Object Detection Based on YOLOv5 and GhostNet for Orchard Pests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Construction
2.2. Detection Models
2.3. GhostNet Module
3. Results
3.1. Feature Maps Visualization
3.2. Results on Pest Dataset
3.3. Results on Loss Curve
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- King, A. Technology: The Future of Agriculture. Nature 2017, 544, S21–S23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, B.; Jin, Z.M.; Jiang, X.C.; Wan, X.J.; Xiao, X.X.; Chen, L.X.; Lu, Y.J. Research progress on online monitoring technology of stored grain pests. Grain Storage 2018, 47, 27–31. [Google Scholar]
- Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep learning for computer vision: A brief review. Comput. Intell. Neurosci. 2018, 2018, 7068349. [Google Scholar] [CrossRef] [PubMed]
- Saxena, L.; Armstrong, L. A survey of image processing techniques for agriculture. In Proceedings of the Asian Federation for Information Technology in Agriculture; Australian Society of Information and Communication Technologies in Agriculture: Perth, Australia, 2014; pp. 401–413. [Google Scholar]
- Chen, X.; Wu, Y.Z.; Zhang, Y.H.; Le, Y. Image recognition of stored grain pests based on deep convolutional neural network. Chin. Agric. Sci. Bull. 2018, 34, 154–158. [Google Scholar]
- Ding, W.; Taylor, G. Automatic moth detection from trap images for pest management. Comput. Electron. Agric. 2016, 123, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Zhou, H.; Li, J.; Jian, F.; Jayas, D.S. Detection of stored-grain insects using deep learning. Comput. Electron. Agric. 2018, 145, 319–325. [Google Scholar] [CrossRef]
- Li, R.; Wang, R.; Zhang, J.; Xie, C.; Liu, L.; Wang, F.Y.; Chen, H.B.; Chen, T.J.; Hu, H.Y.; Jia, X.F.; et al. An effective data augmentation strategy for CNN-based pest localization and recognition in the field. IEEE Access 2019, 7, 160274–160283. [Google Scholar] [CrossRef]
- He, Y.; Zhou, Z.; Tian, L.; Liu, Y.; Luo, X. Brown rice planthopper (Nilaparvata lugens Stal) detection based on deep learning. Precis. Agric. 2020, 21, 1385–1402. [Google Scholar] [CrossRef]
- Wang, F.; Wang, R.; Xie, C.; Yang, P.; Liu, L. Fusing multi-scale context-aware information representation for automatic in-field pest detection and recognition. Comput. Electron. Agric. 2020, 169, 105222. [Google Scholar] [CrossRef]
- Xie, X.; Ma, Y.; Liu, B.; He, J.; Wang, H. A deep-learning-based real-time detector for grape leaf diseases using improved convolutional neural networks. Front Plant Sci. 2020, 11, 751. [Google Scholar] [CrossRef] [PubMed]
- James, E.C.; Francisdomson, Z.; Rizalyn, P.; Jaymer, J.; Rolyn, D. Design and development of a stationary pest infestation monitoring device for rice insect pests using convolutional neural network and raspberry pi. Jcr 2020, 7, 635–638. [Google Scholar] [CrossRef]
- Wang, H.X.; Li, Y.F.; Dang, L.M.; Hyeonjoon, M. An efficient attention module for instance segmentation network in pest monitoring. Comput. Electron. Agric. 2022, 195, 106853. [Google Scholar] [CrossRef]
- Pang, H.T.; Zhang, Y.T.; Cai, W.M.; Li, B.; Song, R.Y. A real-time object detection model for orchard pests based on improved YOLOv4 algorithm. Sci. Rep. 2022, 12, 13557. [Google Scholar] [CrossRef] [PubMed]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Pang, H.T. Research on Intelligent Recognition Technology of Orchard Pests Based on Deep Learning. Master’s Thesis, Zhejiang University, Hangzhou, China, 2021. [Google Scholar]
- Wang, C.Y.; Liao, H.Y.M.; Wu, Y.H.; Chen, P.Y.; Hsieh, J.W.; Yeh, I.H. CSPNet: A new backbone that can enhance learning capability of CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 390–391. [Google Scholar]
- Wang, K.; Liew, J.H.; Zou, Y.; Zhou, D.; Feng, J. Panet: Few-shot image semantic segmentation with prototype alignment. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9197–9206. [Google Scholar]
- Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50× fewer parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Howard, A.G.; Zhu, M.L.; Chen, B.; Kalenichenko, D.; Wang, W.J.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6848–6856. [Google Scholar]
- Han, K.; Wang, Y.H.; Tian, Q.; Guo, J.Y.; Xu, C.J.; Xu, C. Ghostnet: More features from cheap operations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 1580–1589. [Google Scholar]
- Han, K.; Wang, Y.H.; Xu, C.; Guo, J.Y.; Xu, C.J.; Wu, E.H.; Tian, Q. GhostNets on Heterogeneous Devices via Cheap Operations. Int. J. Comput. Vis. 2022, 130, 1050–1069. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems—Volume 1 (NIPS’12), Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
Type | Before Data Augmentation | After Data Augmentation |
---|---|---|
Cicadidae | 433 | 3890 |
Gryllotalpa spps | 403 | 3620 |
Scarabaeoidea | 288 | 2592 |
Locusta migratoria manilensis | 354 | 3186 |
Cerambycidae | 343 | 3083 |
Buprestidae | 410 | 3690 |
Hyphantria cunea | 269 | 2420 |
sum | 2500 | 22,481 |
Type | Number |
---|---|
Cicadidae | 346 |
Gryllotalpa spps | 308 |
Scarabaeoidea | 342 |
Locusta migratoria manilensis | 315 |
Cerambycidae | 298 |
Buprestidae | 306 |
Hyphantria cunea | 352 |
sum | 2267 |
Type | Number |
---|---|
Cicadidae | 4326 |
Gryllotalpa spps | 3928 |
Scarabaeoidea | 2934 |
Locusta migratoria manilensis | 3501 |
Cerambycidae | 3381 |
Buprestidae | 3996 |
Hyphantria cunea | 2772 |
sum | 24,748 |
Model | Mean SSIM |
---|---|
ALL-GHOST-8 | 0.819 |
ALL-GHOST-23 | 0.817 |
BACKBONE-GHOST-8 | 0.804 |
BACKBONE-GHOST-23 | 0.847 |
HEAD-GHOST-8 | 0.830 |
HEAD-GHOST-23 | 0.827 |
Models | Params (Millions) | Weights (Mb) | GFLOPs |
---|---|---|---|
YOLOv5n | 1.77 | 3.75 | 4.2 |
YOLOv5n-ALL-GHOST | 0.95 | 2.25 | 2.3 |
YOLOv5n-HEAD-GHOST | 1.42 | 3.12 | 3.6 |
YOLOv5n-BACKBONE-GHOST | 1.29 | 2.88 | 2.9 |
YOLOv5s | 7.03 | 13.8 | 15.9 |
YOLOv5s-ALL-GHOST | 3.7 | 7.52 | 8.2 |
YOLOv5s-HEAD-GHOST | 5.6 | 11.1 | 13.4 |
YOLOv5s-BACKBONE-GHOST | 5.1 | 10.1 | 10.7 |
YOLOv5m | 20.89 | 40.3 | 48.1 |
YOLOv5m-ALL-GHOST | 8.55 | 16.8 | 18.4 |
YOLOv5m-HEAD-GHOST | 15.5 | 30.1 | 38 |
YOLOv5m-BACKBONE-GHOST | 13.89 | 27 | 28.5 |
YOLOv5l | 46.17 | 88.6 | 108 |
YOLOv5l-ALL-GHOST | 15.62 | 30.5 | 33.3 |
YOLOv5l-HEAD-GHOST | 32.7 | 63.1 | 82 |
YOLOv5l-BACKBONE-GHOST | 29.02 | 56 | 59.3 |
YOLOv5x | 86.25 | 165 | 204.3 |
YOLOv5x-ALL-GHOST | 25.09 | 48.7 | 53.3 |
YOLOv5x-HEAD-GHOST | 59.2 | 113 | 151.3 |
YOLOv5x-BACKBONE-GHOST | 52.1 | 100 | 106.4 |
Models | [email protected] | Detection Time (ms) |
---|---|---|
Faster RCNN(ResNet50) | 0.8134 | 117 |
Tiny-YOLOv3 | 0.875 | 3.33 |
YOLOv3 | 0.914 | 11.11 |
Tiny-YOLOv4 | 0.887 | 2.22 |
YOLOv4 | 0.929 | 12.22 |
YOLOv5n | 0.95 | 9 |
YOLOv5n-ALL-GHOST | 0.9513 | 10 |
YOLOv5n-HEAD-GHOST | 0.9649 | 10 |
YOLOv5n-BACKBONE-GHOST | 0.9499 | 11 |
YOLOv5s | 0.9702 | 11 |
YOLOv5s-ALL-GHOST | 0.9791 | 11 |
YOLOv5s-HEAD-GHOST | 0.9866 | 11 |
YOLOv5s-BACKBONE-GHOST | 0.9833 | 13 |
YOLOv5m | 0.9863 | 14.3 |
YOLOv5m-ALL-GHOST | 0.9704 | 16.3 |
YOLOv5m-HEAD-GHOST | 0.9898 | 15.3 |
YOLOv5m-BACKBONE-GHOST | 0.9843 | 15.3 |
YOLOv5l | 0.9933 | 28 |
YOLOv5l-ALL-GHOST | 0.9666 | 22 |
YOLOv5l-HEAD-GHOST | 0.9889 | 22.7 |
YOLOv5l-BACKBONE-GHOST | 0.9778 | 24 |
YOLOv5x | 0.9945 | 48 |
YOLOv5x-ALL-GHOST | 0.9775 | 32 |
YOLOv5x-HEAD-GHOST | 0.9919 | 39 |
YOLOv5x-BACKBONE-GHOST | 0.9827 | 34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Cai, W.; Fan, S.; Song, R.; Jin, J. Object Detection Based on YOLOv5 and GhostNet for Orchard Pests. Information 2022, 13, 548. https://doi.org/10.3390/info13110548
Zhang Y, Cai W, Fan S, Song R, Jin J. Object Detection Based on YOLOv5 and GhostNet for Orchard Pests. Information. 2022; 13(11):548. https://doi.org/10.3390/info13110548
Chicago/Turabian StyleZhang, Yitao, Weiming Cai, Shengli Fan, Ruiyin Song, and Jing Jin. 2022. "Object Detection Based on YOLOv5 and GhostNet for Orchard Pests" Information 13, no. 11: 548. https://doi.org/10.3390/info13110548
APA StyleZhang, Y., Cai, W., Fan, S., Song, R., & Jin, J. (2022). Object Detection Based on YOLOv5 and GhostNet for Orchard Pests. Information, 13(11), 548. https://doi.org/10.3390/info13110548