Screening System for Cardiac Problems through Non-Invasive Identification of Blood Pressure Waveform
Abstract
:1. Introduction
2. Development of Screening System
3. Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ochoa, A.; Patarroyo-Aponte, G.; Rahman, M. The Role of Central Blood Pressure Monitoring in the Management of Hypertension. Curr. Cardiol. Rep. 2018, 20, 41. [Google Scholar] [CrossRef] [PubMed]
- Jekell, A.; Kahan, T. The usefulness of a single arm cuff oscillometric method (Arteriograph) to assess changes in central aortic blood pressure and arterial stiffness by antihypertensive treatment: Results from the Doxazosin-Ramipril Study. Blood Press. 2018, 27, 88–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasaki-Nakashima, R.; Kino, T.; Chen, L.; Doi, H.; Minegishi, S.; Abe, K.; Sugano, T.; Taguri, M.; Ishigami, T. Successful prediction of cardiovascular risk by new non-invasive vascular indexes using suprasystolic cuff oscillometric waveform analysis. J. Cardiol. 2017, 69, 30–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romagnoli, S.; Ricci, Z.; Quattrone, D.; Tofani, L.; Tujjar, O.; Villa, G.; Romano, S.M.; De Gaudio, A.R. Accuracy of invasive arterial pressure monitoring in cardiovascular patients: An observational study. Crit. Care 2014, 18, 644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakhal, K.; Robert-Edan, V. Invasive monitoring of blood pressure: A radiant future for brachial artery as an alternative to radial artery catheterisation? J. Thorac. Dis. 2017, 9, 4812–4816. [Google Scholar] [CrossRef]
- Jobbágy, A.; Varga, S. Biomedical Instrumentation; Typotex Kft: Budapest, Hungary, 2013; ISBN 13 978-963-2791-73-9. [Google Scholar]
- Mignini, M.A.; Piacentini, E.; Dubin, A. Peripheral arterial blood pressure monitoring adequately tracks central arterial blood pressure in critically ill patients: An observational study. Crit. Care 2006, 10, R43. [Google Scholar] [CrossRef] [Green Version]
- Stupin, V.A.; Silina, E.V.; Oganov, R.G.; Bogdanov, Y.A.; Shusharina, N.N. Development of an invasive device for long-term remote monitoring of cardiovascular system parameters, including blood pressure, in patients with comorbid conditions. Biosci. Biotechnol. Res. Asia 2015, 12, 1255–1263. [Google Scholar] [CrossRef]
- Sharman, J.E.; Avolio, A.P.; Baulmann, J.; Benetos, A.; Blacher, J.; Blizzard, C.L.; Cruickshank, J.K. Validation of non-invasive central blood pressure devices: Artery society task force (abridged) consensus statement on protocol standardization. Artery Res. 2017, 20, 35–43. [Google Scholar] [CrossRef]
- Pessana, F.M.; Lev, G.; Mirada, M.; Ramirez, A.J.; Mendiz, O.; Fischer, E.I.C. Central Blood Pressure Waves Assessment: A Validation Study of Non-Invasive Aortic Pressure Measurement in Human Beings. In Proceedings of the 2019 Global Medical Engineering Physics Exchanges/Pan American Health Care Exchanges (GMEPE/PAHCE), Buenos Aires, Argentina, 26–31 March 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Papaioannou, T.G.; Protogerou, A.D.; Stamatelopoulos, K.S.; Vavuranakis, M.; Stefanadis, C. Non-Invasive Methods and Techniques for Central Blood Pressure Estimation: Procedures Validation, Reproducibility and Limitations. Curr. Pharm. Des. 2009, 15, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Salvi, P.; Lio, G.; Labat, C.; Ricci, E.; Pannier, B.; Benetos, A. Validation of a new non-invasive portable tonometer for determining arterial pressure wave and pulse wave velocity: The PulsePen device. J. Hypertens. 2004, 22, 2285–2293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peter, L.; Noury, N.; Cerny, M. A review of methods for non-invasive and continuous blood pressure monitoring: Pulse transit time method is promising? Irbm 2014, 35, 271–282. [Google Scholar] [CrossRef]
- Segers, P.; O’Rourke, M.F.; Parker, K.; Westerhof, N.; Hughes, A. Towards a consensus on the understanding and analysis of the pulse waveform: Results from the 2016 Workshop on Arterial Hemodynamics: Past, present and future. Artery Res. 2017, 18, 75–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, H.; Bhutto, J.K.; Choudhary, B.S. Methods for Continuous Non-invasive Measurement of Blood Pressure: Pulse Transit Time a Review. Asian J. Pharm. 2018, 12, S863–S872. [Google Scholar] [CrossRef]
- Supiano, M.A.; Lovato, L.; Ambrosius, W.T.; Bates, J.; Beddhu, S.; Drawz, P.; Lustigova, E. Pulse wave velocity and central aortic pressure in systolic blood pressure intervention trial participants. PLoS ONE 2018, 13. [Google Scholar] [CrossRef] [PubMed]
- Thambiraj, G.; Gandhi, U.; Devanand, V.; Mangalanathan, U. Noninvasive cuffless blood pressure estimation using pulse transit time, Womersley number, and photoplethysmogram intensity ratio. Physiol. Meas. 2019, 40. [Google Scholar] [CrossRef] [PubMed]
- Alian, A.A.; Shelley, K.H. Photoplethysmography. Best Pract. Res. Clin. Anaesthesiol. 2014, 28, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Agro, D.; Canicatti, R.; Tomasino, A.; Giordano, A.; Adamo, G.; Parisi, A.; Pernice, R.; Stivala, S.; Giaconia, C.; Busacca, A.C.; et al. PPG Embedded System for Blood Pressure Monitoring. In Proceedings of the 2014 AEIT Annual Conference–From Research to Industry: The Need for a More Effective Technology Transfer (AEIT), Trieste, Italy, 18–19 September 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Kumar, S.; Ayub, S. Estimation of Blood Pressure by Using Electrocardiogram (ECG) and Photo-plethysmogram (PPG). In Proceedings of the 2015 Fifth International Conference on Communication Systems and Network Technologies (Csnt2015), Gwalior, India, 4–6 April 2015; pp. 521–524. [Google Scholar] [CrossRef]
- Rundo, F.; Conoci, S.; Ortis, A.; Battiato, S. An Advanced Bio-Inspired PhotoPlethysmoGraphy (PPG) and ECG Pattern Recognition System for Medical Assessment. Sensors 2018, 18, 405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.X.; Atef, M.; Lian, Y. Towards a Continuous Non-Invasive Cuffless Blood Pressure Monitoring System Using PPG: Systems and Circuits Review. IEEE Circuits Syst. Mag. 2018, 18, 6–26. [Google Scholar] [CrossRef]
- Townsend, R.R.; Rosendorff, C.; Nichols, W.W.; Edwards, D.G.; Chirinos, J.A.; Fernhall, B.; Cushman, W.C. American Society of Hypertension position paper: Central blood pressure waveforms in health and disease. J. Am. Soc. Hypertens. 2016, 10, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, D.; Tavares, R.; Abreu, P.; Restivo, M.T. Demonstration: Online Detection of Abnormalities in Blood Pressure Waveform: Bisfiriens and Alternans Pulse. In Smart Industry & Smart Education 2019; Springer: Berlin/Heidelberg, Germany, 2019; Volume 47, pp. 536–545. ISBN 978-3-319-95678-7. [Google Scholar]
- Carneiro, F.; Abreu, P.; Restivo, M.T. Hysteresis Compensation in a Tactile Device for Arterial Pulse Reproduction. Sensors 2018, 18, 1631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abreu, P.; Carneiro, F.; Restivo, M.T. Screening System for Cardiac Problems through Non-Invasive Identification of Blood Pressure Waveform. Information 2020, 11, 150. https://doi.org/10.3390/info11030150
Abreu P, Carneiro F, Restivo MT. Screening System for Cardiac Problems through Non-Invasive Identification of Blood Pressure Waveform. Information. 2020; 11(3):150. https://doi.org/10.3390/info11030150
Chicago/Turabian StyleAbreu, Paulo, Fernando Carneiro, and Maria Teresa Restivo. 2020. "Screening System for Cardiac Problems through Non-Invasive Identification of Blood Pressure Waveform" Information 11, no. 3: 150. https://doi.org/10.3390/info11030150
APA StyleAbreu, P., Carneiro, F., & Restivo, M. T. (2020). Screening System for Cardiac Problems through Non-Invasive Identification of Blood Pressure Waveform. Information, 11(3), 150. https://doi.org/10.3390/info11030150