Bubble Clouds in Coastal Waters and Their Role in Air-Water Gas Exchange of CO2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Acoustic Measurement of Bubbles
Station | Location | Site Description |
---|---|---|
BOS1106 | Boston Harbor | Shoal surrounded by deeper water |
BOS1108 | Dredged channel surrounded by shallower water | |
BOS1111 | ||
BOS1112 | ||
BOS1115 | ||
CHB0301 | Chesapeake Bay | Shallow, variable fetch limitation |
CHB0302 | ||
CHB0303 | ||
CHB0304 | ||
CHB0305 | ||
CHB9903 | Norfolk Harbor | Deep, fetch limited |
CHB9905 | ||
FEB1102 | Fernandina Beach Harbor | Shallow, fetch limited |
FEB1103 | Cumberland Sound | At estuary inlet bordered by jetty |
FEB1107 | ||
FEB1108 | Fernandina Beach | At jetty point, open to ocean |
FPI0902 | Indian River Lagoon Inlet | At estuary inlet bordered by jetty |
HUR0401 | Hudson River Estuary | Fetch-limited except along river axis, steep topography |
HUR0503 | ||
LIS1011 | Long Island Sound | Deep, broad inlet |
LIS1012 | Deep, narrow inlet | |
LIS1013 | Surrounded by shoals and jetty | |
LIS1018 | Deep, long fetch | |
LIS1021 | ||
LIS1023 | Fetch limited to north by jetty, long fetch to south | |
LIS1027 | Deep, open water | |
LIS1029 | Shoal surrounded by deep water | |
LIS1032 | Deep, long fetch | |
LIS1035 | ||
LIS1038 | Deep, fetch limited | |
MOB1104 | Mobile Bay | Natural estuary inlet bordered by shoals |
MOB1105 | ||
MOB1106 | In channel between bridge piles | |
PIR0701 | Portsmouth Harbor | Deep, broad channel in harbor |
PIR0709 | Piscataqua River | Deep, narrow channel |
PIR0711 | Great Bay | Deep, narrow channel in Great Bay |
SAB0803 | St. Andrew’s Bay | At estuary inlet bordered by jetty and shoreline |
SAB0805 | Variable fetch limitation | |
SAB0806 | ||
SAB0807 | ||
SAB0809 |
2.2. ADCP Observations
Side-Lobe Interference
Station | Frequency | Bin Size | Depth: µ | U10: µ (σ) | Fetch: µ (range) | Current: µ (max) | Begin Date | End Date |
---|---|---|---|---|---|---|---|---|
kHz | m | m | m s−1 | km | m s−1 | |||
BOS1106 | 600 | 1 | 16.5 | 4.4 (1.9) | 16 (1–25) | 0.15 (0.40) | 14/5/2011 | 21/6/2011 |
BOS1108 | 600 | 1 | 11.9 | 4.4 (1.9) | 13 (2–25) | 0.35 (0.82) | 14/5/2011 | 21/6/2011 |
BOS1111 | 600 | 1 | 19.1 | 4.3 (1.9) | 11 (1–25) | 0.44 (0.82) | 14/5/2011 | 10/8/2011 |
BOS1112 | 1200 | 0.5 | 13.1 | 4.2 (1.8) | 3 (1–10) | 0.25 (0.64) | 28/6/2010 | 4/8/2010 |
BOS1115 | 600 | 1 | 12.2 | 4.2 (1.8) | 1 (0–6) | 0.13 (0.35) | 28/6/2010 | 4/8/2010 |
CHB0301 | 1200 | 0.35 | 8.2 | 4.2 (2.4) | 14 (3–25) | 0.20 (0.56) | 9/10/2002 | 9/1/2003 |
CHB0302 | 1200 | 0.35 | 9.1 | 4.0 (2.3) | 13 (4–25) | 0.20 (0.59) | 22/1/2003 | 2/5/2003 |
CHB0304 | 1200 | 0.35 | 7.5 | 3.2 (2.3) | 12 (3–25) | 0.21 (0.51) | 29/7/2003 | 21/9/2003 |
CHB0305 | 1200 | 0.35 | 7.5 | 3.9 (2.4) | 16 (3–25) | 0.18 (0.46) | 10/10/2003 | 14/1/2004 |
CHB9903 | 300 | 1 | 23.2 | 4.5 (2.3) | 13 (1–25) | 0.55 (1.27) | 21/5/1999 | 22/7/1999 |
CHB9905 | 300 | 1 | 17.1 | 4.8 (3.6) | 3 (0–14) | 0.21 (0.59) | 21/5/1999 | 22/7/1999 |
FEB1102 | 600 | 1 | 14.2 | 3.8 (2.3) | 13 (0–25) | 0.81 (1.54) | 29/7/1999 | 5/10/1999 |
FEB1103 | 600 | 1 | 16.1 | 3.7 (2.4) | 3 (0–25) | 0.45 (0.98) | 3/11/2011 | 17/12/2011 |
FEB1107 | 1200 | 0.5 | 7.6 | 3.8 (2.5) | 1 (0–2) | 0.32 (0.58) | 3/11/2011 | 17/12/2011 |
FEB1108 | 600 | 1 | 13.1 | 3.7 (2.2) | 20 (3–25) | 0.39 (1.29) | 3/11/2011 | 17/12/2011 |
FPI0902 | 600 | 1 | 7.9 | 2.8 (2.2) | 1 (0–25) | 0.61 (1.19) | 3/11/2011 | 17/12/2011 |
HUR0401 | 1200 | 0.5 | 7.9 | 4.3 (1.8) | 3 (1–14) | 0.31 (0.89) | 14/11/2008 | 14/1/2009 |
HUR0503 | 600 | 1 | 30.0 | 3.9 (1.7) | 2 (0–16) | 0.39 (0.91) | 8/6/2004 | 28/7/2004 |
LIS1011 | 300 | 2 | 47.3 | 4.0 (2.5) | 16 (4–25) | 0.64 (1.37) | 6/7/2005 | 26/8/2005 |
LIS1012 | 300 | 2 | 57.9 | 4.0 (2.5) | 13 (1–25) | 0.74 (1.80) | 27/4/2010 | 8/6/2010 |
LIS1013 | 1200 | 0.5 | 7.6 | 4.0 (2.5) | 14 (1–25) | 0.47 (1.04) | 27/4/2010 | 8/6/2010 |
LIS1018 | 600 | 1 | 20.0 | 3.4 (1.7) | 17 (10–25) | 0.50 (1.05) | 27/4/2010 | 8/6/2010 |
LIS1021 | 600 | 1 | 26.0 | 2.7 (1.8) | 20 (11–25) | 0.26 (0.59) | 10/6/2010 | 27/7/2010 |
LIS1023 | 600 | 1 | 12.0 | 2.3 (1.6) | 17 (1–25) | 0.19 (0.50) | 10/6/2010 | 27/7/2010 |
LIS1027 | 300 | 2 | 43.3 | 3.7 (2.1) | 16 (5–25) | 0.26 (0.66) | 10/6/2010 | 27/7/2010 |
LIS1029 | 1200 | 0.5 | 10.7 | 3.6 (2.1) | 17 (3–25) | 0.16 (0.44) | 28/7/2010 | 1/9/2010 |
LIS1032 | 600 | 1 | 31.0 | 3.7 (2.1) | 13 (5–25) | 0.24 (0.60) | 28/7/2010 | 1/9/2010 |
LIS1035 | 600 | 1 | 18.3 | 4.0 (1.9) | 9 (3–25) | 0.15 (0.39) | 28/7/2010 | 1/9/2010 |
LIS1038 | 600 | 1 | 18.9 | 4.5 (2.1) | 2 (0–21) | 0.32 (1.41) | 28/7/2010 | 1/9/2010 |
MOB1104 | 1200 | 0.5 | 4.6 | 6.2 (3.2) | 20 (5–25) | 0.22 (0.48) | 28/7/2010 | 1/9/2010 |
MOB1105 | 1200 | 0.5 | 4.6 | 5.9 (3.2) | 19 (2–25) | 0.27 (0.57) | 7/12/2010 | 6/2/2011 |
MOB1106 | 1200 | 0.5 | 5.1 | 6.2 (3.2) | 12 (0–25) | 0.57 (1.13) | 7/12/2010 | 6/2/2011 |
PIR0701 | 600 | 1 | 15.5 | 3.3 (1.8) | 8 (1–25) | 0.40 (0.89) | 7/12/2010 | 6/2/2011 |
PIR0709 | 600 | 1 | 12.8 | 3.0 (1.9) | 1 (0–3) | 1.04 (1.79) | 9/5/2007 | 1/8/2007 |
PIR0711 | 600 | 0.5 | 8.0 | 3.0 (1.9) | 1 (0–5) | 0.75 (1.12) | 21/6/2007 | 25/9/2007 |
SAB0803 | 600 | 1 | 13.0 | 3.9 (2.7) | 3 (0–25) | 0.57 (1.27) | 21/6/2007 | 1/8/2007 |
SAB0805 | 1200 | 0.5 | 10.6 | 3.9 (2.7) | 1 (1–3) | 0.17 (0.49) | 10/1/2010 | 1/3/2008 |
SAB0806 | 600 | 1 | 12.3 | 3.9 (2.7) | 2 (0–8) | 0.21 (0.48) | 10/1/2010 | 1/3/2008 |
SAB0807 | 600 | 1 | 12.7 | 3.9 (2.7) | 4 (1–7) | 0.19 (0.49) | 10/1/2010 | 1/3/2008 |
SAB0809 | 600 | 1 | 11.7 | 3.9 (2.7) | 3 (1–9) | 0.19 (0.47) | 10/1/2010 | 1/3/2008 |
2.3. Meteorological Observations
2.4. Statistical Models
Input | Dependent | Independent | |
---|---|---|---|
All data (general model) | Scenario 1 | Zb | U10 |
Zb/Z0 | U10 | ||
Scenario 2 * | Zb | U10, CR, U10:CW, U10:F | |
Zb/Z0 | U10, CR, U10:CW, U10:F | ||
Each station | Scenario 1 | Zb | U10 |
(site model) | Scenario 2 * | Zb | U10, CR, U10:CW, U10:F |
Scenario 3 * | Zb | U10, CR, U10:CW, U10:WD |
3. Results
3.1. Bubble Depth Summary Statistics
3.2. Storm Events
3.3. Regression Analysis
4. Discussion
4.1. Geophysical Controls on Bubble Plumes
4.2. The Role of Bubbles in Air-Water CO2 Exchange
4.2.1. Comparison of Coastal Environments
4.2.2. Ambient Water Conditions
4.2.3. Storm-Driven Fluxes
5. Conclusions
Supplementary Materials
Supplementary File 1Acknowledgments
Conflicts of Interest
References
- Wanninkhof, R.; Asher, W.E.; Ho, D.T.; Sweeney, C.; McGillis, W.R. Advances in quantifying air-sea gas exchange and environmental forcing. Annu. Rev. Mar. Sci. 2009, 1, 213–244. [Google Scholar] [CrossRef] [PubMed]
- Fairall, C.; Yang, M.; Bariteau, L.; Edson, J.; Helmig, D.; McGillis, W.; Pezoa, S.; Hare, J.; Huebert, B.; Blomquist, B. Implementation of the Coupled Ocean-Atmosphere Response Experiment flux algorithm with CO2, dimethyl sulfide, and O3. J. Geophys. Res. Oceans 2011, 116, C00F09. [Google Scholar] [CrossRef]
- Chen, C.T.; Huang, T.H.; Chen, Y.C.; Bai, Y.; He, X.; Kang, Y. Air-Sea exchanges of CO2 in the world's coastal seas. Biogeosciences 2013, 10, 6509–6544. [Google Scholar] [CrossRef]
- Laruelle, G.G.; Dürr, H.H.; Lauerwald, R.; Hartmann, J.; Slomp, C.P.; Goossens, N.; Regnier, P.A.G. Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins. Hydrol. Earth Syst. Sc. 2013, 17, 2029–2051. [Google Scholar] [CrossRef]
- Cai, W.J. Estuarine and Coastal Ocean Carbon Paradox: CO2 Sinks or Sites of Terrestrial Carbon Incineration? Annu. Rev. Mar. Sci. 2011, 3, 123–145. [Google Scholar] [CrossRef] [PubMed]
- Zappa, C.J.; McGillis, W.R.; Raymond, P.A.; Edson, J.B.; Hintsa, E.J.; Zemmelink, H.J.; Dacey, J.W.; Ho, D.T. Environmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems. Geophys. Res. Lett. 2007, 34, L10601. [Google Scholar] [CrossRef]
- Alin, S.R.; Maria de Fátima, F.; Salimon, C.I.; Richey, J.E.; Holtgrieve, G.W.; Krusche, A.V.; Snidvongs, A. Physical controls on carbon dioxide transfer velocity and flux in low-gradient river systems and implications for regional carbon budgets. J. Geophys. Res. Oceans 2011, 116, G01009. [Google Scholar] [CrossRef]
- Wanninkhof, R. Relationship between wind speed and gas exchange. J. Geophys. Res. Oceans 1992, 97, 7373–7382. [Google Scholar] [CrossRef]
- Nightingale, P.D.; Malin, G.; Law, C.S.; Watson, A.J.; Liss, P.S.; Liddicoat, M.I.; Boutin, J.; Upstill-Goddard, R.C. In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Global Biogeochem. Cycles 2000, 14, 373–387. [Google Scholar] [CrossRef]
- Raymond, P.A.; Cole, J.J. Gas exchange in rivers and estuaries: Choosing a gas transfer velocity. Estuaries Coasts 2001, 24, 312–317. [Google Scholar] [CrossRef]
- Ho, D.T.; Schlosser, P.; Orton, P.M. On Factors Controlling Air-Water Gas Exchange in a Large Tidal River. Estuaries Coasts 2011, 34, 1103–1116. [Google Scholar] [CrossRef]
- Ho, D.T.; Law, C.S.; Smith, M.J.; Schlosser, P.; Harvey, M.; Hill, P. Measurements of air-sea gas exchange at high wind speeds in the Southern Ocean: Implications for global parameterizations. Geophys. Res. Lett. 2006, 33, L16611. [Google Scholar] [CrossRef]
- Jiang, L.Q.; Cai, W.J.; Wang, Y. A comparative study of carbon dioxide degassing in river-and marine-dominated estuaries. Limnol. Oceanogr. 2008, 53, 2603–2615. [Google Scholar] [CrossRef]
- Upstill-Goddard, R.C. Air-sea gas exchange in the coastal zone. Estuar. Coast. Shelf Sci. 2006, 70, 388–404. [Google Scholar] [CrossRef]
- Fangohr, S.; Woolf, D.K. Application of new parameterizations of gas transfer velocity and their impact on regional and global marine CO2 budgets. J. Mar. Syst. 2007, 66, 195–203. [Google Scholar] [CrossRef]
- Signorini, S.R.; McClain, C.R. Effect of uncertainties in climatologic wind, ocean pCO2, and gas transfer algorithms on the estimate of global sea-air CO2 flux. Glob. Biogeochem. Cycles 2009, 23, GB2025. [Google Scholar] [CrossRef]
- Johnson, M.T.; Hughes, C.; Bell, T.G.; Liss, P.S. A Rumsfeldian analysis of uncertainty in air-sea gas exchange. In Gas Transfer at Water Surfaces; Kyoto University Press: Kyoto, Japan, 2011; pp. 464–485. [Google Scholar]
- Smith, M.J.; Ho, D.T.; Law, C.S.; McGregor, J.; Popinet, S.; Schlosser, P. Uncertainties in gas exchange parameterization during the SAGE dual-tracer experiment. Deep Sea Res. Part II Top. Studies Oceanogr. 2011, 58, 869–881. [Google Scholar] [CrossRef]
- Stanley, R.H.; Jenkins, W.J.; Lott, D.E.; Doney, S.C. Noble gas constraints on air-sea gas exchange and bubble fluxes. J. Geophys. Res. Oceans 2009, 114, C11020. [Google Scholar] [CrossRef]
- de Leeuw, G.; Kunz, G.; Caulliez, G.; Woolf, D.; Bowyer, P.; Leifer, I.; Nightingale, P.; Liddicoat, M.; Rhee, T.; Andreae, M. LUMINY: An overview. In Gas Transfer at Water Surfaces; American Geophysical Union: Washington, DC, USA, 2002. [Google Scholar]
- Liang, J.H.; McWilliams, J.C.; Sullivan, P.P.; Baschek, B. Large eddy simulation of the bubbly ocean: New insights on subsurface bubble distribution and bubble-mediated gas transfer. J. Geophys. Res. Oceans 2012, 117, C04002. [Google Scholar] [CrossRef]
- Liang, J.; McWilliams, J.C.; Sullivan, P.P.; Baschek, B. Modeling bubbles and dissolved gases in the ocean. J. Geophys. Res. Oceans 2011, 116, C03015. [Google Scholar] [CrossRef]
- Krall, K.E.; Jähne, B. First laboratory study of air-sea gas exchange at hurricane wind speeds. Ocean Sci. 2014, 10, 257–265. [Google Scholar] [CrossRef]
- Zhao, D.; Toba, Y.; Suzuki, Y.; Komori, S. Effect of wind waves on air-sea gas exchange: Proposal of an overall CO2 transfer velocity formula as a function of breaking-wave parameter. Tellus B 2003, 55, 478–487. [Google Scholar] [CrossRef]
- Woolf, D.K. Parametrization of gas transfer velocities and sea-state-dependent wave breaking. Tellus B 2005, 57, 87–94. [Google Scholar] [CrossRef]
- Woolf, D.; Leifer, I.; Nightingale, P.; Rhee, T.; Bowyer, P.; Caulliez, G.; De Leeuw, G.; Larsen, S.E.; Liddicoat, M.; Baker, J. Modelling of bubble-mediated gas transfer: Fundamental principles and a laboratory test. J. Mar. Syst. 2007, 66, 71–91. [Google Scholar] [CrossRef]
- Goddijn-Murphy, L.; Woolf, D.K.; Callaghan, A.H. Parameterizations and algorithms for oceanic whitecap coverage. J. Phys. Oceanogr. 2011, 41, 742–756. [Google Scholar] [CrossRef]
- Hartman, B.; Hammond, D.E. Gas exchange rates across the sediment-water and air-water interfaces in south San Francisco Bay. J. Geophys. Res. Oceans 1984, 89, 3593–3603. [Google Scholar] [CrossRef]
- Wanninkhof, R.; Ledwell, J.R.; Broecker, W.S.; Hamilton, M. Gas exchange on Mono lake and Crowley lake, California. J. Geophys. Res. Oceans 1987, 92, 14567–14580. [Google Scholar] [CrossRef]
- Borges, A.V.; Vanderborght, J.P.; Schiettecatte, L.S.; Gazeau, F.; Ferrón-Smith, S.; Delille, B.; Frankignoulle, M. Variability of the gas transfer velocity of CO2 in a macrotidal estuary (the Scheldt). Estuaries Coasts 2004, 27, 593–603. [Google Scholar] [CrossRef]
- Borges, A.; Delille, B.; Schiettecatte, L.; Gazeau, F.; Abril, G.; Frankignoulle, M. Gas transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt and Thames). Limnol. Oceanogr. 2004, 49, 1630–1641. [Google Scholar] [CrossRef]
- Abril, G.; Commarieu, M.; Sottolichio, A.; Bretel, P.; Guerin, F. Turbidity limits gas exchange in a large macrotidal estuary. Estuar. Coast. Shelf Sci. 2009, 83, 342–348. [Google Scholar] [CrossRef]
- Orton, P.M.; McGillis, W.R.; Zappa, C.J. Sea breeze forcing of estuary turbulence and air-water CO2 exchange. Geophys. Res. Lett. 2010, 37, L13603. [Google Scholar]
- Orton, P.M.; Zappa, C.J.; McGillis, W.R. Tidal and atmospheric influences on near-surface turbulence in an estuary. J. Geophys. Res. Oceans 2010, 115, C12029. [Google Scholar] [CrossRef]
- Thorpe, S. On the Clouds of Bubbles Formed by Breaking Wind-Waves in Deep Water, and their Role in Air-Sea Gas Transfer. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 1982, 304, 155–210. [Google Scholar] [CrossRef]
- Thorpe, S. On the determination of Kv in the near-surface ocean from acoustic measurements of bubbles. J. Phys. Oceanogr. 1984, 14, 855–863. [Google Scholar] [CrossRef]
- Thorpe, S. Measurements with an automatically recording inverted echo sounder; ARIES and the bubble clouds. J. Phys. Oceanogr. 1986, 16, 1462–1478. [Google Scholar] [CrossRef]
- Thorpe, S. Langmuir circulation. Annu. Rev. Fluid Mech. 2004, 36, 55–79. [Google Scholar] [CrossRef]
- Thorpe, S.; Osborn, T.; Farmer, D.; Vagle, S. Bubble clouds and Langmuir circulation: Observations and models. J. Phys. Oceanogr. 2003, 33, 2013–2031. [Google Scholar] [CrossRef]
- Thorpe, S.; Ulloa, M.; Baldwin, D.; Hall, A. An autonomously recording inverted echo sounder: ARIES II. J. Atmos. Ocean. Technol. 1998, 15, 1346–1360. [Google Scholar] [CrossRef]
- Zedel, L. Deep ocean wave measurements using a vertically oriented sonar. J. Atmos. Ocean. Technol. 1994, 11, 182. [Google Scholar] [CrossRef]
- Zedel, L. Using ADCP background sound levels to estimate wind speed. J. Atmos. Ocean. Technol. 2001, 18, 1867–1881. [Google Scholar] [CrossRef]
- Zedel, L.; Farmer, D. Organized structures in subsurface bubble clouds: Langmuir circulation in the open ocean. J. Geophys. Res. Oceans 1991, 96, 8889–8900. [Google Scholar] [CrossRef]
- Vagle, S.; Farmer, D.M. The measurement of bubble-size distributions by acoustical backscatter. J. Atmos. Ocean. Technol. 1992, 9, 630–644. [Google Scholar] [CrossRef]
- Brown, J.; Barton, E.D.; Trasviña, A.; Vélez, H.S.; Kosro, P.M.; Smith, R.L. Estimation of surface winds from upward looking acoustic Doppler current profilers. J. Geophys. Res. Oceans 1992, 97, 17925–17930. [Google Scholar] [CrossRef]
- Visbeck, M.; Fischer, J. Sea surface conditions remotely sensed by upward-looking ADCPs. J. Atmos. Ocean. Technol. 1995, 12, 141–149. [Google Scholar] [CrossRef]
- Terrill, E.J.; Melville, W.K.; Stramski, D. Bubble entrainment by breaking waves and their influence on optical scattering in the upper ocean. J. Geophys. Res. Oceans 2001, 106, 16815–16823. [Google Scholar] [CrossRef]
- Trevorrow, M.V. Measurements of near-surface bubble plumes in the open ocean with implications for high-frequency sonar performance. J. Acoust. Soc. Am. 2003, 114, 2672–2684. [Google Scholar] [CrossRef] [PubMed]
- Vagle, S.; McNeil, C.; Steiner, N. Upper ocean bubble measurements from the NE Pacific and estimates of their role in air-sea gas transfer of the weakly soluble gases nitrogen and oxygen. J. Geophys. Res. Oceans 2010, 115, C12054. [Google Scholar] [CrossRef]
- Wang, D.; Wijesekera, H.; Teague, W.; Rogers, W.; Jarosz, E. Bubble cloud depth under a hurricane. Geophys. Res. Lett. 2011, 38, L14604. [Google Scholar] [CrossRef]
- Lamarre, E.; Melville, W. Void-fraction measurements and sound-speed fields in bubble plumes generated by breaking waves. J. Acoust. Soc. Am. 1994, 95, 1317. [Google Scholar] [CrossRef]
- Anguelova, M.D.; Huq, P. Characteristics of bubble clouds at various wind speeds. J. Geophys. Res. Oceans 2012, 117, C03036. [Google Scholar] [CrossRef]
- Blenkinsopp, C.; Chaplin, J. Void fraction measurements in breaking waves. Proc. R. Soc. A Math. Phys. Eng. Sci. 2007, 463, 3151–3170. [Google Scholar] [CrossRef]
- Blenkinsopp, C.; Chaplin, J. Void fraction measurements and scale effects in breaking waves in freshwater and seawater. Coast. Eng. 2011, 58, 417–428. [Google Scholar] [CrossRef]
- Akulichev, V.A.; Bulanov, V.A. Measurements of bubbles in sea water by nonstationary sound scattering. J. Acoust. Soc. Am. 2011, 130, 3438–3449. [Google Scholar] [CrossRef] [PubMed]
- NOAA’s Currents Measurements Interface for the Study of Tides. Available online: https://cmist.noaa.gov/cmist (accessed on 15 January 2013).
- Gostiaux, L.; van Haren, H. Extracting meaningful information from uncalibrated backscattered echo intensity data. J. Atmos. Ocean. Technol. 2010, 27, 943–949. [Google Scholar] [CrossRef]
- Rossby, T.; Flagg, C.; Ortner, P.; Hu, C. A tale of two eddies: Diagnosing coherent eddies through acoustic remote sensing. J. Geophys. Res. Oceans 2011, 116, C12017. [Google Scholar] [CrossRef]
- NOAA’s National Climate Data Center. Available online: http://www.ncdc.noaa.gov (accessed on 1 February 2013).
- NOAA’s National Data Buoy Center. Available online: http://www.ndbc.noaa.gov (accessed on 1 February 2013).
- Large, W.; Pond, S. Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr. 1981, 11, 324–336. [Google Scholar] [CrossRef]
- NOAA Shoreline Website. Available online: http://shoreline.noaa.gov (accessed on 15 February 2013).
- Westfall, P.H.; Tobias, R.R.D.; Wolfinger, R.D. Multiple comparisons and multiple tests using SAS; SAS Institute: Cary, NC. USA, 2011. [Google Scholar]
- SenGupta, A.; Ugwuowo, F.I. Asymmetric circular-linear multivariate regression models with applications to environmental data. Environ. Ecol. Stat. 2006, 13, 299–309. [Google Scholar] [CrossRef]
- Jia, P.; Li, M. Dynamics of wind-driven circulation in a shallow lagoon with strong horizontal density gradient. J. Geophys. Res. Oceans 2012, 117, C05013. [Google Scholar] [CrossRef]
- Callaghan, A.; de Leeuw, G.; Cohen, L.; O’Dowd, C.D. Relationship of oceanic whitecap coverage to wind speed and wind history. Geophys. Res. Lett. 2008, 35, L23609. [Google Scholar] [CrossRef]
- Caulliez, G. Wind wave breaking from micro to macroscale. In Gas Transfer at Water Surface; Kyoto University Press: Kyoto, Japan, 2011; pp. 151–163. [Google Scholar]
- Sullivan, P.P.; McWilliams, J.C. Dynamics of winds and currents coupled to surface waves. Annu. Rev. Fluid Mech. 2010, 42, 19–42. [Google Scholar] [CrossRef]
- Zappa, C.J.; Raymond, P.A.; Terray, E.A.; McGillis, W.R. Variation in surface turbulence and the gas transfer velocity over a tidal cycle in a macro-tidal estuary. Estuaries 2003, 26, 1401–1415. [Google Scholar] [CrossRef]
- Memery, L.; Merlivat, L. Modelling of gas flux through bubbles at the air-water interface. Tellus B 1985, 37, 272–285. [Google Scholar] [CrossRef]
- Asher, W.E.; Karle, L.M.; Higgins, B.J.; Farley, P.J.; Monahan, E.C.; Leifer, I.S. The influence of bubble plumes on air-seawater gas transfer velocities. J. Geophys. Res. Oceans 1996, 101, 12027–12041. [Google Scholar] [CrossRef]
- Asher, W.E.; Karle, L.M.; Higgins, B.J. On the differences between bubble-mediated air-water transfer in freshwater and seawater. J. Mar. Res. 1997, 55, 813–845. [Google Scholar] [CrossRef]
- Zhang, X. Contribution to the global air-sea CO2 exchange budget from asymmetric bubble-mediated gas transfer. Tellus B 2012, 64, 17260. [Google Scholar] [CrossRef]
- Tokoro, T.; Watanabe, A.; Kayanne, H.; Nadaoka, K.; Tamura, H.; Nozaki, K.; Kato, K.; Negishi, A. Measurement of air-water CO2 transfer at four coastal sites using a chamber method. J. Mar. Syst. 2007, 66, 140–149. [Google Scholar] [CrossRef]
- Abe, O.; Watanabe, A.; Sarma, V.; Matsui, Y.; Yamano, H.; Yoshida, N.; Saino, T. Air-sea gas transfer in a shallow, flowing and coastal environment estimated by dissolved inorganic carbon and dissolved oxygen analyses. J. Oceanogr. 2010, 66, 363–372. [Google Scholar] [CrossRef]
- Callaghan, A.H.; Deane, G.B.; Stokes, M.D. Observed physical and environmental causes of scatter in whitecap coverage values in a fetch-limited coastal zone. J. Geophys. Res. Oceans 2008, 113, C05022. [Google Scholar] [CrossRef]
- Elliott, M.; McLusky, D.S. The need for definitions in understanding estuaries. Estuar. Coast. Shelf Sci. 2002, 55, 815–827. [Google Scholar] [CrossRef]
- Callaghan, A.H.; Deane, G.B.; Stokes, M.D. Two regimes of laboratory whitecap foam decay: Bubble-plume controlled and surfactant stabilized. J. Phys. Oceanogr. 2013, 43, 1114–1126. [Google Scholar] [CrossRef]
- Crosswell, J.R.; Wetz, M.S.; Hales, B.; Paerl, H.W. Air-water CO2 fluxes in the microtidal Neuse River Estuary, North Carolina. J. Geophys. Res. Oceans 2012, 117, C08017. [Google Scholar] [CrossRef]
- Crosswell, J.R.; Wetz, M.S.; Hales, B.; Paerl, H.W. Extensive CO2 emissions from shallow coastal waters during passage of Hurricane Irene (August 2011) over the Mid-Atlantic Coast of the USA. Limnol. Oceanogr. 2014, 59, 1651–1665. [Google Scholar] [CrossRef]
- Brasseur, L.; Trembanis, A.; Brubaker, J.; Friedrichs, C.; Nelson, T.; Wright, L.; Reay, W.; Haas, L.; Sellner, K. Physical response of the York River estuary to Hurricane Isabel. In Hurricane Isabel in Perspective, Chesapeake Research Consortium; CRC Publication: Edgewater, MD, USA, 2005; Volume 5, pp. 57–64. [Google Scholar]
- Li, M.; Zhong, L.; Boicourt, W.C.; Zhang, S.; Zhang, D. Hurricane-induced storm surges, currents and destratification in a semi-enclosed bay. Geophys. Res. Lett. 2006, 33, L02604. [Google Scholar] [CrossRef]
- Gong, W.; Shen, J.; Reay, W.G. The hydrodynamic response of the York River estuary to Tropical Cyclone Isabel, 2003. Estuar. Coast. Shelf Sci. 2007, 73, 695–710. [Google Scholar] [CrossRef]
- Ha, H.; Maa, J.; Park, K.; Kim, Y. Estimation of high-resolution sediment concentration profiles in bottom boundary layer using pulse-coherent acoustic Doppler current profilers. Mar. Geol. 2011, 279, 199–209. [Google Scholar] [CrossRef]
- Cho, K.; Wang, H.V.; Shen, J.; Valle-Levinson, A.; Teng, Y. A modeling study on the response of Chesapeake Bay to hurricane events of Floyd and Isabel. Ocean Modelling 2012, 49, 22–46. [Google Scholar] [CrossRef]
- Ha, H.K.; Park, K. High-resolution comparison of sediment dynamics under different forcing conditions in the bottom boundary layer of a shallow, micro-tidal estuary. J. Geophys. Res. Oceans 2012, 117, C06020. [Google Scholar] [CrossRef]
- Evans, W.; Hales, B.; Strutton, P.G. pCO2 distributions and air-water CO2 fluxes in the Columbia River estuary. Estuar. Coast. Shelf Sci. 2013, 117, 260–272. [Google Scholar] [CrossRef]
- Welsh, B.L.; Eller, F.C. Mechanisms controlling summertime oxygen depletion in western Long Island Sound. Estuaries 1991, 14, 265–278. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crosswell, J.R. Bubble Clouds in Coastal Waters and Their Role in Air-Water Gas Exchange of CO2. J. Mar. Sci. Eng. 2015, 3, 866-890. https://doi.org/10.3390/jmse3030866
Crosswell JR. Bubble Clouds in Coastal Waters and Their Role in Air-Water Gas Exchange of CO2. Journal of Marine Science and Engineering. 2015; 3(3):866-890. https://doi.org/10.3390/jmse3030866
Chicago/Turabian StyleCrosswell, Joseph R. 2015. "Bubble Clouds in Coastal Waters and Their Role in Air-Water Gas Exchange of CO2" Journal of Marine Science and Engineering 3, no. 3: 866-890. https://doi.org/10.3390/jmse3030866
APA StyleCrosswell, J. R. (2015). Bubble Clouds in Coastal Waters and Their Role in Air-Water Gas Exchange of CO2. Journal of Marine Science and Engineering, 3(3), 866-890. https://doi.org/10.3390/jmse3030866