineral Cementation
- Siliceous Cementation
- Pyrite Cementation
4.2.3. Dissolution
4.3. Pore Type and Reservoir Physical Property
4.4. Characteristic and Differential of Volcanogenic Sediment
5. Discussion
5.1. Influence of Volcanogenic Sediment on Reservoir
5.2. Diagenetic Evolution Sequence
5.3. Formation Mechanism of the Pyroclastic Rock
6. Conclusions
- (1)
- For the Wenchang Formation, the main lithology is litharenite and feldspathic litharenite, with high content of interstitial material, mainly tuffaceous matrix, and the main pore type is secondary dissolved pores, with an average porosity and permeability of 11.1% and 12.7 mD. For the Enping Formation, the main lithology is lithic arkose and subarkose, with a low content of interstitial materials and complex types. The main pore type is primary pore, with an average porosity and permeability of 11.3% and 294.3 mD.
- (2)
- The magmatic property was mainly intermediate-basic. The types of volcanic materials in the Huizhou Sag were complex. Coarse-grained volcanic fragments could enhance the compressive strength of the reservoir, and the dissolution could effectively increase the physical properties of the reservoir. Fine-grained volcanic dust filled the pores as interstitial materials, resulting in the tightness of the reservoir.
- (3)
- The reservoirs underwent a diagenetic evolution process that was broadly alkaline to acidic and finally alkaline; the diagenesis sequence is summarized as follows: (i) compaction, (ii) clay mineral cladding, (iii) feldspar and coarse-grained volcanic fragment dissolution, (iv) kaolinite and quartz cementation, (v) fine-grained tuffaceous alteration, (vi) calcite cementation, (vii) hydrocarbon charge and (viii) late ankerite and pyrite cementation.
- (4)
- During the period of the Wenchang Formation, strong tectonic activity led to strong volcanic activity, with many volcanic materials mixed into the terrigenous clasts. The rapid sedimentation of the fan delta resulted in lower reservoir maturity and stronger compaction. The dissolution of feldspar and rock fragments generated dissolution pores, increasing porosity, but the clay minerals produced by alteration would block the throat and reduce the reservoir permeability. During the period of the Enping Formation, the volcanic activity was weakened, and the type of volcanic material was mainly fine-grained volcanic dust. The change of sedimentary facies led to the increase of reservoir maturity and weaker compaction. It was difficult for acid fluid to effectively enter the Enping Formation to form dissolution pores, so the content of altered clay minerals was low, resulting in better physical properties.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, S.; Li, S.; Yuan, C. Resource Potential of Water-Soluble Gas in the Palaeogene Huizhou Sag, Pearl River Mouth Basin. Pet. Explor. Dev. 2012, 39, 194–201. [Google Scholar] [CrossRef]
- Yang, C.; Liu, L.; Wu, D.; Jiang, W.; Li, Y.; Xiong, Y. Unscrambling the Source Kitchen and Hydrocarbon Prospect Information of the Ultra-Deepwater Area in Southern Pearl River Mouth Basin, South China Sea: Insights from the First Ultra-Deepwater Exploration Well W21. J. Pet. Sci. Eng. 2022, 216, 110827. [Google Scholar] [CrossRef]
- Cao, H.; Chang, D.; Hu, S.; Zhu, Y.; Wang, Y.; Li, P. Geophysical Techniques and Prospects for Deep Oil-Gas Exploration in China. Acta Pet. Sin. 2023, 44, 2250–2269. [Google Scholar]
- Huang, F.; Wang, S.; Li, M.; Ouyang, J.; Liu, C.; Liu, H.; Zeng, F.; Fan, J.; Jia, P. Progress and Implications of Deep and Ultra-Deep Oil and Gas Exploration in PetroChina. Nat. Gas Ind. 2024, 44, 86–96. [Google Scholar]
- Fu, M.; Song, R.; Xie, Y.; Zhang, S.; Gluyas, J.G. Diagenesis and Reservoir Quality of Overpressured Deep-Water Sandstone Following Inorganic Carbon Dioxide Accumulation: Upper Miocene Huangliu Formation, Yinggehai Basin, South China Sea. Mar. Pet. Geol. 2016, 77, 954–972. [Google Scholar] [CrossRef]
- Wu, D.; Li, H.; Jiang, L.; Hu, S.; Wang, Y.; Zhang, Y.; Liu, Y. Diagenesis and Reservoir Quality in Tight Gas Bearing Sandstones of a Tidally Influenced Fan Delta Deposit: The Oligocene Zhuhai Formation, Western Pearl River Mouth Basin, South China Sea. Mar. Pet. Geol. 2019, 107, 278–300. [Google Scholar] [CrossRef]
- Wu, K.; Xie, X.; Liao, J.; Han, Y. The Rules of Reservoir Characteristics and Dissolution of Paleogene Clastic Rocks in Offshore China. Earth Sci. 2023, 48, 385–397. [Google Scholar]
- Wang, E.; Liu, G.; Pang, X.; Li, C.; Wu, Z. Diagenetic Evolution and Formation Mechanisms of Middle to Deep Clastic Reservoirs in the Nanpu Sag, Bohai Bay Basin, East China. Pet. Explor. Dev. 2020, 47, 343–356. [Google Scholar] [CrossRef]
- Li, Y.; Wu, H.; Zhang, Y.; Liao, Z.; Hu, W.; Fu, H.; Li, Z. Reservoir Diversity and Its Genetic Mechanism in the Es4 Abnormally High-Porosity Zone of Deep Sandstone in the Bonan Step-Fault Zone, Bonan Sag, Bohai Bay Basin, China. J. Pet. Sci. Eng. 2020, 191, 107216. [Google Scholar] [CrossRef]
- Liao, J.; Wu, K.; Er, C. Deep Reservoir Characteristics and Effective Reservoir Control Factors in Baiyun Sag of Pearl River Mouth Basin. Earth Sci. 2022, 47, 2454–2467. [Google Scholar]
- Gong, L.; Gao, X.; Qu, F.; Zhang, Y.; Zhang, G.; Zhu, J. Reservoir Quality and Controlling Mechanism of the Upper Paleogene Fine-Grained Sandstones in Lacustrine Basin in the Hinterlands of Northern Qaidam Basin, NW China. J. Earth Sci. 2023, 34, 806–823. [Google Scholar] [CrossRef]
- Shi, X.; Wu, W.; Hu, H.; Liu, L.; Zhu, Y.; Pan, R.; Meng, J.; Wang, T. The Whole Apertures of Deeply Buried Wufeng-Longmaxi Formation Shale and Their Controlling Factors in Luzhou District, Sichuan Basin. Earth Sci. 2023, 48, 158–172. [Google Scholar]
- Xu, K.; Zhang, H.; Ju, W.; Yin, G.; Wang, H.; Wang, Z.; Wang, Z.; Li, C.; Yuan, F.; Zhao, W. Effective Fracture Distribution and Its Influence on Natural Gas Productivity of Ultra-Deep Reservoir in Bozi-X Block of Kuqa Depression. Earth Sci. 2023, 48, 2489–2505. [Google Scholar]
- Yang, H.; Qian, G.; Xu, C.; Gao, Y.; Kang, R. Sandstone Distribution and Reservoir Characteristics of Shahejie Formation in Huangheko Sag, Bohai Bay Basin. Earth Sci. 2023, 48, 3068–3080. [Google Scholar]
- Jiang, H.; Pang, X.; Chen, D.; Peng, H.; Yu, Q.; Zhang, X. Characteristics of Source Rock Controlling Hydrocarbon Distribution in Huizhou Depression of Pearl River Mouth Basin, South China Sea. J. Pet. Sci. Eng. 2018, 171, 1260–1268. [Google Scholar] [CrossRef]
- Jiang, H.; Pang, X.; Shi, H.; Yu, Q.; Cao, Z.; Yu, R.; Chen, D.; Long, Z.; Jiang, F. Source Rock Characteristics and Hydrocarbon Expulsion Potential of the Middle Eocene Wenchang Formation in the Huizhou Depression, Pearl River Mouth Basin, South China Sea. Mar. Pet. Geol. 2015, 67, 635–652. [Google Scholar] [CrossRef]
- Jin, Z.; Yuan, G.; Zhang, X.; Cao, Y.; Ding, L.; Li, X.; Fu, X. Differences of Tuffaceous Components Dissolution and Their Impact on Physical Properties in Sandstone Reservoirs: A Case Study on Paleogene Wenchang Formation in Huizhou-Lufeng Area, Zhu I Depression, Pearl River Mouth Basin, China. Pet. Explor. Dev. 2023, 50, 111–124. [Google Scholar] [CrossRef]
- Tang, X.; Yu, Y.; Zhang, X.; Peng, G.; Niu, S.; Qiu, X.; Lu, M.; He, Y. Multiphase Faults Activation in the Southwest Huizhou Sag, Pearl River Mouth Basin: Insights from 3D Seismic Data. Mar. Pet. Geol. 2023, 152, 106257. [Google Scholar] [CrossRef]
- Xu, C.; Gao, Y.; Liu, J.; Peng, G.; Liu, P.; Xiong, W.; Song, P. Discovery and Inspiration of Large- and Medium-Sized Glutenite-Rich Oil and Gas Fields in the Eastern South China Sea: An Example from Paleogene Enping Formation in Huizhou 26 Subsag, Pearl River Mouth Basin. Pet. Explor. Dev. 2024, 51, 15–30. [Google Scholar] [CrossRef]
- Xie, H.; Zhou, D.; Li, Y.; Pang, X.; Li, P.; Chen, G.; Li, F.; Cao, J. Cenozoic Tectonic Subsidence in Deepwater Sags in the Pearl River Mouth Basin, Northern South China Sea. Tectonophysics 2014, 615–616, 182–198. [Google Scholar] [CrossRef]
- Ma, B.; Wu, S.; Sun, Q.; Mi, L.; Wang, Z.Z.; Tian, J. The Late Cenozoic Deep-Water Channel System in the Baiyun Sag, Pearl River Mouth Basin: Development and Tectonic Effects. Deep. Res. Part II Top. Stud. Oceanogr. 2015, 122, 226–239. [Google Scholar] [CrossRef]
- He, M.; Zhong, G.; Liu, X.; Liu, L.; Shen, X.; Wu, Z.; Huang, K. Rapid Post-Rift Tectonic Subsidence Events in the Pearl River Mouth Basin, Northern South China Sea Margin. J. Asian Earth Sci. 2017, 147, 271–283. [Google Scholar] [CrossRef]
- Ye, Q.; Mei, L.; Shi, H.; Shu, Y.; Camanni, G.; Wu, J. A Low-Angle Normal Fault and Basement Structures within the Enping Sag, Pearl River Mouth Basin: Insights into Late Mesozoic to Early Cenozoic Tectonic Evolution of the South China Sea Area. Tectonophysics 2018, 731–732, 1–16. [Google Scholar] [CrossRef]
- Wang, X.G.; Zhang, X.; Lin, H.; Que, X.; He, Y.; Jia, L.; Xiao, Z.; Li, M. Paleogene Geological Framework and Tectonic Evolution of the Central Anticlinal Zone in Lufeng 13 Sag, Pearl River Mouth Basin. Pet. Res. 2019, 4, 238–249. [Google Scholar] [CrossRef]
- Zhao, F.; Wu, S.; Sun, Q.; Huuse, M.; Li, W.; Wang, Z. Submarine Volcanic Mounds in the Pearl River Mouth Basin, Northern South China Sea. Mar. Geol. 2014, 355, 162–172. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, H.; Chen, H.; Du, S.; Li, C. Quantitative Characterization of Fracture-Pore Distribution and Effects on Production Capacity of Weathered Volcanic Crust Reservoirs: Insights from Volcanic Gas Reservoirs of the Dixi Area, Junggar Basin, Western China. Mar. Pet. Geol. 2022, 140, 105651. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, C.; Liang, H.; Jia, L.; Bai, J.; Zhang, L.; Wang, J. Mineralogical Composition and Organic Matter Characteristics of Lacustrine Fine-Grained Volcanic-Hydrothermal Sedimentary Rocks: A Data-Driven Analytics for the Second Member of Permian Lucaogou Formation, Santanghu Basin, NW China. Mar. Pet. Geol. 2021, 126, 104920. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, S.; Dong, D. Cenozoic Magmatism in the Northern Continental Margin of the South China Sea: Evidence from Seismic Profiles. Mar. Geophys. Res. 2016, 37, 71–94. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, R.; Liu, Z.; Li, B.; Han, J.; Zhao, K. Influence of Volcanic and Hydrothermal Activity on Organic Matter Enrichment in the Upper Triassic Yanchang Formation, Southern Ordos Basin, Central China. Mar. Pet. Geol. 2020, 112, 104059. [Google Scholar] [CrossRef]
- Yang, X.; Yan, D.; Zhang, B.; Zhang, L.; Wei, X.; Li, T.; Zhang, J.; She, X. The Impact of Volcanic Activity on the Deposition of Organic-Rich Shales: Evidence from Carbon Isotope and Geochemical Compositions. Mar. Pet. Geol. 2021, 128, 105010. [Google Scholar] [CrossRef]
- Rutman, P.; Hoareau, G.; Kluska, J.M.; Lejay, A.; Fialips, C.; Gelin, F.; Aubourg, C.; Bilbao, E.H. Diagenesis and Alteration of Subsurface Volcanic Ash Beds of the Vaca Muerta Formation, Argentina. Mar. Pet. Geol. 2021, 132, 105220. [Google Scholar] [CrossRef]
- Liu, Q.; Li, P.; Jin, Z.; Liang, X.; Zhu, D.; Wu, X.; Meng, Q.; Liu, J.; Fu, Q.; Zhao, J. Preservation of Organic Matter in Shale Linked to Bacterial Sulfate Reduction (BSR) and Volcanic Activity under Marine and Lacustrine Depositional Environments. Mar. Pet. Geol. 2021, 127, 104950. [Google Scholar] [CrossRef]
- Jiao, X.; Liu, Y.Q.; Yang, W.; Zhou, D.W.; Bai, B.; Zhang, T.S.; Zhao, M.R.; Li, Z.X.; Meng, Z.Y.; Yang, Y.Y.; et al. Fine-Grained Volcanic-Hydrothermal Sedimentary Rocks in Permian Lucaogou Formation, Santanghu Basin, NW China: Implications on Hydrocarbon Source Rocks and Accumulation in Lacustrine Rift Basins. Mar. Pet. Geol. 2020, 114, 104201. [Google Scholar] [CrossRef]
- Cui, H.; Zhu, S.; Tan, M.; Tong, H. Depositional and Diagenetic Processes in Volcanic Matrix-Rich Sandstones from the Shanxi and Shihezi Formations, Ordos Basin, China: Implication for Volcano-Sedimentary Systems. Basin Res. 2022, 34, 1859–1893. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, X.; Gawthorpe, R.L.; Wood, L.J.; Liu, Q.; Li, S.; Shi, R.; Li, H. The Interactions of Volcanism and Clastic Sedimentation in Rift Basins: Insights from the Palaeogene-Neogene Shaleitian Uplift and Surrounding Sub-Basins, Bohai Bay Basin, China. Basin Res. 2021, 34, 1084–1112. [Google Scholar] [CrossRef]
- Liu, Q.; Zhu, D.; Jin, Z.; Meng, Q.; Li, S. Influence of Volcanic Activities on Redox Chemistry Changes Linked to the Enhancement of the Ancient Sinian Source Rocks in the Yangtze Craton. Precambrian Res. 2019, 327, 1–13. [Google Scholar] [CrossRef]
- Liu, G.; Zhai, G.; Huang, Z.; Zou, C.; Xia, X.; Shi, D.; Zhou, Z.; Zhang, C.; Chen, R.; Yu, S.; et al. The Effect of Tuffaceous Material on Characteristics of Different Lithofacies: A Case Study on Lucaogou Formation Fine-Grained Sedimentary Rocks in Santanghu Basin. J. Pet. Sci. Eng. 2019, 179, 355–377. [Google Scholar] [CrossRef]
- Wang, K.; Xu, W.; Fu, M.; Deng, H.; Wang, X. Geochemical Transformation of Tuffaceous Materials in Tight Sandstone and Its Significance for Reservoir Reconstruction: A Case Study from the Taiyuan and Shihezi Formation in Dingbei Area, Ordos Basin. Interpretation 2022, 10, T739–T747. [Google Scholar] [CrossRef]
- Zhou, N.; Lu, J.; Lu, S.; Zhang, P.; Wang, M.; Lin, Z.; Jiang, X.; Liu, Y.; Xiao, G. Depositional and Diagenetic Controls over Reservoir Quality of Tight Sandstone and Conglomerate in the Lower Cretaceous Shahezi Formation, Xujiaweizi Fault Depression, Songliao Basin, China. Mar. Pet. Geol. 2023, 155, 106374. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, H.; Hu, Q.; Liu, L.; Hao, L. Diagenesis and Pore Evolution for Various Lithofacies of the Wufeng-Longmaxi Shale, Southern Sichuan Basin, China. Mar. Pet. Geol. 2021, 133, 105251. [Google Scholar] [CrossRef]
- Worden, R.H.; Bukar, M.; Shell, P. The Effect of Oil Emplacement on Quartz Cementation in a Deeply Buried Sandstone Reservoir. Am. Assoc. Pet. Geol. Bull. 2018, 102, 49–75. [Google Scholar] [CrossRef]
- Alessandretti, L.; Philipp, R.P.; Chemale, F.; Brückmann, M.P.; Zvirtes, G.; Matté, V.; Ramos, V.A. Provenance, Volcanic Record, and Tectonic Setting of the Paleozoic Ventania Fold Belt and the Claromecó Foreland Basin: Implications Onsedimentation and Volcanism along the Southwestern Gondwana Margin. J. S. Am. Earth Sci. 2013, 47, 12–31. [Google Scholar] [CrossRef]
- Arif, M.; Dey, S.; Gond, A.K.; Zong, K.; Liu, Y.; Mitra, A.; Mitra, A.; Sarangi, S. Mesoarchean Continental Intraplate Volcanism and Sedimentation: The Case of the Simlipal Basin, Singhbhum Craton, Eastern India. Precambrian Res. 2021, 361, 106245. [Google Scholar] [CrossRef]
- Rossignol, C.; Hallot, E.; Bourquin, S.; Poujol, M.; Jolivet, M.; Pellenard, P.; Ducassou, C.; Nalpas, T.; Heilbronn, G.; Yu, J.; et al. Using Volcaniclastic Rocks to Constrain Sedimentation Ages: To What Extent Are Volcanism and Sedimentation Synchronous? Sediment. Geol. 2019, 381, 46–64. [Google Scholar] [CrossRef]
- Manikyamba, C.; Saha, A.; Ganguly, S.; Santosh, M.; Lingadevaru, M.; Rajanikanta Singh, M.; Subba Rao, D.V. Sediment-Infill Volcanic Breccia from the Neoarchean Shimoga Greenstone Terrane, Western Dharwar Craton: Implications on Pyroclastic Volcanism and Sedimentation in an Active Continental Margin. J. Asian Earth Sci. 2014, 96, 269–278. [Google Scholar] [CrossRef]
- Pelullo, C.; Arienzo, I.; D’Antonio, M.; Giaccio, B.; Iovine, R.S.; Leicher, N.; Palladino, D.M.; Petrelli, M.; Petrosino, P.; Russo Ermolli, E.; et al. Explosive Volcanic Activity in Central-Southern Italy during Middle Pleistocene: A Tale from Tephra Layers of the Acerno Basin. Quat. Sci. Adv. 2024, 14, 100186. [Google Scholar] [CrossRef]
- Meng, Z.; Liu, Y.; Jiao, X.; Ma, L.; Zhou, D.; Li, H.; Cao, Q.; Zhao, M.; Yang, Y. Petrological and Organic Geochemical Characteristics of the Permian Lucaogou Formation in the Jimsar Sag, Junggar Basin, NW China: Implications on the Relationship between Hydrocarbon Accumulation and Volcanic-Hydrothermal Activities. J. Pet. Sci. Eng. 2022, 210, 110078. [Google Scholar] [CrossRef]
- Cao, Y.; Kang, Z.; Yang, F.; Zhou, T.; Liu, D.; Wang, R. Geochronology, Geochemistry and Geological Significance of Volcanic Rocks of the Bangba District, Western Segment of the Central Lhasa Subterrane. J. Earth Sci. 2022, 33, 681–695. [Google Scholar] [CrossRef]
- Lu, Z.; He, Z.; Gluyas, J.G.; Liu, G.; Liu, T.; Chen, C.; Zou, M. Reservoir Quality of the Lower–Middle Permian Shan 2 and He 1 Members in the Ordos Basin, China: Implications for Depositional and Diagenetic Processes and the Role of Volcanic Tuffaceous Sediment in Tight Sandstones. J. Asian Earth Sci. 2024, 263, 106050. [Google Scholar] [CrossRef]
- Escuder-Viruete, J.; Molina, E.A.; Chinchilla, D.; Gabites, J.; Seggiaro, R.; Marquetti, C.A.; Heredia, N. Structural and Temporal Relationships between Volcanic Activity, Hydrothermal Alteration, Epithermal Ag–Pb–Zn Mineralization and Regional Stress Regime in the Quevar Volcanic Complex (Puna Plateau, Salta Province, NW Argentina). J. Struct. Geol. 2022, 158, 104582. [Google Scholar] [CrossRef]
- Qin, P.; Han, D.; Ma, B.; Zeng, X.; Lin, Y. Diagenetic Differentiation of Tuffaceous Interstitial Materials in Sandy Conglomerate and Their Effect on Reservoir Properties. Mar. Pet. Geol. 2023, 157, 106476. [Google Scholar] [CrossRef]
- Imura, T.; Ban, M.; Tsunematsu, K.; Goto, A.; Okada, J.; Kuri, M. Geological Constraints on Volcanic-Fluid Pathways at the Maruyamasawa-Fumarolic-Geothermal-Area, and Its Relation to the Present Magmatic-Hydrothermal Activity in Zao Volcano, Tohoku, Japan. J. Volcanol. Geotherm. Res. 2023, 437, 107793. [Google Scholar] [CrossRef]
- Suárez, M.; De La Cruz, R.; Aguirre-Urreta, B.; Fanning, M. Relationship between Volcanism and Marine Sedimentation in Northern Austral (Aisén) Basin, Central Patagonia: Stratigraphic, U-Pb SHRIMP and Paleontologic Evidence. J. S. Am. Earth Sci. 2009, 27, 309–325. [Google Scholar] [CrossRef]
- Martínez-Paco, M.; Velasco-Tapia, F.; Santana-Salas, L.A.; Juárez-Arriaga, E.; Aceves de Alba, J.; Ernesto Ocampo-Díaz, Y.Z. San Felipe and Caracol Tuffaceous Sandstones, NE Mexico—Late Cretaceous Continental Arc Petrogenetic Link: Petrographic, Geochemical, and Geochronological Evidence. J. S. Am. Earth Sci. 2022, 116, 103818. [Google Scholar] [CrossRef]
- Marsaglia, K.M.; Barone, M.; Critelli, S.; Busby, C.; Fackler-Adams, B. Petrography of Volcaniclastic Rocks in Intra-Arc Volcano-Bounded to Fault-Bounded Basins of the Rosario Segment of the Lower Cretaceous Alisitos Oceanic Arc, Baja California, Mexico. Sediment. Geol. 2016, 336, 138–146. [Google Scholar] [CrossRef]
- Fisher, R.V.; Smith, G.A. Sedimentation in Volcanic Settings; SEPM Society for Sedimentary Geology: Tulsa, Oklahoma, 1991. [Google Scholar]
- Brandl, P.A.; Hamada, M.; Arculus, R.J.; Johnson, K.; Marsaglia, K.M.; Savov, I.P.; Ishizuka, O.; Li, H. The Arc Arises: The Links between Volcanic Output, Arc Evolution and Melt Composition. Earth Planet. Sci. Lett. 2017, 461, 73–84. [Google Scholar] [CrossRef]
- Cas, R.A.F.; Wright, J.V. Volcanic Successions Modern and Ancient: A Geological Approach to Processes, Products and Successions, 1st ed.; Cas, R.A.F., Wright, J.V., Eds.; Springer: Dordrecht, The Netherlands, 1988; ISBN 978-94-009-3167-1. [Google Scholar]
- Di Capua, A.; De Rosa, R.; Kereszturi, G.; Le Pera, E.; Rosi, M.; Watt, S.F.L. Volcanically-Derived Deposits and Sequences: A Unified Terminological Scheme for Application in Modern and Ancient Environments. In Volcanic Processes in the Sedimentary Record: When Volcanoes Meet the Environment; Di Capua, A., De Rosa, R., Kereszturi, G., Le Pera, E., Rosi, M., Watt, S.F.L., Eds.; Geological Society of London: London, UK, 2023; pp. 11–27. ISBN 9781786205667. [Google Scholar]
- Di Capua, A.; De Rosa, R.; Kereszturi, G.; Le Pera, E.; Rosi, M.; Watt, S.F.L. From Volcanoes to Sedimentary Systems. In Volcanic Processes in the Sedimentary Record: When Volcanoes Meet the Environment; Di Capua, A., De Rosa, R., Kereszturi, G., Le Pera, E., Rosi, M., Watt, S.F.L., Eds.; Geological Society of London: London, UK, 2023; pp. 1–9. ISBN 9781786205667. [Google Scholar]
- Chang, J. Forced-Regressive Sand Bodies and the Related Lithologic Reservoirs of Zhujiang Formation in Huizhou Sag, Pearl River Mouth Basin. Mar. Orig. Pet. Geol. 2020, 25, 121–131. [Google Scholar]
- Duan, W.; Shi, L.; Luo, C.; Li, S. Hydrocarbon Accumulation Mechanism in the Far-Source Reservoirs of Dongsha Uplift of the Pearl River Mouth Basin, Northern South China Sea. J. Pet. Sci. Eng. 2022, 220, 111145. [Google Scholar] [CrossRef]
- Lin, H.M.; Liu, H.; Wang, X.D.; Qiu, X.W.; Ju, Y.T.; Meng, J.; Li, L. Basin-Filling Processes and Hydrocarbon Source Rock Prediction of Low-Exploration Degree Areas in Rift Lacustrine Basins: A Case from the Wenchang Formation in Low-Exploration Degree Areas, Northern Zhu I Depression, Pearl River Mouth Basin, E China. J. Palaeogeogr. 2022, 11, 286–313. [Google Scholar] [CrossRef]
- Liu, E.; Chen, S.; Yan, D.; Deng, Y.; Wang, H.; Jing, Z.; Pan, S. Detrital Zircon Geochronology and Heavy Mineral Composition Constraints on Provenance Evolution in the Western Pearl River Mouth Basin, Northern South China Sea: A Source to Sink Approach. Mar. Pet. Geol. 2022, 145, 105884. [Google Scholar] [CrossRef]
- Wang, W.; Zeng, Z.; Yang, X.; Bidgoli, T. Exploring the Roles of Sediment Provenance and Igneous Activity on the Development of Synrift Lacustrine Source Rocks, Pearl River Mouth Basin, Northern South China Sea. Mar. Pet. Geol. 2022, 147, 105990. [Google Scholar] [CrossRef]
- Chen, W.; Du, J.; Shi, H.; He, M. Compound Hydrocarbon Accumulation and Enrichment in Southwestern Huizhou Sag, Pearl River Mouth Basin, South China Sea. Pet. Explor. Dev. 2015, 42, 215–222. [Google Scholar] [CrossRef]
- Ge, J.; Zhao, X.; Zhu, X.; Liao, J.; Ma, B.; Jones, B.G. Tectono-Sedimentary Signature of the Second Rift Phase in Multiphase Rifts: A Case Study in the Lufeng Depression (38–33.9 Ma), Pearl River Mouth Basin, South China Sea. Mar. Pet. Geol. 2020, 114, 104218. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhu, H.; Zhang, X.; Liu, Q.; Qiu, X.; Li, M. Geomorphologic Reconstruction of an Uplift in a Continental Basin with a Source-to-Sink Balance: An Example from the Huizhou-Lufeng Uplift, Pearl River Mouth Basin, South China Sea. Mar. Pet. Geol. 2021, 128, 104984. [Google Scholar] [CrossRef]
- Hui, G.; Zhang, P.; Li, Z.; Wang, W.; Hu, L.; Li, G.; Zhang, Y.; Sun, C.; Li, S.; Liang, H.; et al. Opening of the South China Sea Marginal Basin: Insights from the Tectonic Evolution of the ENE-Striking Littoral Fault Zone. Mar. Pet. Geol. 2022, 145, 105854. [Google Scholar] [CrossRef]
- Mu, D.; Peng, G.; Zhu, D.; Li, S.; Suo, Y.; Zhan, H.; Zhao, L. Structure and Formation Mechanism of the Pearl River Mouth Basin: Insights from Multi-Phase Strike-Slip Motions in the Yangjiang Sag, SE China. J. Asian Earth Sci. 2022, 226, 105081. [Google Scholar] [CrossRef]
- Zeng, Z.; Zhu, H.; Yang, X.; Zeng, H.; Xia, C.; Chen, Y. Using Seismic Geomorphology and Detrital Zircon Geochronology to Constrain Provenance Evolution and Its Response of Paleogene Enping Formation in the Baiyun Sag, Pearl River Mouth Basin, South China Sea: Implications for Paleo-Pearl River Drainage Evoluti. J. Pet. Sci. Eng. 2019, 177, 663–680. [Google Scholar] [CrossRef]
- Peng, J.; Pang, X.; Peng, H.; Ma, X.; Shi, H.; Zhao, Z.; Xiao, S.; Zhu, J. Geochemistry, Origin, and Accumulation of Petroleum in the Eocene Wenchang Formation Reservoirs in Pearl River Mouth Basin, South China Sea: A Case Study of HZ25-7 Oil Field. Mar. Pet. Geol. 2017, 80, 154–170. [Google Scholar] [CrossRef]
- Shi, H.; Du, J.; Mei, L.; Zhang, X.; Hao, S.; Liu, P.; Deng, P.; Zhang, Q. Huizhou Movement and Its Significance in Pearl River Mouth Basin, China. Pet. Explor. Dev. 2020, 47, 483–498. [Google Scholar] [CrossRef]
- Wang, X.; He, S.; Wu, J. Tectonic Controls on Lacustrine Source Rock Occurrence in the Huizhou Sag, Pearl River Mouth Basin, China. Int. Geol. Rev. 2020, 62, 72–93. [Google Scholar] [CrossRef]
- Dickson, J.A.D. Carbonate Identification and Genesis as Revealed by Staining. J. Sediment. Res. 1966, 36, 491–505. [Google Scholar] [CrossRef]
- Dickson, J.A.D. A Modified Staining Technique for Carbonates in Thin Section. Nature 1965, 205, 4971. [Google Scholar] [CrossRef]
- Zuffa, G.G. Optical Analyses of Arenites: Influence of Methodology on Compositional Results BT—Provenance of Arenites. In Provenance of Arenites; Zuffa, G.G., Ed.; Springer: Dordrecht, The Netherlands, 1985; pp. 165–189. ISBN 978-94-017-2809-6. [Google Scholar]
- Ingersoll, R.V.; Bullard, T.F.; Ford, R.L.; Grimm, J.P.; Pickle, J.D.; Sares, S.W. The Effect of Grain Size on Detrital Modes: A Test of the Gazzi-Dickinson Point-Counting Method. J. Sediment. Res. 1984, 54, 103–116. [Google Scholar] [CrossRef]
- Dickinson, W.R. Interpreting Detrital Modes of Graywacke and Arkose. J. Sediment. Res. 1970, 40, 695–707. [Google Scholar] [CrossRef]
- SY-T 6385-1999; The Porosity and Permeability Measurement of Core in the Net Confining Stress. State Bureau of Petroleum and Chemical Industries: Beijing, China, 1999.
- Ma, B.; Gao, J.; Eriksson, K.A.; Zhu, H.; Liu, Q.; Ping, X.; Zhang, Y. Diagenetic Alterations in Eocene, Deeply Buried Volcaniclastic Sandstones with Implications for Reservoir Quality in the Huizhou Depression, Pearl River Mouth. Am. Assoc. Pet. Geol. Bull. 2023, 107, 929–955. [Google Scholar] [CrossRef]
- Chen, S.; Xian, B.; Ji, Y.; Ll, J.; Tian, R.; Wang, P.; Tang, H. Influences of Burial Process on Diagenesis and High-Quality Reservoir Development of Deep–Ultra-Deep Clastic Rocks: A Case Study of Lower Cretaceous Qingshuihe Formation in Southern Margin of Junggar Basin, NW China. Pet. Explor. Dev. 2024, 51, 364–379. [Google Scholar] [CrossRef]
- Garzanti, E.; Andò, S.; Limonta, M.; Fielding, L.; Najman, Y. Diagenetic Control on Mineralogical Suites in Sand, Silt, and Mud (Cenozoic Nile Delta): Implications for Provenance Reconstructions. Earth Sci. Rev. 2018, 185, 122–139. [Google Scholar] [CrossRef]
- Folk, R.L. Petrology of Sedimentary Rocks; Hemphill Publishing Company: Austin, TX, USA, 1974. [Google Scholar]
- Yuan, G.; Peng, G.; Zhang, L.; Sun, H.; Chen, S.; Liu, H.; Zhao, X. Diagenesis and Low-Permeability Tightening Mechanisms of the Deep Paleogene Reservoirs under High Temperature and Highly Variable Geothermal Gradients in the Baiyun Sag, Pearl River Mouth Basin. Oil Gas Geol. 2024, 45, 44–64. [Google Scholar]
- Liu, D.; Sun, W.; Ren, D.; Li, C. Quartz Cement Origins and Impact on Storage Performance in Permian Upper Shihezi Formation Tight Sandstone Reservoirs in the Northern Ordos Basin, China. J. Pet. Sci. Eng. 2019, 178, 485–496. [Google Scholar] [CrossRef]
- Oye, O.J.; Aplin, A.C.; Jones, S.J.; Gluyas, J.G.; Bowen, L.; Harwood, J.; Orland, I.J.; Valley, J.W. Vertical Effective Stress and Temperature as Controls of Quartz Cementation in Sandstones: Evidence from North Sea Fulmar and Gulf of Mexico Wilcox Sandstones. Mar. Pet. Geol. 2020, 115, 104289. [Google Scholar] [CrossRef]
- Yu, Y.; Lin, L.; Li, Z.; Chen, H. Source of Quartz Cement in Tight Gas Sandstone: Evidence from the Upper Triassic Xujiahe Formation in the Western Sichuan Basin, SW China. J. Pet. Sci. Eng. 2022, 212, 110299. [Google Scholar] [CrossRef]
- Chen, S.; Yang, Y.; Qiu, L.; Wang, X.; Habilaxim, E. Source of Quartz Cement and Its Impact on Reservoir Quality in Jurassic Shaximiao Formation in Central Sichuan Basin, China. Mar. Pet. Geol. 2024, 159, 106543. [Google Scholar] [CrossRef]
- Schmidt, V.; Mcdonald, D.A. The Role of Secondary Porosity in the Course of Sandstone Diagenesis. Asp. Diagenes. 1979, 26, 175–207. [Google Scholar]
- Yang, P.; Zhang, L.; Liu, K.; Cao, B.; Gao, J.; Qiu, G. Diagenetic History and Reservoir Evolution of Tight Sandstones in the Second Member of the Upper Triassic Xujiahe Formation, Western Sichuan Basin, China. J. Pet. Sci. Eng. 2021, 201, 108451. [Google Scholar] [CrossRef]
- Ma, J.; Liu, G.; Huang, Z.; Ou, G.; Li, T.; Guo, X. Tight Tuff Reservoir Characteristics and Its Controlling Factors: A Comparative Study of the Permian Tiaohu Formation and Carboniferous Haerjiawu Formation in the Santanghu Basin, NW China. J. Pet. Sci. Eng. 2020, 187, 106808. [Google Scholar] [CrossRef]
- Ma, J.; Huang, Z.; Zhong, D.; Liang, S.; Liang, H.; Xue, D.; Chen, X.; Fan, T. Formation and Distribution of Tuffaceous Tight Reservoirs in the Permian Tiaohu Formation in the Malang Sag, Santanghu Basin, NW China. Pet. Explor. Dev. 2016, 43, 778–786. [Google Scholar] [CrossRef]
- Xiang, F.; Yu, X.; Huang, H.; Zhang, D.; Zhu, X. Mineralogical Characterization and Diagenetic History of Permian Marine Tuffaceous Deposits in Guangyuan Area, Northern Sichuan Basin, China. Mar. Pet. Geol. 2021, 123, 104744. [Google Scholar] [CrossRef]
- Cheng, R.; Shen, Y.; Yan, J.; Li, Q.; Li, X.; Wang, Y.; Li, F.; Xu, Z. Diagenesis of Volcaniclastic Rocks in Hailaer Basin. Acta Petrol. Sin. 2010, 26, 47–54. [Google Scholar]
- Le Maitre, R.W. Igneous Rocks: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks, 2nd ed.; Cambridge University Press: Cambridge, UK, 2005; ISBN 9780521619486. [Google Scholar]
- Paxton, S.T.; Szabo, J.O.; Ajdukiewicz, J.M.; Klimentidis, R.E. Construction of an Intergranular Volume Compaction Curve for Evaluating and Predicting Compaction and Porosity Loss in Rigid-Grain Sandstone Reservoirs. Am. Assoc. Pet. Geol. Bull. 2002, 86, 2047–2067. [Google Scholar] [CrossRef]
- Liu, K.; Wang, R.; Shi, W.; Travé, A.; Martín-Martín, J.D.; Baqués, V.; Qi, R.; Lin, J.; Ye, H. Diagenetic Controls on Reservoir Quality and Heterogeneity of the Triassic Chang 8 Tight Sandstones in the Binchang Area (Ordos Basin, China). Mar. Pet. Geol. 2022, 146, 105974. [Google Scholar] [CrossRef]
- Xu, W.; Wen, H.; Lu, Z.; Zhong, K.; Feng, Q.; Luo, B.; Liao, Y.; Zhou, G. Diagenetic Evolution and Its Impact on Reservoir Porosity in Lower Triassic Jialingjiang Formation in Eastern Sichuan Basin, SW China: Evidence from Petrography, Trace Elements, and Isotopic Studies. J. Pet. Sci. Eng. 2022, 208, 109341. [Google Scholar] [CrossRef]
- Cao, Z.; Azmy, K.; Lin, C.; Dong, C.; Ren, L.; Qin, M.; Li, Z.; Tan, X.; Zhang, L.; Li, X. Diagenetic Evolution of the Lower Yaojia Formation of Songliao Basin, China: Impact on Reservoir Quality. J. Pet. Sci. Eng. 2022, 213, 110415. [Google Scholar] [CrossRef]
- Zhao, X.; Yao, G.; Chen, X.; Zhang, R.; Lan, Z.; Wang, G. Diagenetic Facies Classification and Characterization of a High-Temperature and High-Pressure Tight Gas Sandstone Reservoir: A Case Study in the Ledong Area, Yinggehai Basin. Mar. Pet. Geol. 2022, 140, 105665. [Google Scholar] [CrossRef]
- Ehrenberg, S.N.; Nadeau, P.H.; Steen, Ø. Petroleum Reservoir Porosity versus Depth: Influence of Geological Age. Am. Assoc. Pet. Geol. Bull. 2009, 93, 1281–1296. [Google Scholar] [CrossRef]
- Ehrenberg, S.N.; Nadeau, P.H. Sandstone vs. Carbonate Petroleum Reservoirs: A Global Perspective on Porosity-Depth and Porosity-Permeability Relationships. Am. Assoc. Pet. Geol. Bull. 2005, 89, 435–445. [Google Scholar] [CrossRef]
- Khan, S.H.; Sheng, Y.M.; Critelli, S.; Civitelli, M.; Mughal, M.S.; Basharat, U. Depositional and Diagenetic Controls on Reservoir Properties of the Lower Cambrian Khewra Sandstone, Eastern Salt Range, Sub-Himalaya, Pakistan. Mar. Pet. Geol. 2024, 161, 106651. [Google Scholar] [CrossRef]
- Marsaglia, K.M.; Carozzi, A.V. Depositional Environment, Sand Provenance, and Diagenesis of the Basal Salina Formation (Lower Eocene), Northwestern Peru. J. S. Am. Earth Sci. 1990, 3, 253–267. [Google Scholar] [CrossRef]
- Cavazza, W.; Dahl, J. Note on the Temporal Relationships between Sandstone Compaction and Precipitation of Authigenic Minerals. Sediment. Geol. 1990, 69, 37–44. [Google Scholar] [CrossRef]
- Wang, J.; Cao, Y.; Liu, K.; Liu, J.; Xue, X.; Xu, Q. Pore Fluid Evolution, Distribution and Water-Rock Interactions of Carbonate Cements in Red-Bed Sandstone Reservoirs in the Dongying Depression, China. Mar. Pet. Geol. 2016, 72, 279–294. [Google Scholar] [CrossRef]
- Ma, W.; Cao, Y.; Xi, K.; Liu, K.; Lin, M.; Liu, J. Interactions between Mineral Evolution and Organic Acids Dissolved in Bitumen in Hybrid Shale System. Int. J. Coal Geol. 2022, 260, 104071. [Google Scholar] [CrossRef]
- Marghani, M.M.A.; Zairi, M.; Radwan, A.E. Facies Analysis, Diagenesis, and Petrophysical Controls on the Reservoir Quality of the Low Porosity Fluvial Sandstone of the Nubian Formation, East Sirt Basin, Libya: Insights into the Role of Fractures in Fluid Migration, Fluid Flow, and Enhancing the P. Mar. Pet. Geol. 2023, 147, 105986. [Google Scholar] [CrossRef]
- Fang, X.; Ma, C.; Zhao, L.; Lei, L.; Huang, W.; Han, C.; Qi, M. Diagenetic Evolution of Tight Sandstone and the Formation of an Effective Reservoir in the Lower Member 3 of the Shahejie Formation, Bohai Bay Basin, East China. Mar. Pet. Geol. 2024, 161, 106658. [Google Scholar] [CrossRef]
- Yu, Z.; Cheng, R.; Zhao, X.; Sun, F. Types and Succession of Pyroclastic Rocks Diagenesis in Lower Cretaceous of Wuerxun and Bei’er Depression in Hailaer Basin. Earth Sci. 2012, 37, 851–859. [Google Scholar]
- Zhou, J.; Liu, B.; Shao, M.; Yin, C.; Jiang, Y.; Song, Y. Lithologic Classification of Pyroclastic Rocks: A Case Study for the Third Member of the Huoshiling Formation, Dehui Fault Depression, Songliao Basin, NE China. J. Pet. Sci. Eng. 2022, 214, 110456. [Google Scholar] [CrossRef]
- Mao, Z.; Fang, X.; Yang, Y.; Ye, C.; Zhang, W.; Zhang, T.; Christidis, G.E. Identification and Origin of the Late Oligocene to Miocene Pyroclastic Rocks in the Lunpola Basin and Link with Deep Geodynamics in the Lhasa Terrane, Tibetan Plateau. J. Asian Earth Sci. 2023, 247, 105575. [Google Scholar] [CrossRef]
WELL | DEPTH | STRATA | Q | F | VRF | MRF | SRF | MICA | AM | TM | CC | CM | SC | PY |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H1 | 3158.4 | EP | 62.0 | 28.0 | 6.5 | 0.0 | 0.0 | 3.5 | 19.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.5 |
H1 | 3184 | EP | 82.5 | 7.5 | 9.5 | 0.5 | 0.0 | 0.0 | 1.0 | 5.0 | 22.0 | 0.5 | 1.5 | 0.0 |
H1 | 3200 | EP | 51.0 | 10.0 | 38.0 | 0.0 | 0.0 | 1.0 | 0.0 | 5.0 | 0.5 | 15.0 | 0.0 | 2.5 |
H1 | 3226 | EP | 33.5 | 39.0 | 24.0 | 1.0 | 0.0 | 2.5 | 0.0 | 5.0 | 0.0 | 13.0 | 0.0 | 0.0 |
H1 | 3226 | EP | 41.0 | 33.5 | 25.0 | 0.0 | 0.0 | 0.5 | 0.0 | 5.0 | 0.0 | 15.0 | 0.0 | 0.0 |
H1 | 3234.5 | EP | 36.0 | 9.0 | 54.0 | 0.0 | 0.0 | 1.0 | 0.0 | 5.0 | 0.0 | 5.0 | 0.0 | 0.0 |
H1 | 3235 | EP | 31.0 | 6.0 | 61.0 | 0.0 | 0.0 | 2.0 | 0.0 | 5.0 | 0.5 | 0.5 | 0.0 | 0.0 |
H1 | 3399.4 | WC | 41.0 | 11.0 | 48.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.0 | 0.0 | 10.0 | 0.0 | 0.0 |
H1 | 3503.5 | WC | 54.0 | 24.5 | 21.0 | 0.0 | 0.0 | 0.5 | 0.0 | 8.0 | 0.0 | 10.0 | 0.5 | 0.0 |
H1 | 3582 | WC | 31.0 | 46.5 | 22.5 | 0.0 | 0.0 | 0.0 | 20.0 | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 |
H3 | 3166.5 | EP | 79.6 | 14.0 | 5.1 | 0.6 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 |
H3 | 3182 | EP | 73.6 | 16.0 | 7.4 | 0.0 | 3.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 |
H3 | 3211 | EP | 79.8 | 13.1 | 6.0 | 1.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 |
H3 | 3223 | EP | 64.3 | 15.5 | 20.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 |
H3 | 3266.5 | EP | 78.3 | 12.0 | 7.8 | 0.6 | 1.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 |
H3 | 3281.5 | EP | 77.8 | 12.6 | 5.2 | 1.5 | 0.0 | 3.0 | 1.0 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 |
H3 | 3304 | EP | 78.1 | 9.5 | 10.1 | 0.0 | 0.0 | 2.4 | 0.0 | 6.0 | 1.5 | 0.0 | 0.5 | 0.0 |
H3 | 3360 | EP | 63.9 | 9.6 | 23.5 | 0.0 | 0.6 | 2.4 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 |
H3 | 3380 | EP | 59.5 | 7.7 | 27.4 | 0.0 | 0.6 | 4.8 | 0.0 | 16.0 | 0.0 | 0.0 | 0.0 | 0.0 |
H3 | 3521 | EP | 82.1 | 11.4 | 5.7 | 0.0 | 0.8 | 0.0 | 15.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 |
H3 | 3572.5 | WC | 54.0 | 10.4 | 29.4 | 0.0 | 4.9 | 1.2 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 |
H3 | 3583 | WC | 74.1 | 14.5 | 9.6 | 0.0 | 1.2 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 |
H3 | 3596 | WC | 56.6 | 6.0 | 34.9 | 0.0 | 0.0 | 2.4 | 0.0 | 16.0 | 0.0 | 0.0 | 0.0 | 0.0 |
H3 | 3615 | WC | 60.0 | 8.2 | 30.0 | 0.0 | 1.8 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 |
H3 | 3719.5 | WC | 38.6 | 4.2 | 56.6 | 0.0 | 0.6 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 0.5 | 0.0 |
H3 | 3726 | WC | 50.7 | 23.3 | 23.3 | 1.4 | 1.4 | 0.0 | 0.0 | 16.5 | 0.5 | 0.5 | 1.0 | 0.0 |
H3 | 3791 | WC | 45.2 | 7.1 | 47.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.0 | 0.0 | 0.0 |
H3 | 3794 | WC | 62.0 | 12.7 | 25.3 | 0.0 | 0.0 | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 |
H3 | 3798 | WC | 42.5 | 11.0 | 45.2 | 0.0 | 1.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
H3 | 3801.5 | WC | 44.9 | 15.4 | 38.5 | 0.0 | 0.0 | 1.3 | 0.0 | 22.0 | 0.0 | 0.0 | 0.0 | 0.0 |
H3 | 3816.5 | WC | 63.3 | 15.2 | 20.3 | 0.0 | 1.3 | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 |
H4A | 3600 | WC | 49.4 | 4.5 | 46.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
H4A | 3705 | WC | 34.9 | 10.5 | 54.7 | 0.0 | 0.0 | 0.0 | 0.0 | 6.0 | 0.0 | 0.0 | 0.0 | 0.0 |
H4A | 3808.5 | WC | 73.3 | 12.8 | 14.0 | 0.0 | 0.0 | 0.0 | 0.0 | 12.0 | 0.0 | 0.0 | 0.0 | 0.0 |
H4A | 3820.15 | WC | 67.8 | 12.1 | 18.4 | 0.0 | 0.6 | 1.1 | 0.0 | 12.0 | 0.0 | 0.0 | 0.0 | 0.0 |
H4A | 3821.4 | WC | 72.4 | 8.2 | 18.8 | 0.0 | 0.0 | 0.6 | 0.0 | 12.0 | 0.0 | 0.0 | 0.0 | 0.0 |
H4A | 3822.97 | WC | 75.9 | 8.0 | 14.9 | 0.0 | 0.0 | 1.1 | 0.0 | 11.0 | 0.0 | 0.0 | 0.0 | 2.0 |
H4A | 3823.5 | WC | 79.8 | 8.3 | 11.9 | 0.0 | 0.0 | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 |
H4A | 3824.45 | WC | 75.6 | 9.8 | 14.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 18.0 | 0.0 | 0.0 | 0.0 |
H4A | 3825.41 | WC | 85.9 | 9.4 | 4.7 | 0.0 | 0.0 | 0.0 | 0.0 | 12.0 | 0.0 | 0.0 | 0.0 | 0.0 |
H4A | 3826.19 | WC | 84.3 | 10.8 | 4.8 | 0.0 | 0.0 | 0.0 | 0.0 | 9.0 | 4.0 | 0.0 | 0.0 | 1.5 |
H4A | 3827.5 | WC | 68.1 | 15.0 | 16.3 | 0.6 | 0.0 | 0.0 | 0.0 | 15.0 | 0.0 | 0.0 | 5.0 | 0.0 |
H4A | 3828.12 | WC | 73.9 | 12.7 | 13.4 | 0.0 | 0.0 | 0.0 | 0.0 | 12.0 | 5.0 | 0.0 | 0.0 | 0.0 |
H4A | 3829.43 | WC | 63.6 | 16.4 | 20.0 | 0.0 | 0.0 | 0.0 | 45.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
H4A | 3830.86 | WC | 71.6 | 14.9 | 13.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 26.0 | 0.0 | 0.0 | 0.0 |
H4A | 3831.96 | WC | 63.5 | 21.2 | 15.3 | 0.0 | 0.0 | 0.0 | 0.0 | 13.5 | 1.0 | 0.0 | 0.5 | 0.0 |
H4A | 3832.93 | WC | 83.3 | 11.9 | 3.6 | 0.0 | 0.0 | 1.2 | 0.0 | 12.5 | 0.0 | 0.0 | 0.5 | 0.0 |
H4A | 3833.68 | WC | 76.1 | 11.4 | 12.5 | 0.0 | 0.0 | 0.0 | 0.0 | 12.0 | 0.0 | 0.0 | 0.0 | 0.0 |
H4A | 3834.59 | WC | 71.6 | 6.2 | 21.0 | 0.0 | 0.0 | 1.2 | 0.0 | 19.0 | 0.0 | 0.0 | 0.0 | 0.0 |
H4A | 3835.45 | WC | 82.1 | 8.3 | 9.5 | 0.0 | 0.0 | 0.0 | 0.0 | 12.0 | 0.0 | 0.0 | 0.5 | 0.0 |
H4A | 3836.7 | WC | 80.4 | 7.6 | 12.0 | 0.0 | 0.0 | 0.0 | 0.0 | 14.0 | 0.0 | 0.0 | 0.0 | 0.0 |
H4A | 3837.43 | WC | 77.0 | 9.2 | 13.8 | 0.0 | 0.0 | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 |
H4A | 3848.5 | WC | 76.6 | 14.3 | 9.1 | 0.0 | 0.0 | 0.0 | 0.0 | 12.0 | 0.0 | 0.0 | 0.0 | 0.0 |
H4A | 3868.3 | WC | 78.6 | 11.9 | 9.5 | 0.0 | 0.0 | 0.0 | 0.0 | 11.0 | 0.0 | 0.0 | 0.0 | 0.0 |
H4A | 3871 | WC | 69.0 | 19.0 | 11.9 | 0.0 | 0.0 | 0.0 | 16.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
H4A | 3873.6 | WC | 76.5 | 12.3 | 11.1 | 0.0 | 0.0 | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 |
H4A | 3879 | WC | 75.9 | 16.5 | 7.6 | 0.0 | 0.0 | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 |
H4A | 3883.3 | WC | 76.1 | 9.1 | 14.8 | 0.0 | 0.0 | 0.0 | 0.0 | 7.5 | 0.0 | 0.0 | 0.5 | 0.0 |
H4A | 3886.5 | WC | 73.9 | 10.2 | 15.9 | 0.0 | 0.0 | 0.0 | 0.0 | 11.0 | 0.5 | 0.0 | 0.0 | 0.0 |
H4A | 3897 | WC | 76.2 | 16.7 | 7.1 | 0.0 | 0.0 | 0.0 | 0.0 | 12.0 | 0.0 | 0.0 | 0.0 | 0.0 |
H4A | 3907.5 | WC | 68.3 | 13.4 | 18.3 | 0.0 | 0.0 | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 |
H4A | 3912.5 | WC | 57.6 | 5.9 | 10.6 | 0.0 | 25.9 | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 |
H4A | 4082 | WC | 73.6 | 10.3 | 16.1 | 0.0 | 0.0 | 0.0 | 0.0 | 6.0 | 0.0 | 0.0 | 0.0 | 0.0 |
H4A | 4094 | WC | 49.7 | 10.1 | 40.2 | 0.0 | 0.0 | 0.0 | 0.0 | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 |
H4A | 4109 | WC | 46.4 | 8.3 | 45.2 | 0.0 | 0.0 | 0.0 | 0.0 | 13.5 | 0.0 | 0.0 | 0.0 | 0.0 |
H5 | 3113.8 | EP | 74.5 | 17.5 | 4.0 | 4.0 | 0.0 | 0.0 | 7.0 | 2.0 | 0.0 | 0.0 | 1.5 | 0.5 |
H5 | 3120.47 | EP | 79.5 | 16.5 | 3.5 | 0.5 | 0.0 | 0.0 | 3.0 | 2.0 | 0.0 | 0.0 | 0.5 | 1.0 |
H5 | 3125.15 | EP | 77.0 | 9.0 | 6.0 | 5.0 | 1.0 | 2.0 | 4.0 | 5.0 | 0.0 | 1.5 | 0.0 | 0.5 |
H5 | 3134.42 | EP | 71.5 | 17.5 | 6.5 | 4.0 | 0.0 | 0.5 | 1.0 | 3.0 | 0.0 | 0.0 | 0.5 | 1.0 |
H5 | 3136.41 | EP | 73.0 | 17.0 | 8.0 | 2.0 | 0.0 | 0.0 | 0.0 | 5.0 | 3.0 | 0.0 | 1.5 | 0.0 |
H5 | 3160 | EP | 74.5 | 18.0 | 5.5 | 1.5 | 0.5 | 0.0 | 4.5 | 5.0 | 0.0 | 1.5 | 2.0 | 0.0 |
H5 | 3186.5 | EP | 76.5 | 15.5 | 7.0 | 0.5 | 0.5 | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 | 2.0 | 0.0 |
H5 | 3195 | EP | 68.0 | 21.5 | 4.0 | 6.0 | 0.0 | 0.5 | 0.0 | 5.0 | 0.0 | 0.0 | 2.0 | 0.0 |
H5 | 3206 | EP | 79.0 | 5.0 | 16.0 | 0.0 | 0.0 | 0.0 | 3.5 | 15.0 | 0.0 | 9.0 | 0.5 | 1.0 |
H5 | 3284 | EP | 77.0 | 17.0 | 6.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 | 1.0 | 0.0 |
H5 | 3288 | EP | 76.0 | 18.0 | 5.0 | 0.0 | 1.0 | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 | 1.5 | 0.0 |
H5 | 3314 | EP | 74.0 | 11.5 | 7.0 | 5.5 | 1.0 | 1.0 | 7.0 | 15.0 | 0.0 | 0.0 | 2.0 | 0.5 |
H5 | 3421 | EP | 70.5 | 16.5 | 8.5 | 4.0 | 0.5 | 0.0 | 1.0 | 10.0 | 0.0 | 12.0 | 2.0 | 0.5 |
H5 | 3425 | EP | 75.0 | 14.5 | 9.0 | 0.0 | 1.5 | 0.0 | 0.0 | 5.0 | 6.0 | 5.5 | 1.0 | 0.5 |
H5 | 3429.5 | EP | 79.5 | 14.0 | 5.5 | 1.0 | 0.0 | 0.0 | 1.0 | 10.0 | 1.5 | 3.5 | 3.0 | 1.0 |
H5 | 3433.6 | EP | 74.5 | 16.5 | 6.5 | 2.5 | 0.0 | 0.0 | 1.5 | 15.0 | 0.0 | 7.0 | 2.0 | 0.0 |
H5 | 3524.6 | EP | 73.5 | 14.5 | 9.5 | 0.0 | 0.0 | 2.5 | 17.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 |
H5 | 3553 | EP | 74.5 | 14.5 | 6.0 | 0.5 | 0.0 | 4.5 | 18.0 | 22.0 | 0.0 | 0.0 | 0.0 | 0.0 |
H5 | 3554.5 | EP | 80.0 | 15.5 | 3.0 | 0.0 | 0.5 | 1.0 | 7.0 | 5.0 | 1.0 | 1.0 | 0.5 | 0.0 |
H5 | 3581 | EP | 79.5 | 16.0 | 3.5 | 0.5 | 0.5 | 0.0 | 0.0 | 5.0 | 1.0 | 0.5 | 4.0 | 0.0 |
H7 | 3462 | EP | 73.5 | 18.5 | 4.0 | 3.0 | 0.5 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 2.0 | 0.0 |
H7 | 3480 | EP | 72.5 | 19.0 | 2.0 | 4.5 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 2.0 | 0.0 |
H7 | 3514 | EP | 77.5 | 14.5 | 5.0 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.0 | 0.0 |
H7 | 3632 | EP | 70.5 | 21.0 | 3.5 | 4.0 | 0.5 | 0.5 | 1.0 | 0.0 | 0.0 | 0.5 | 1.0 | 0.5 |
H7 | 3649.5 | EP | 65.5 | 24.0 | 6.0 | 4.0 | 0.0 | 0.5 | 1.0 | 1.0 | 0.0 | 0.5 | 1.5 | 0.0 |
H7 | 3660 | EP | 79.0 | 4.5 | 5.5 | 10.5 | 0.0 | 0.5 | 0.0 | 2.0 | 0.0 | 0.0 | 0.5 | 0.0 |
H7 | 3672.5 | EP | 68.0 | 23.5 | 7.5 | 1.0 | 0.0 | 0.0 | 1.5 | 0.0 | 0.0 | 0.0 | 3.0 | 1.5 |
H7 | 3676.5 | EP | 68.0 | 24.0 | 4.5 | 3.0 | 0.0 | 0.5 | 9.0 | 0.0 | 0.5 | 0.5 | 3.0 | 0.0 |
H7 | 3684 | EP | 54.0 | 21.0 | 12.0 | 12.5 | 0.0 | 0.5 | 17.0 | 0.0 | 0.0 | 0.5 | 1.5 | 0.5 |
H7 | 3690.3 | EP | 84.0 | 5.5 | 3.5 | 6.0 | 0.0 | 1.0 | 0.0 | 0.5 | 0.0 | 1.5 | 2.0 | 0.0 |
H7 | 3700 | EP | 67.0 | 20.5 | 9.0 | 3.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.2 | 3.0 | 0.0 |
H7 | 3715 | EP | 78.0 | 9.5 | 12.0 | 0.5 | 0.0 | 0.0 | 3.0 | 1.0 | 0.0 | 3.0 | 0.5 | 0.0 |
H7 | 3721.5 | EP | 69.5 | 20.5 | 6.0 | 3.5 | 0.0 | 0.5 | 1.0 | 0.0 | 0.0 | 0.0 | 2.0 | 0.5 |
H7 | 3738 | EP | 67.5 | 26.5 | 3.0 | 1.0 | 0.0 | 2.0 | 1.0 | 1.0 | 0.0 | 5.0 | 1.0 | 0.0 |
H7 | 3743 | EP | 63.0 | 23.5 | 6.0 | 5.5 | 0.0 | 2.0 | 3.5 | 0.0 | 0.5 | 0.5 | 3.0 | 1.0 |
H7 | 3758 | EP | 67.5 | 25.5 | 2.0 | 1.0 | 0.0 | 4.0 | 0.5 | 3.0 | 0.0 | 3.0 | 1.0 | 0.5 |
H7 | 3807 | EP | 64.0 | 22.0 | 6.5 | 5.5 | 0.0 | 2.0 | 1.0 | 1.0 | 0.0 | 4.0 | 1.0 | 0.5 |
H7 | 3835 | EP | 67.0 | 22.0 | 6.0 | 4.5 | 0.0 | 0.5 | 3.0 | 1.0 | 9.0 | 0.0 | 0.5 | 0.0 |
H7 | 3842 | EP | 64.5 | 24.0 | 0.5 | 3.5 | 0.0 | 7.5 | 0.5 | 1.5 | 0.0 | 2.5 | 0.5 | 0.5 |
H7 | 3969 | EP | 53.0 | 14.0 | 4.5 | 25.5 | 0.0 | 3.0 | 16.0 | 0.5 | 1.5 | 0.0 | 0.0 | 0.0 |
H7 | 3974 | EP | 65.5 | 16.5 | 7.5 | 9.5 | 0.0 | 1.0 | 0.0 | 0.0 | 15.0 | 0.0 | 0.0 | 0.0 |
H7 | 4001 | WC | 63.0 | 26.0 | 4.5 | 6.5 | 0.0 | 0.0 | 0.0 | 11.0 | 7.5 | 0.0 | 0.0 | 0.5 |
H7 | 4029.4 | WC | 70.5 | 17.0 | 6.5 | 3.5 | 2.0 | 0.5 | 7.0 | 6.5 | 0.5 | 0.0 | 1.0 | 0.0 |
H7 | 4051 | WC | 67.0 | 15.0 | 5.5 | 11.5 | 0.0 | 1.0 | 0.5 | 6.5 | 2.5 | 0.0 | 0.0 | 0.0 |
Component, Pore, Porosity and Permeability | Enping Formation | Wenchang Formation | ||
---|---|---|---|---|
Range | Average | Range | Average | |
Quartz/% | 31.0−84.0 | 69.3 | 31.0−85.9 | 65.2 |
Feldspar/% | 4.5−39.0 | 16.6 | 4.2−46.5 | 12.9 |
Volcanic rock fragment/% | 0.5−61.0 | 10.0 | 3.6−56.6 | 20.4 |
Metamorphic rock fragment/% | 0.0−25.5 | 2.7 | 0.0−11.5 | 0.5 |
Sedimentary rock fragment/% | 0.0−3.1 | 0.3 | 0.0−25.9 | 0.8 |
Mica/% | 0.0−7.5 | 1.1 | 0.0−2.4 | 0.2 |
Argillaceous matrix/% | 0.0−19.0 | 3.0 | 0.0−45.5 | 1.7 |
Tuffaceous matrix/% | 0.0−22.0 | 4.0 | 0.0−22.0 | 8.8 |
Carbonate cement/% | 0.0−22.0 | 1.1 | 0.0−26.0 | 1.3 |
Clay mineral/% | 0.0−15.0 | 1.9 | 0.0−10.0 | 0.5 |
Siliceous cement/% | 0.0−4.0 | 1.2 | 0.0−5.0 | 0.3 |
Pyrite/% | 0.0−2.5 | 0.3 | 0.0−2.0 | 0.1 |
Primary pore/% | 0.0−40.0 | 5.7 | 0.0−24.0 | 1.9 |
Interparticle pore/% | 0.0−4.5 | 0.2 | 0.0−14.0 | 1.9 |
Intragranular pore/% | 0.0−2.5 | 0.6 | 0.0−8.0 | 1.3 |
Intercrystalline pore/% | 0.0−2.0 | 0.2 | 0.0−0.5 | 0.0 |
Microfracture/% | 0.0−0.1 | 0.0 | 0.0−4.0 | 0.1 |
Porosity/% | 1.5−18.7 | 11.3 | 1.2−20.5 | 11.1 |
Permeability/mD | 0.01−4119.7 | 297.3 | 0.01−411.0 | 12.7 |
Wells | H1 | H2 | H3 | H4A | H5 | H7 |
---|---|---|---|---|---|---|
EP | 5.0% (<0.24 mm) | 11.6% (<0.2 mm) | 2.2% (<0.15 mm) | / | 8.2% (<0.35 mm) | 0.6% (<0.2 mm) |
WC | 11.0% (0.3–2 mm) | / | 6.4% (0.2–0.5 mm) | 9.5% (0.2–1 mm) | / | 8% (0.2–0.4 mm) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Zhu, H.; Peng, G.; Ding, L.; Zeng, Z.; Wang, W.; Tao, W.; Zhou, F. Diagenetic Evolution of Syngenetic Volcanogenic Sediment and Their Influence on Sandstone Reservoir: A Case Study in the Southern Huizhou Sag, Pearl River Mouth Basin, Northern South China Sea. J. Mar. Sci. Eng. 2024, 12, 1459. https://doi.org/10.3390/jmse12081459
Chen J, Zhu H, Peng G, Ding L, Zeng Z, Wang W, Tao W, Zhou F. Diagenetic Evolution of Syngenetic Volcanogenic Sediment and Their Influence on Sandstone Reservoir: A Case Study in the Southern Huizhou Sag, Pearl River Mouth Basin, Northern South China Sea. Journal of Marine Science and Engineering. 2024; 12(8):1459. https://doi.org/10.3390/jmse12081459
Chicago/Turabian StyleChen, Jiahao, Hongtao Zhu, Guangrong Peng, Lin Ding, Zhiwei Zeng, Wei Wang, Wenfang Tao, and Fengjuan Zhou. 2024. "Diagenetic Evolution of Syngenetic Volcanogenic Sediment and Their Influence on Sandstone Reservoir: A Case Study in the Southern Huizhou Sag, Pearl River Mouth Basin, Northern South China Sea" Journal of Marine Science and Engineering 12, no. 8: 1459. https://doi.org/10.3390/jmse12081459
APA StyleChen, J., Zhu, H., Peng, G., Ding, L., Zeng, Z., Wang, W., Tao, W., & Zhou, F. (2024). Diagenetic Evolution of Syngenetic Volcanogenic Sediment and Their Influence on Sandstone Reservoir: A Case Study in the Southern Huizhou Sag, Pearl River Mouth Basin, Northern South China Sea. Journal of Marine Science and Engineering, 12(8), 1459. https://doi.org/10.3390/jmse12081459