A Semantic Approach for Quality Assurance and Assessment of Volunteered Geographic Information
Abstract
:1. Introduction
2. Materials and Methods
Ontologies and Soft Ontologies
3. Results
A Pragmatic Approach to Model Both Epistemic Uncertainty and Imprecision/Vagueness of VGI in a Fuzzy Ontology
4. Discussion
Case Study Example
5. Conclusions
- it models both precise and uncertain creation of VGI, so coping with the limitations of the observation means and context;
- it supports unexperienced volunteers who are unable to interpret the meaning of some concepts in the ontology by allowing them to select imprecise and fuzzy concepts;
- when analyzing the created VGI stored in a database, users we can filter VGI items based on the maximum levels of uncertainty they can tolerate for their application needs.
Funding
Data Availability Statement
Conflicts of Interest
References
- Goodchild, M.F. Citizens as Voluntary Sensors: Spatial Data Infrastructure in the World of Web 2.0. Int. J. Spat. Data Infrastruct. Res. 2001, 2, 24–32. [Google Scholar]
- Haklay, M. Citizen Science and Volunteered Geographic Information—Overview and typology of participation. In Volunteered Geographic Information, Public Participation, and Crowdsourced Production of Geographic Knowledge; Sui, D.Z., Elwood, S., Goodchild, M.F., Eds.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Hand, E. Citizen science: People power. Nature 2010, 466, 685–687. [Google Scholar] [CrossRef] [Green Version]
- Bowser, A.; Cooper, C.; de Sherbinin, A.; Wiggins, A.; Brenton, P.; Chuang, T.R.; Faustman, E.; Haklay, M.; Meloche, M. Still in Need of Norms: The State of the Data in Citizen Science. Citiz. Sci. Theory Pract. 2020, 5, 1–18. [Google Scholar] [CrossRef]
- Bordogna, G.; Carrara, P.; Criscuolo, L.; Pepe, M.; Rampini, A. On predicting and improving the quality of Volunteer Geographic Information projects. Int. J. Digit. Earth 2016, 9, 134–155. [Google Scholar] [CrossRef]
- Balázs, B.; Mooney, P.; Nováková, E.; Bastin, L.; Arsanjani, J.J. Data Quality in Citizen Science. In The Science of Citizen Science; Vohland, K., Land-Zandstra, A., Ceccaroni, L., Lemmens, R., Perelló, J., Ponti, M., Samson, R., Wagenknecht, K., Eds.; Springer Nature: Berlin/Heidelberg, Germany, 2021; pp. 139–156. [Google Scholar] [CrossRef]
- Trojan, J.; Schade, S.; Lemmens, R.; Frantál, B. Citizen science as a new approach in Geography and beyond: Review and reflections. Morav. Geogr. Rep. 2019, 27, 254–264. [Google Scholar] [CrossRef] [Green Version]
- Bordogna, G.; Kliment, K.; Frigerio, L.; Stroppiana, D.; Brivio, P.A.; Crema, A.; Boschetti, M.; Sterlacchini, S. Spatial Data Infrastructure integrating multisource heterogeneous geospatial data and time series: A study case in agriculture. ISPRS Int. J. Geo-Inf. 2016, 5, 73. [Google Scholar] [CrossRef] [Green Version]
- Bordogna, G.; Pasi, G. Modeling Linguistic Qualifiers of Uncertainty in a Fuzzy Database. Int. J. Intell. Sys. 2000, 15, 995–1014. [Google Scholar] [CrossRef]
- Gonzalez, A.; Marın, N.; Pons, O.; Vila, M.A. Fuzzy Certainty on Fuzzy Values. Control Cybern. 2009, 38, 311–339. [Google Scholar]
- Straccia, U. Foundations of Fuzzy Logic and Semantic Web Languages. In CRC Studies in Informatics Series; Zhang, G.Q., Ed.; Chapman & Hall CRC Press Taylor and Francis Group: Boca Raton, FL, USA, 2013. [Google Scholar]
- Bobillo, F.; Straccia, U. The fuzzy ontology reasoner fuzzyDL. Knowl.-Based Syst. 2016, 95, 12–34. [Google Scholar] [CrossRef]
- Barrington-Leigh, C.; Millard-Ball, A. The world’s user-generated road map is more than 80% complete. PLoS ONE 2017, 12, e0180698. [Google Scholar] [CrossRef] [Green Version]
- Antoniou, V.; Skopeliti, A. Measures and Indicators of VGI quality: An overview. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, II-3/W5, 345–351. [Google Scholar] [CrossRef] [Green Version]
- Vandecasteele, A.; Devillers, R. Improving volunteered geographic data quality using semantic similarity measurements. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 1, 143–148. [Google Scholar] [CrossRef] [Green Version]
- Yeboah, G.; Porto de Albuquerque, J.; Troilo, R.; Tregonning, G.; Perera, S.; Ahmed, S.A.; Yusuf, R. Analysis of OpenStreetMap Data Quality at Different Stages of a Participatory Mapping Process: Evidence from Slums in Africa and Asia. ISPRS Int. J. Geo-Inf. 2021, 10, 265. [Google Scholar] [CrossRef]
- ISO 19113. Geographic Information—Quality Principles; ISO: Geneva, Switzerland, 2002. [Google Scholar]
- Wu, H.; Lin, A.; Clarke, K.C.; Shi, W.; Cardenas-Tristan, A.; Tu, Z. A comprehensive quality assessment framework for linear features from Volunteered Geographic Information. Int. J. Geogr. Inf. Sci. 2021, 35, 1826–1847. [Google Scholar] [CrossRef]
- Arsanjani, J.J.; Barron, C.; Nakillah, M.; Helbich, M. Assessing the Quality of OSM Contributors together with their Contributions. In Proceedings of the 16th AGILE International Conference of Geographic Information Science, Leuven, Belgium, 14–17 May 2013. [Google Scholar]
- Barron, C.; Neis, P.; Zipf, A. A comprehensive framework for intrinsic OpenStreetMap quality analysis. Trans. GIS 2014, 18, 877–895. [Google Scholar] [CrossRef]
- Forghani, M.; Delavar, M.R. A Quality Study of the OSM Dataset for Tehran. ISPRS Int. J. Geo-Inf. 2014, 3, 750–763. [Google Scholar] [CrossRef] [Green Version]
- Chehreghan, A.; Abbaspour, R.A. An evaluation of data completeness of VGI through geometric similarity assessment. Int. J. Image Data Fusion 2018, 9, 319–337. [Google Scholar] [CrossRef]
- Arsanjani, J.J.; Mooney, P.; Zipf, A.; Schauss, A. Quality Assessment of the Contributed Land Use Information from OSM Versus Authoritative Datasets. In OpenStreetMap in GIScience; Arsanjani, J.J., Zipf, A., Mooney, P., Helbich, M., Eds.; Lecture Notes in Geoinformation and Cartography; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Fogliaroni, P.; D’Antonio, F.; Clementini, E. Data trustworthiness and user reputation as indicators of VGI quality. Geo-Spat. Inf. Sci. 2018, 21, 213–233. [Google Scholar] [CrossRef] [Green Version]
- Mooney, P.; Corcoran, P. Characteristics of heavily edited objects in OSM. Future Internet 2012, 4, 285–305. [Google Scholar] [CrossRef] [Green Version]
- Haklay, M.; Basiouka, S.; Antoniou, V.; Ather, A. How Many Volunteers does it Take to Map an Area Well? The Validity of Linus’ Law to VGI. Cartogr. J. 2010, 47, 315–322. [Google Scholar] [CrossRef] [Green Version]
- Rehrl, K.; Gröechenig, S.; Hochmair, H.; Leitinger, S.; Steinmann, R.; Wagner, A. A Conceptual Model for Analyzing Contribution Patterns in the Context of VGI. In Progress in Location-Based Services; Krisp, J.M., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 373–388. [Google Scholar]
- Goodchild, M.F.; Li, L. Assuring the quality of volunteered geographic information. Spat. Stat. 2012, 1, 110–120. [Google Scholar] [CrossRef]
- Tobler, W. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Bordogna, G.; Carrara, P.; Criscuolo, L.; Pepe, M.; Rampini, A. A linguistic decision making approach to assess the quality of volunteer geographic information for citizen science. Inf. Sci. 2014, 258, 312–327. [Google Scholar] [CrossRef]
- Schade, S.; Tsinaraki, C. Survey report: Data management in Citizen Science projects. In JRC Technical Report for European Commission; Publication Office of the European Union: Luxembourg, 2016. [Google Scholar]
- Bordogna, G.; Frigerio, L.; Kliment, T.; Brivio, P.A.; Hossard, L.; Manfron, G.; Sterlacchini, S. “Contextualized VGI” Creation and Management to Cope with Uncertainty and Imprecision. ISPRS Int. J. Geo-Inf. 2016, 5, 234. [Google Scholar] [CrossRef] [Green Version]
- Klien, E. A rule-based strategy for the semantic annotation of geodata. Trans. GIS 2007, 11, 437–452. [Google Scholar] [CrossRef]
- Stadler, C.; Lehmann, J.; Höffner, K.; Auer, S. LinkedGeoData: A core for a web of spatial open data. Semant. Web 2012, 3, 333–353. [Google Scholar] [CrossRef]
- Codescu, M.; Horsinka, G.; Kutz, O.; Mossakowski, T.; Rau, R. DO-ROAM: Activity-Oriented Search and Navigation with OSM. In International Conference on GeoSpatial Sematics; Springer: Berlin/Heidelberg, Germany, 2014; pp. 88–107. [Google Scholar]
- Koswatte, S.; Mcdougall, K.; Liu, X. Ontology driven VGI filtering to empower next generation SDIs for disaster management. Proc. R@Locat. 2014. Available online: http://ceur-ws.org/Vol-1142/RatLoc14.pdf (accessed on 9 September 2021).
- Bakillah, M.; Liang, S.H.L.; Zipf, A.; Arsanjani, J.J. Semantic Interoperability of Sensor Data with Volunteered Geographic Information: A Unified Model. ISPRS Int. J. Geo-Inf. 2013, 2, 766–796. [Google Scholar] [CrossRef] [Green Version]
- Díaz, L.; Núñez-Redó, M.; González, D.; Gil, J.; Aragó, P.; Pultar, E.; Huerta, J. Interoperable Search Mechanisms for Web 2.0 Resources. Int. J. Spat. Data Infrastruct. Res. 2012, 7, 277–299. [Google Scholar]
- CCI Cross Community Interoperability-Annex B-CCI Thread Scope. 2015. Available online: http://www.opengeospatial.org/pub/www/ows10/rfq/annexb-cci.html#cci-thread-scope (accessed on 8 September 2021).
- Cho, W.C.; Richards, D. Ontology construction and concept reuse with formal concept analysis for improved web document retrieval. Web Intell. Agent Syst. Int. J. 2007, 5, 109–126. [Google Scholar]
- Gruber, T.R. Toward principles for the design of ontologies used for knowledge sharing. Int. J. Hum. Comput. Stud. 1995, 43, 907–928. [Google Scholar] [CrossRef]
- Hitzler, P.; Krötzsch, M.; Rudolph, S. Foundations of Semantic Web Technologies; Chapman & Hall/CRC: Boca Raton, FL, USA, 2009; pp. 11–18. [Google Scholar]
- Hitzler, P.; Krötzsch, M.; Parsia, B.; Patel-Schneider, P.F.; Rudolph, S. OWL 2 web ontology language primer. W3C Recomm. 2009, 27, 123. Available online: http://www.w3.org/TR/owl2-primer/ (accessed on 9 September 2021).
- Gottwald, S. Set theory for fuzzy sets of higher level. Fuzzy Sets Syst. 1979, 2, 125–151. [Google Scholar] [CrossRef]
- Zadeh, L.A. Quantitative fuzzy semantics. Inf. Sci. 1971, 3, 177–200. [Google Scholar] [CrossRef]
- Ding, Z.; Peng, Y.; Pan, R. BayesOWL: A Prototype System for Uncertainty in Semantic Web. In Soft Computing in Ontologies and Semantic Web; Ma, Z., Ed.; Studies in Fuzziness and Soft Computing; Springer: Berlin/Heidelberg, Germany, 2006; Volume 204. [Google Scholar]
- Cross, V.V. Fuzzy Ontologies: The State of the Art. In Proceedings of the 2014 IEEE Conference on Norbert Wiener in the 21st Century (21CW), Boston, MA, USA, 24 June 2014; pp. 1–8. [Google Scholar]
- Samani, Z.R.; Shamsfard, M. The State of the Art in Developing Fuzzy Ontologies: A Survey. arXiv 2018, arXiv:1805.02290. [Google Scholar]
- Calegari, S.; Ciucci, D. Fuzzy Ontology, Fuzzy Description Logics and Fuzzy-OWL. In Proceedings of the International Workshop on Fuzzy Logic and Applications, Camogli, Italy, 7–10 July 2007. [Google Scholar]
- Lau, R.Y.; Song, D.; Li, Y.; Cheung, T.C.; Hao, J.X. Toward a fuzzy domain ontology extraction method for adaptive e-learning. IEEE Trans. Knowl. Data Eng. 2009, 21, 800–813. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, E.; Yamanoi, T.; D’Amico, E. Fuzzy Ontologies for the Semantic Web. In International Conference on Flexible Query Answering Systems (FQAS); Springer: Berlin/Heidelberg, Germany, 2006; pp. 691–699. [Google Scholar]
- Tho, Q.T.; Hui, S.C.; Fong, A.C.M.; Cao, T.H. Automatic fuzzy ontology generation for semantic web. IEEE Trans. Knowl. Data Eng. 2006, 18, 842–856. [Google Scholar] [CrossRef]
- Samani, Z.R.; Shamsfard, M. On the application of fuzzy ontology for qualitative spatial reasoning. Int. J. Next Gener. Inf. Technol. 2012, 3, 9–17. [Google Scholar]
- Dey, L.; Abulaish, M. Fuzzy ontologies for handling uncertainties and inconsistencies in domain knowledge description. In Proceedings of the 2008 IEEE International Conference on Fuzzy Systems (FUZZIEEE), Hong Kong, China, 1–6 June 2008; pp. 1366–1373. [Google Scholar]
- Zhai, J.; Shen, L.; Liang, Y.; Jiang, J. Application of fuzzy ontology to information retrieval for electronic commerce. In Proceedings of the 2008 International Symposium on Electronic Commerce and Security, Guangzhou, China, 3–5 August 2008; pp. 221–225. [Google Scholar]
- Straccia, U. Towards a Fuzzy Description Logic for the Semantic Web. In European Semantic Web Conference (ESWC); Gomez-Perez, A., Euzenat, J., Eds.; LNCS 3532; Springer: Berlin/Heidelberg, Germany, 2005; pp. 167–181. [Google Scholar]
- Bal-Bourai, S.; Mokhtari, A. Poss-OWL 2: Possibilistic Extension of OWL 2 for an uncertain geographic ontology. In Prococeedings of 18th International Confonference on Knowledge-Based and Intelligent Information & Engineering Systems—(KES2014), Procedia Computer Science; Elsevier: Amsterdam, The Netherlands, 2014; Volume 35, pp. 407–416. [Google Scholar]
- Qi, G.; Ji, Q.; Pan, J.Z.; Du, J. PossDL—A Possibilistic DL Reasoner for Uncertainty Reasoning and Inconsistency Handling. In Lecture Notes in Computer Science (LNCS 6089), Proceedings of the 7th Extended Semantic Web Conference, ESWC 2010, Heraklion, Crete, Greece, 30 May–3 June 2010; Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 416–420. [Google Scholar]
- De Trè, G.; de Caluwe, R. Level-2 fuzzy sets and their usefulness in object-oriented database modelling. Fuzzy Sets Syst. 2003, 140, 29–49. [Google Scholar] [CrossRef]
- Yager, R.R. On the specificity of a possibility distribution. Fuzzy Sets Syst. 1992, 50, 279–292. [Google Scholar] [CrossRef]
- Dubois, D.; Prade, H. Possibility Theory, Probability Theory and Multiple-valued Logics: A Clarification. Ann. Math. Artif. Intell. 2002, 32, 35–66. [Google Scholar] [CrossRef]
- Bilgiç, T.; Burhan Türkşen, I. Measurement of membership functions: Theoretical and empirical works. In The Handbooks of Fuzzy Set Series, Vol. 1: Fundamentals of Fuzzy Sets; Dubois, D., Prade, H., Eds.; Chapter 3; Kluwer Academic Publishers: London, UK, 1999; pp. 195–202. [Google Scholar]
- Huitzil, I.; Straccia, U.; Díaz-Rodríguez, N.; Bobillo, F. Datil: Learning Fuzzy Ontology Datatypes. In Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations, Proceedings of the 17th International Conference, IPMU 2018, Cádiz, Spain, 11–15 June 2018; Medina, J., Ojeda-Aciego, M., Luis Verdegay, J., Pelta, D.A., Cabrera, I.P., Bouchon-Meunier, B., Yager, R.R., Eds.; Communications in Computer and Information Science; Springer: Cham, Switzerland, 2018; Volume 854, pp. 100–112. [Google Scholar] [CrossRef] [Green Version]
- Yun, W.; Zhang, X.; Li, Z.; Liu, H.; Han, M. Knowledge modeling: A survey of processes and techniques. Int. J. Intell. Syst. 2021, 36, 1686–1720. [Google Scholar] [CrossRef]
|
Membership functions definitions |
VGI Items | Usage | Slope | Surface | Width | Tortuosity | Picture | Textual Description |
---|---|---|---|---|---|---|---|
01 | riding 0.7 walking 0.5 | variable 0.9 | muddy 1 | medium 0.4 | low 0.4 | | Muddy public footpath. |
02 | walking 0.9 | high 0.8 | paved 0.3 | small 0.8 | average 0.2 | | Mountain path, quite steep, that runs along an overhang |
03 | biking 1, riding 0.8 | low 0.8 | gravelly 1 | large 0.8 | low 0.7 | | Scenic country route disclosed to the sun |
04 | climbing 0.8, walking 1 | low 0.3 | rocky 1, stony 1 | medium 0.5 | high 0.4 | | Spectacular path, partly dug directly into the limestone rocks |
05 | walking 1 | variable 0.9 | stony 0.5, pebbly 0.9 | medium 0.5 | average 0.7 | | World Heritage Site by Unesco, “Sentiero Azzurro” Cinque Terre, Italy |
VGI Items | Climbing Trail | Hikers Trail | Cycle Trail |
---|---|---|---|
01 | 0 | 1 | 0 |
02 | 0.7 | 0.2 | 0 |
03 | 0 | 0 | 1 |
04 | 0.5 | 0.6 | 0 |
05 | 0.3 | 1 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bordogna, G. A Semantic Approach for Quality Assurance and Assessment of Volunteered Geographic Information. Information 2021, 12, 492. https://doi.org/10.3390/info12120492
Bordogna G. A Semantic Approach for Quality Assurance and Assessment of Volunteered Geographic Information. Information. 2021; 12(12):492. https://doi.org/10.3390/info12120492
Chicago/Turabian StyleBordogna, Gloria. 2021. "A Semantic Approach for Quality Assurance and Assessment of Volunteered Geographic Information" Information 12, no. 12: 492. https://doi.org/10.3390/info12120492
APA StyleBordogna, G. (2021). A Semantic Approach for Quality Assurance and Assessment of Volunteered Geographic Information. Information, 12(12), 492. https://doi.org/10.3390/info12120492