An Attention-Based Model Using Character Composition of Entities in Chinese Relation Extraction
Abstract
:1. Introduction
2. Related Work
2.1. Neural Network in Relation Extraction
2.2. Distant Supervision
2.3. Chinese Relation Extraction
3. Dataset Construction
3.1. Dataset Collection
3.2. Dataset Analysis
4. Proposed Model
4.1. Embedding
4.2. Encoders
4.3. Attention
4.4. Multi-Instance Learning
5. Experiments
5.1. Experiment Result and Comparison
5.2. Usage of the Character Composition Information
5.3. Attention Analyze
5.4. Multi-instance Learning Analysis
6. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Zhou, G.; Su, J.; Zhang, J.; Zhang, M. Exploring various knowledge in relation extraction. In Proceedings of the 43rd annual meeting on association for computational linguistics. Association for Computational Linguistics, Ann Arbor, MI, USA, 25–30 June 2005; pp. 427–434. [Google Scholar]
- Surdeanu, M.; Tibshirani, J.; Nallapati, R.; Manning, C.D. Multi-instance Multi-label Learning for Relation Extraction. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Jeju Island, Korea, 12–14 July 2012; pp. 455–465. [Google Scholar]
- Socher, R.; Huval, B.; Manning, C.D.; Ng, A.Y. Semantic Compositionality through Recursive Matrix-Vector Spaces. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Jeju Island, Korea, 12–14 July 2012; pp. 1201–1211. [Google Scholar]
- Zeng, D.; Liu, K.; Lai, S.; Zhou, G.; Zhao, J. Relation Classification via Convolutional Deep Neural Network. Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, Dublin, Ireland, 11 August 2014; pp. 2335–2344. [Google Scholar]
- Mintz, M.; Bills, S.; Snow, R.; Jurafsky, D. Distant Supervision for Relation Extraction without Labeled Data. In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP: Volume 2-Volume 2, Singapore, 2–7 August 2009; pp. 1003–1011. [Google Scholar]
- Ji, G.; Liu, K.; He, S.; Zhao, J. Distant Supervision for Relation Extraction with Sentence-level Attention and Entity descriptions. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017. [Google Scholar]
- Zeng, D.; Liu, K.; Chen, Y.; Zhao, J. Distant Supervision for Relation Extraction via Piecewise Convolutional Neural Networks. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, 17–21 September 2015; pp. 1753–1762. [Google Scholar]
- Xu, K.; Feng, Y.; Huang, S.; Zhao, D. Semantic Relation Classification via Convolutional Neural Networks with Simple Negative Sampling. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, 17–21 September 2015; pp. 536–540. [Google Scholar]
- Xu, Y.; Mou, L.; Li, G.; Chen, Y.; Peng, H.; Jin, Z. Classifying Relations via Long Short Term Memory Networks along Shortest Dependency Paths. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, 17–21 September 2015; pp. 1785–1794. [Google Scholar]
- Liu, Y.; Wei, F.; Li, S.; Ji, H.; Zhou, M.; Houfeng, W. A Dependency-Based Neural Network for Relation Classification. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), Beijing, China, 26–31 July 2015; pp. 285–290. [Google Scholar]
- Zhou, P.; Shi, W.; Tian, J.; Qi, Z.; Li, B.; Hao, H.; Xu, B. Attention-based Bidirectional Long Short-term Memory Networks for Relation Classification. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Berlin, Germany, 7–12 August 2016; pp. 207–212. [Google Scholar]
- Wang, L.; Cao, Z.; de Melo, G.; Liu, Z. Relation Classification via Multi-Level Attention CNNs. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany, 7–12 August 2016; pp. 1298–1307. [Google Scholar]
- Riedel, S.; Yao, L.; McCallum, A. Modeling Relations and Their Mentions without Labeled Text. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Dublin, Ireland, 10–14 September 2010; pp. 148–163. [Google Scholar]
- Hoffmann, R.; Zhang, C.; Ling, X.; Zettlemoyer, L.; Weld, D.S. Knowledge-based Weak Supervision for Information Extraction of Overlapping Relations. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1, Portland, OR, USA, 19–24 June 2011; pp. 541–550. [Google Scholar]
- Lin, Y.; Shen, S.; Liu, Z.; Luan, H.; Sun, M. Neural Relation Extraction with Selective Attention over Instances. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany, 7–12 August 2016; pp. 2124–2133. [Google Scholar]
- Qin, P.; Weiran, X.; Wang, W.Y. DSGAN: Generative Adversarial Training for Distant Supervision Relation Extraction. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Melbourne, Australia, 15–20 July 2018; pp. 496–505. [Google Scholar]
- Chen, Y.J.; Hsu, J.Y.J. Chinese Relation Extraction by Multiple Instance Learning. In Proceedings of the PWorkshops at the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–13 February 2016. [Google Scholar]
- Wen, J.; Sun, X.; Ren, X.; Su, Q. Structure Regularized Neural Network for Entity Relation Classification for Chinese Literature Text. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), New Orleans, LA, USA, 1–6 June 2018; pp. 365–370. [Google Scholar]
- Li, Z.; Ding, N.; Liu, Z.; Zheng, H.; Shen, Y. Chinese Relation Extraction with Multi-Grained Information and External Linguistic Knowledge. In Proceedings of the 57th Conference of the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019; pp. 4377–4386. [Google Scholar]
- Xu, J.; Wen, J.; Sun, X.; Su, Q. A discourse-level named entity recognition and relation extraction dataset for chinese literature text. arXiv 2017, arXiv:1711.07010. [Google Scholar]
- Le, H.T.; Cerisara, C.; Denis, A. Do Convolutional Networks need to be Deep for Text Classification? In Proceedings of the Workshops at the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–3 Feburary 2018. [Google Scholar]
- Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed Representations of Words and Phrases and Their Compositionality. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–10 December 2013; pp. 3111–3119. [Google Scholar]
- Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; Yakhnenko, O. Translating Embeddings for Modeling Multi-relational Data. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–10 December 2013; pp. 2787–2795. [Google Scholar]
- Lin, Y.; Liu, Z.; Sun, M.; Liu, Y.; Zhu, X. Learning Entity and Relation Embeddings for Knowledge Graph Completion. In Proceedings of the Twenty-ninth AAAI conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015. [Google Scholar]
- Luo, B.; Feng, Y.; Wang, Z.; Zhu, Z.; Huang, S.; Yan, R.; Zhao, D. Learning with Noise: Enhance Distantly Supervised Relation Extraction with Dynamic Transition Matrix. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Vancouver, BC, Canada, 30 July–4 August 2017; pp. 430–439. [Google Scholar]
- Wu, Y.; Bamman, D.; Russell, S. Adversarial Training for Relation Extraction. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 7–11 September 2017; pp. 1778–1783. [Google Scholar]
- Zhang, T.; Huang, M.; Zhao, L. Learning Structured Representation for Text Classification via Reinforcement Learning. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018. [Google Scholar]
- Feng, J.; Huang, M.; Zhao, L.; Yang, Y.; Zhu, X. Reinforcement Learning for Relation Classification from Noisy Data. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Zhang, D.; Wang, D. Relation classification via recurrent neural network. arXiv 2015, arXiv:1508.01006. [Google Scholar]
- Lin, Z.; Feng, M.; dos Santos, C.N.; Yu, M.; Xiang, B.; Zhou, B.; Bengio, Y. A Structured Self-attentive Sentence Embedding. arXiv 2017, arXiv:1703.03130. [Google Scholar]
- Yu, M.; Yin, W.; Hasan, K.S.; dos Santos, C.; Xiang, B.; Zhou, B. Improved Neural Relation Detection for Knowledge Base Question Answering. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Vancouver, BC, Canada, 30 July–4 August 2017; pp. 571–581. [Google Scholar]
idx | Relation | Interpretation | #trip. | #inst. | Accuracy |
---|---|---|---|---|---|
0 | NA | not in the relations above | 42,394 | 48,930 | NA |
1 | 国籍 | person/nationality/country | 16,339 | 28,335 | 53.91% |
2 | 职业 | person/engage in/job | 20,759 | 28,148 | 85.86% |
3 | 出生地 | person/place of birth/region | 18,684 | 24,193 | 85.67% |
4 | 主演 | film work/actor or actress/person | 39,104 | 49,544 | 93.49% |
5 | 类型 | film work(literary work)/type/film type(literary type) | 17,465 | 27,536 | 56.76% |
6 | 作者 | literary work/writer/person | 17,763 | 23,744 | 92.47% |
7 | 所属地区 | region(organization)/belong to/region | 12,179 | 27,830 | 82.63% |
8 | 代表作品 | person/representative work/work | 17,180 | 26,374 | 88.01% |
9 | 经营范围 | organization/scope of business/business | 7738 | 19,774 | 68.49% |
10 | 导演 | film work/director/person | 15,475 | 20,273 | 89.86% |
11 | 毕业院校 | person/graduate institution/organization | 13,634 | 18,818 | 87.01% |
12 | 运动项目 | person/participate in/sport | 7584 | 17,577 | 91.74% |
13 | 总部地点 | organization/location of headquarters/place | 5483 | 13,970 | 75.58% |
14 | 民族 | person/race belongs to/race | 9843 | 13,259 | 95.76% |
15 | 出版社 | literary work/publisher/publishing company | 12,863 | 13,519 | 98.92% |
16 | 下辖地区 | region/contain/region | 7262 | 12,258 | 33.33% |
17 | 著名景点 | region/contain/landscape | 7435 | 12,452 | 61.56% |
18 | 制片地区 | film work/producer area/region | 7920 | 12,241 | 53.52% |
19 | 性别 | person/belong to/sex | 7637 | 8494 | 97.83% |
20 | 编剧 | film work/screenwriter/person | 5532 | 8070 | 53.14% |
21 | 科 | animal and plant life/belong to/family | 6801 | 8025 | 95.25% |
22 | 歌曲原唱 | song/singer/person | 4368 | 7727 | 79.12% |
23 | 所属国家 | region(landscape)/belong to/region | 2372 | 6284 | 85.02% |
24 | 分布区域 | animal and plant life/distribution/region | 4328 | 6489 | 70.41% |
25 | 主要食材 | food/main ingredients/ingredient | 3209 | 5144 | 83.25% |
26 | 登场作品 | character/come on stage/film work(literary work) | 4037 | 5451 | 93.41% |
27 | 常见症状 | disease/common symptom/symptom | 3068 | 4130 | 63.07% |
28 | 所处时代 | person/belong to/era | 3467 | 4858 | 90.08% |
29 | 所属运动队 | person/belong to/sport team | 3080 | 4814 | 86.46% |
30 | 隶属 | organization/belong to/organization | 2818 | 4457 | 51.71% |
Dataset | #cls. | #inst./cls | #inst. | Open Domain |
---|---|---|---|---|
ACE2005 | 18 | 446 | 8023 | True |
SanWen | 9 | 3233 | 29,096 | False |
Baike (Proposed) | 30 | 13,393 | 401,787 | True |
Model | Word Level | Character Level | ||
---|---|---|---|---|
AUC | F1 | AUC | F1 | |
CNN | 93.04 | 85.47 | 92.67 | 84.78 |
PCNN | 93.72 | 85.88 | 92.82 | 84.79 |
BLSTM | 93.82 | 86.43 | 92.86 | 85.12 |
Att-BLSTM | 94.12 | 86.94 | 93.45 | 85.97 |
BLSTM-SelfAtt | 94.11 | 86.99 | 93.64 | 86.05 |
BLSTM-CCAtt(Proposed) | 94.76 | 87.30 | 94.26 | 86.13 |
Encoder | Word Level | Character Level | ||||||
---|---|---|---|---|---|---|---|---|
None | Connect | Attention | Att&Con | None | Connect | Attention | Att&Con | |
CNN | 85.47 | 86.10 | NA | NA | 84.78 | 85.11 | NA | NA |
PCNN | 85.88 | 86.19 | NA | NA | 84.79 | 85.03 | NA | NA |
BLSTM | 86.43 | 86.72 | 86.69 | 87.30 | 85.12 | 85.51 | 85.67 | 86.13 |
BLSTM-Res | 86.84 | 86.96 | 86.01 | 86.12 | 85.61 | 85.83 | 84.39 | 84.90 |
BLSTM-SelfAtt | 86.99 | 86.65 | NA | NA | 86.05 | 86.03 | NA | NA |
idx | Relation | Accuracy | F1 | F1(MI) | idx | Relation | Accuracy | F1 | F1(MI) |
---|---|---|---|---|---|---|---|---|---|
1 | 国籍 | 53.91% | 81.06 | 82.87 | 16 | 下辖地区 | 33.33% | 85.71 | 84.87 |
2 | 职业 | 85.86% | 83.19 | 84.62 | 17 | 著名景点 | 61.56% | 85.79 | 87.91 |
3 | 出生地 | 85.67% | 94.01 | 94.12 | 18 | 制片地区 | 53.52% | 68.37 | 70.68 |
4 | 主演 | 93.49% | 98.73 | 98.96 | 19 | 性别 | 97.83% | 99.06 | 99.35 |
5 | 类型 | 56.76% | 42.45 | 42.38 | 20 | 编剧 | 53.14% | 87.79 | 89.84 |
6 | 作者 | 92.47% | 95.60 | 96.12 | 21 | 科 | 95.25% | 98.78 | 98.92 |
7 | 所属地区 | 82.63% | 58.16 | 60.43 | 22 | 歌曲原唱 | 79.12% | 93.16 | 93.22 |
8 | 代表作品 | 88.01% | 88.46 | 89.43 | 23 | 所属国家 | 85.02% | 76.35 | 79.21 |
9 | 经营范围 | 68.49% | 83.72 | 84.63 | 24 | 分布区域 | 70.41% | 94.55 | 94.51 |
10 | 导演 | 89.86% | 94.23 | 95.05 | 25 | 主要食材 | 83.25% | 91.62 | 92.66 |
11 | 毕业院校 | 87.01% | 94.40 | 93.96 | 26 | 登场作品 | 93.41% | 92.31 | 93.39 |
12 | 运动项目 | 91.74% | 98.22 | 98.94 | 27 | 常见症状 | 63.07% | 95.75 | 94.05 |
13 | 总部地点 | 75.58% | 83.29 | 82.98 | 28 | 所处时代 | 90.08% | 95.41 | 95.92 |
14 | 民族 | 95.76% | 99.07 | 98.86 | 29 | 所属运动队 | 86.46% | 97.23 | 96.94 |
15 | 出版社 | 98.92% | 99.31 | 99.30 | 30 | 隶属 | 51.71% | 73.82 | 73.73 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, X.; Zhang, Y.; Zhang, W.; Huang, T. An Attention-Based Model Using Character Composition of Entities in Chinese Relation Extraction. Information 2020, 11, 79. https://doi.org/10.3390/info11020079
Han X, Zhang Y, Zhang W, Huang T. An Attention-Based Model Using Character Composition of Entities in Chinese Relation Extraction. Information. 2020; 11(2):79. https://doi.org/10.3390/info11020079
Chicago/Turabian StyleHan, Xiaoyu, Yue Zhang, Wenkai Zhang, and Tinglei Huang. 2020. "An Attention-Based Model Using Character Composition of Entities in Chinese Relation Extraction" Information 11, no. 2: 79. https://doi.org/10.3390/info11020079
APA StyleHan, X., Zhang, Y., Zhang, W., & Huang, T. (2020). An Attention-Based Model Using Character Composition of Entities in Chinese Relation Extraction. Information, 11(2), 79. https://doi.org/10.3390/info11020079