An Exploratory Study of Electronic Word-of-Mouth Focused on Casino Hotels in Las Vegas and Macao
Abstract
:1. Introduction
2. Literature Review
2.1. Gaming Industry and Casino Hotels
2.2. Electronic Word of Mouth (eWOM) and Online Review
2.3. Customer Satisfaction
2.4. Text Mining and Semantic Network Analysis
3. Methodology
4. Results
4.1. Frequency Analysis
4.2. Semantic Network Analysis
4.3. Quantitative Analysis
4.3.1. Factor Analysis
4.3.2. Linear Regression Analysis
4.4. Summary of Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lau, V.M.C.; Ren, L.; Yang, F.X. CSR and casino hotel branding: The joint moderation of CSR misfit and corporate awareness. J. Hosp. Tour. Manag. 2021, 49, 375–384. [Google Scholar]
- Io, M.U. Exploring the impact of hedonic activities on casino-hotel visitors’ positive emotions and satisfaction. J. Hosp. Tour. Manag. 2016, 26, 27–35. [Google Scholar] [CrossRef]
- Gu, Z. Macau gaming: Copying the Las Vegas style or creating a Macau model? Asia Pac. J. Tour. Res. 2004, 9, 89–96. [Google Scholar] [CrossRef]
- Litvin, S.W.; Goldsmith, R.E.; Pan, B. Electronic word-of-mouth in hospitality and tourism management. Tour. Manag. 2008, 29, 458–468. [Google Scholar] [CrossRef]
- Jalilvand, M.R.; Esfahani, S.S.; Samiei, N. Electronic word-of-mouth: Challenges and opportunities. Procedia Comput. Sci. 2011, 3, 42–46. [Google Scholar] [CrossRef] [Green Version]
- Vermeer, S.A.; Araujo, T.; Bernritter, S.F.; van Noort, G. Seeing the wood for the trees: How machine learning can help firms in identifying relevant electronic word-of-mouth in social media. Int. J. Mark. Res. 2019, 36, 492–508. [Google Scholar] [CrossRef]
- King, D.B.; O’Rourke, N.; DeLongis, A. Social media recruitment and online data collection: A beginner’s guide and best practices for accessing low-prevalence and hard-to-reach populations. Can. Psychol. 2014, 55, 240–251. [Google Scholar] [CrossRef] [Green Version]
- Loi, K.I.; Kim, W.G. Macao’s casino industry: Reinventing Las Vegas in Asia. Cornell Hosp. Q. 2010, 51, 268–283. [Google Scholar] [CrossRef]
- Vinnicombe, T.; Sou, J.P.U. Diversifying the Macao economy: Insights from profiling mainland Chinese visitors. J. China Tour. Res. 2014, 10, 347–362. [Google Scholar] [CrossRef]
- Balsas, C.J.L. Gaming anyone? A comparative study of recent urban development trends in Las Vegas and Macau. Cities 2013, 31, 298–307. [Google Scholar] [CrossRef]
- Gu, X.; Sheng, L.; Lei, C.K. Specialization or diversification: A theoretical analysis for tourist cities. Cities 2022, 122, 103517–103529. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, Y.; Shen, H. Review and Prospect of the Research on Occupational Health Psychology of Casino Employees. J. Gambl. Stud. 2021, 37, 1055–1069. [Google Scholar] [CrossRef] [PubMed]
- Pimpinelli, T. The Positive Impact of Reentry Employment on and in the Atlantic City Casino Industry and Community. Int. J. Tour. Res. 2021, 1, 1–5. [Google Scholar]
- Soligo, M.; Abarbanel, B. Theme and authenticity: Experiencing heritage at The Venetian. Int. J. Hosp. Rev. 2020, 34, 153–173. [Google Scholar] [CrossRef]
- Zhu, L.; Yin, G.; He, W. Is this opinion leader’s review useful? Peripheral cues for online review helpfulness. J. Electron. Commer. Res. 2014, 15, 267–280. [Google Scholar]
- Kuo, H.C.; Nakhata, C. The impact of electronic word-of-mouth on customer satisfaction. J. Mark. Theory Pract. 2019, 27, 331–348. [Google Scholar] [CrossRef]
- Verma, S.; Yadav, N. Past, present, and future of electronic word of mouth (EWOM). J. Interact. Mark. 2021, 53, 111–128. [Google Scholar] [CrossRef]
- Madhusudhan, R.G. Betting on casino revenues: Lessons from state experiences. Natl. Tax. J. 1996, 49, 401–412. [Google Scholar] [CrossRef]
- Richard, B. Las Vegas: Past, present and future. J. Tour. Futures 2018, 4, 182–192. [Google Scholar] [CrossRef]
- Rowley, R.J. Multidimensional community and the Las Vegas experience. GeoJournal 2015, 80, 393–410. [Google Scholar] [CrossRef]
- Deng, Q.; Gu, X.; Law, R.; Lian, Z. A comparative study for determinants of gaming performance in Macao and Las Vegas. Tour. Manag. 2020, 77, 103964–103983. [Google Scholar] [CrossRef]
- Sheng, M.; Gu, C. Economic growth and development in Macau (1999–2016): The role of the booming gaming industry. Cities 2018, 75, 72–80. [Google Scholar] [CrossRef]
- CortÉs, P. Macau gaming industry 8.0—Public policy beyond 2022. Gaming Law Rev. 2021, 25, 50–65. [Google Scholar] [CrossRef]
- Liu, M.T.; Dong, S.; Chang, S.K.P.; Tan, F. Macau gambling industry’s quick V-shape rebound from 2014 to 2019. Asia Pac. J. Mark. Logist. 2021, 33, 449–473. [Google Scholar] [CrossRef]
- Wong, C.U.I.; Qi, S. Tracking the evolution of a destination’s image by text-mining online reviews-the case of Macau. Tour. Manag. Perspect. 2017, 23, 19–29. [Google Scholar] [CrossRef]
- Sheng, L. Explaining urban economic governance: The city of Macao. Cities 2017, 61, 96–108. [Google Scholar] [CrossRef]
- Henderson, J. Betting on casino tourism in Asia: Singapore’s integrated resorts. Tour. Rev. Int. 2006, 10, 169–179. [Google Scholar] [CrossRef]
- Legg, M.; Webb, T.; Ampountolas, A. Marketing to the next generation of casino patrons. J. Mark. Anal. 2021, 44, 1–13. [Google Scholar] [CrossRef]
- Suh, E.; West, J.J. Estimating the impact of entertainment on the restaurant revenues of a Las Vegas hotel casino: An exploratory study. Int. J. Hosp. Manag. 2010, 29, 570–575. [Google Scholar] [CrossRef]
- Loi, K.I.; Pearce, P.L. Powerful stakeholders’ views of entertainment in Macao’s futur. J. Bus. Res. 2012, 65, 4–12. [Google Scholar] [CrossRef]
- Zhang, X.; Kim, H.S. Customer experience and satisfaction of Disneyland hotel through big data analysis of online customer reviews. Sustainability 2021, 13, 12699. [Google Scholar] [CrossRef]
- Las Vegas Sands Corporation Annual Report. Available online: https://s28.q4cdn.com/640198178/files/doc_financials/2020/ar/LVS-2020-Annual-Report.pdf (accessed on 25 November 2021).
- Wong, I.A.; Fong, V.H.I. Examining casino service quality in the Asian Las Vegas: An alternative approach. J. Hosp. Mark. Manag. 2010, 19, 842–865. [Google Scholar] [CrossRef]
- Westbrook, R.A. Product/consumption-based affective responses and postpurchase processes. J. Mark. Res. 1987, 24, 258–270. [Google Scholar] [CrossRef]
- Sallam, M.A. The effects of brand image and brand identification on brand love and purchase decision making: The role of WOM. Int. Bus. Res. 2014, 7, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, A.; Fudenberg, D. Word-of-mouth learning. Games Econ. Behav. 2004, 46, 1–22. [Google Scholar] [CrossRef]
- Ghose, A.; Ipeirotis, P.G. Estimating the helpfulness and economic impact of product reviews: Mining text and reviewer characteristics. IEEE Trans. Knowl. Data Eng. 2010, 23, 1498–1512. [Google Scholar] [CrossRef] [Green Version]
- Mauri, A.G.; Minazzi, R. Web reviews influence on expectations and purchasing intentions of hotel potential customers. Int. J. Hosp. Manag. 2013, 34, 99–107. [Google Scholar] [CrossRef]
- Nam, K.; Baker, J.; Ahmad, N.; Goo, J. Determinants of writing positive and negative electronic word-of-mouth: Empirical evidence for two types of expectation confirmation. Decis. Support Syst. 2020, 129, 113–168. [Google Scholar] [CrossRef]
- Law, R.; Buhalis, D.; Cobanoglu, C. Progress on information and communication technologies in hospitality and tourism. Int. J. Contemp. Hosp. Manag. 2014, 26, 727–750. [Google Scholar] [CrossRef]
- Rosario, A.B.; de Valck, K.; Sotgiu, F. Conceptualizing the electronic word-of-mouth process: What we know and need to know about eWOM creation, exposure, and evaluation. J. Acad. Mark. Sci. 2020, 48, 422–448. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Pandey, N.; Mishra, A. Mapping the electronic word-of-mouth (eWOM) research: A systematic review and bibliometric analysis. J. Bus. Res. 2021, 135, 758–773. [Google Scholar] [CrossRef]
- Cantallops, A.S.; Salvi, F. New consumer behavior: A review of research on eWOM and hotels. Int. J. Hosp. Manag. 2014, 36, 41–51. [Google Scholar] [CrossRef]
- Yang, Y.; Park, S.; Hu, X. Electronic word of mouth and hotel performance: A meta-analysis. Tour. Manag. 2018, 67, 248–260. [Google Scholar] [CrossRef]
- Shankar, A.; Jebarajakirthy, C.; Ashaduzzaman, M. How do electronic word of mouth practices contribute to mobile banking adoption? J. Retail. Consum. Serv. 2020, 52, 101920–101934. [Google Scholar] [CrossRef]
- Hennig-Thurau, T.; Walsh, G.; Walsh, G. Electronic word-of-mouth: Motives for and consequences of reading customer articulations on the Internet. Int. J. Electron. Commer. 2003, 8, 51–74. [Google Scholar] [CrossRef]
- Ban, H.J.; Kim, H.S. Semantic network analysis of hotel package through the big data. Culin. Sci. Hosp. Res. 2019, 25, 110–119. [Google Scholar]
- Calheiros, A.C.; Moro, S.; Rita, P. Sentiment classification of consumer-generated online reviews using topic modeling. J. Hosp. Mark. Manag. 2017, 26, 675–693. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Nicolau, J.L. Asymmetric effects of online consumer reviews. Ann. Tour. Res. 2015, 50, 67–83. [Google Scholar] [CrossRef] [Green Version]
- De Pelsmacker, P.; Van Tilburg, S.; Holthof, C. Digital marketing strategies, online reviews and hotel performance. Int. J. Hosp. Manag. 2018, 72, 47–55. [Google Scholar] [CrossRef]
- Cheng, Y.H.; Ho, H.Y. Social influence’s impact on reader perceptions of online reviews. J. Bus. Res. 2015, 68, 883–887. [Google Scholar] [CrossRef]
- Schuckert, M.; Liu, X.; Law, R. Hospitality and tourism online reviews: Recent trends and future directions. J. Travel Tour. Mark. 2015, 32, 608–621. [Google Scholar] [CrossRef]
- Moro, S.; Rita, P.; Coelho, J. Stripping customers’ feedback on hotels through data mining: The case of Las Vegas Strip. Tour. Manag. Perspect. 2017, 23, 41–52. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.G.; Park, S.A. Social media review rating versus traditional customer satisfaction: Which one has more incremental predictive power in explaining hotel performance? Int. J. Contemp. Hosp. Manag. 2017, 29, 784–803. [Google Scholar] [CrossRef] [Green Version]
- Cardozo, R.N. An experimental study of customer effort, expectation, and satisfaction. J. Mark. Res. 1965, 2, 244–249. [Google Scholar] [CrossRef]
- Fornell, C.; Johnson, M.D.; Anderson, E.W.; Cha, J.; Bryant, B.E. The American customer satisfaction index: Nature, purpose, and findings. J. Mark. 1996, 60, 7–18. [Google Scholar] [CrossRef] [Green Version]
- Hsu, S.H. Developing an index for online customer satisfaction: Adaptation of American Customer Satisfaction Index. Expert Syst. Appl. 2008, 34, 3033–3042. [Google Scholar] [CrossRef]
- Grigoroudis, E.; Siskos, Y.; Saurais, O. TELOS: A customer satisfaction evaluation software. Comput. Oper. Res. 2000, 27, 799–817. [Google Scholar] [CrossRef]
- Joung, H.W.; Kim, H.S.; Yuan, J.J.; Huffman, L. Service quality, satisfaction, and behavioral intention in home delivered meals program. Nutr. Res. Pract. 2011, 5, 163–168. [Google Scholar] [CrossRef]
- Lee, S.M.; Jin, N.; Kim, H.S. The effect of healthy food knowledge on perceived healthy foods’ value, degree of satisfaction, and behavioral intention: The moderating effect of gender. J. Qual. Assur. Hosp. Tour. 2018, 19, 151–171. [Google Scholar] [CrossRef]
- Hu, F.; Teichert, T.; Liu, Y.; Li, H.; Gundyreva, E. Evolving customer expectations of hospitality services: Differences in attribute effects on satisfaction and Re-Patronage. Tour. Manag. 2019, 74, 345–357. [Google Scholar] [CrossRef]
- Kim, E.J.; Lee, S.M. A Study on the Influence of Temple Food Involvement on Individual Value, Experience Satisfaction and Recommend Intention: Focused on Temple Stay Participants. Culin. Sci. Hosp. Res. 2020, 26, 104–113. [Google Scholar]
- Shadiyar, A.; Ban, H.J.; Kim, H.S. Extracting Key Drivers of Air Passenger’s Experience and Satisfaction through Online Review Analysis. Sustainability 2020, 12, 9188. [Google Scholar] [CrossRef]
- Aakash, A.; Tandon, A.; Gupta Aggarwal, A. How features embedded in eWOM predict hotel guest satisfaction: An application of artificial neural networks. J. Hosp. Mark. Manag. 2021, 30, 486–507. [Google Scholar] [CrossRef]
- Hussien, F.M.; La Lopa, M. The determinants of student satisfaction with internship programs in the hospitality industry: A case study in the USA. Int. J. Hum. Resour. Hosp. Tour. 2018, 17, 502–527. [Google Scholar] [CrossRef]
- Yen, C.L.A.; Tang, C.H.H. The effects of hotel attribute performance on electronic word-of-mouth (eWOM) behaviors. Int. J. Hosp. Manag. 2019, 76, 9–18. [Google Scholar] [CrossRef]
- Ghaderi, Z.; Tabatabaei, F.; Khoshkam, M.; Shahabi Sorman Abadi, R. Exploring the Role of Perceived Organizational Justice and Organizational Commitment as Predictors of Job Satisfaction among Employees in the Hospitality Industry. Int. J. Hosp. Tour. Adm. 2021, 1–30. [Google Scholar] [CrossRef]
- Oliver, R.L. A cognitive model of the antecedents and consequences of satisfaction decisions. J. Mark. Res. 1980, 17, 460–469. [Google Scholar] [CrossRef]
- Gaikwad, S.V.; Chaugule, A.; Patil, P. Text mining methods and techniques. Int. J. Comput. Appl. 2014, 85, 42–45. [Google Scholar]
- Ban, H.J.; Choi, H.; Choi, E.K.; Lee, S.; Kim, H.S. Investigating key attributes in experience and satisfaction of hotel customer using online review data. Sustainability 2019, 11, 6570. [Google Scholar] [CrossRef] [Green Version]
- Dang, S.; Ahmad, P.H. Text mining: Techniques and its application. Int. J. Eng. Innov. Technol. 2014, 1, 22–25. [Google Scholar]
- Ban, H.J.; Kim, H.S. Understanding customer experience and satisfaction through airline passengers’ online review. Sustainability 2019, 11, 4066. [Google Scholar] [CrossRef] [Green Version]
- Hassani, H.; Beneki, C.; Unger, S.; Mazinani, M.T.; Yeganegi, M.R. Text mining in big data analytics. Big Data Cognit. Comput. 2020, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Cao, Q.; Duan, W.; Gan, Q. Exploring determinants of voting for the “helpfulness” of online user reviews: A text mining approach. Decis. Support Syst. 2011, 50, 511–521. [Google Scholar] [CrossRef]
- Guo, Y.; Barnes, S.J.; Jia, Q. Mining meaning from online ratings and reviews: Tourist satisfaction analysis using latent dirichlet allocation. Tour. Manag. 2017, 59, 467–483. [Google Scholar] [CrossRef] [Green Version]
- Hassani, A.; Iranmanesh, A.; Mansouri, N. Text mining using nonnegative matrix factorization and latent semantic analysis. Neural Comput. Appl. 2021, 33, 13745–13766. [Google Scholar] [CrossRef]
- Hassani, H.; Huang, X.; Silva, E.S.; Ghodsi, M. A review of data mining applications in crime. Stat. Anal. Data Min. 2016, 9, 139–154. [Google Scholar] [CrossRef]
- Kwon, H.J.; Ban, H.J.; Jun, J.K.; Kim, H.S. Topic modeling and sentiment analysis of online review for airlines. Information 2021, 12, 78. [Google Scholar] [CrossRef]
- Lim, S.; Tucker, C.S.; Jablokow, K.; Pursel, B. A semantic network model for measuring engagement and performance in online learning platforms. Comput. Appl. Eng. Educ. 2018, 26, 1481–1492. [Google Scholar] [CrossRef]
- Shuting, T.; Kim, H.S. A study of comparison between cruise tours in China and USA through big data analytics. Culin. Sci. Hosp. Res. 2017, 23, 1–11. [Google Scholar]
- Kang, G.J.; Ewing-Nelson, S.R.; Mackey, L.; Schlitt, J.T.; Marathe, A.; Abbas, K.M.; Swarup, S. Semantic network analysis of vaccine sentiment in online social media. Vaccine 2017, 35, 3621–3638. [Google Scholar] [CrossRef]
- Wang, J.; Dagvadorj, A.; Kim, H.S. Research Trends of Human Resources Management in Hotel Industry: Evidence from South Korea by Semantic Network Analysis. Culin. Sci. Hosp. Res. 2021, 27, 68–78. [Google Scholar]
- Kim, H.S. A semantic network analysis of big data regarding food exhibition at convention center. Culin. Sci. Hosp. Res. 2017, 23, 257–270. [Google Scholar]
- Jo, A.; Kim, H.S. A comparison of Starbucks between South Korea and USA through big data analysis. Culin. Sci. Hosp. Res. 2017, 23, 195–205. [Google Scholar]
- Vijayadurai, J. Service Quality, Customer Satisfaction and Behavioural Intention in Hotel Industry. J. Mark. Commun. 2008, 3, 14–26. [Google Scholar]
- Kim, H.S.; Noh, Y. Elicitation of design factors through big data analysis of online customer reviews for washing machines. J. Mech. Sci. Technol. 2019, 33, 2785–2795. [Google Scholar] [CrossRef]
The Venetian Hotel, Macao | The Venetian Hotel, Las Vegas | ||||||
---|---|---|---|---|---|---|---|
Rank | Word | Freq. | % | Rank | Word | Freq. | % |
1 | Casino | 2258 | 9.37 | 1 | Room | 4454 | 11.47 |
2 | Good | 1745 | 7.24 | 2 | Great | 2913 | 7.50 |
3 | Room | 1637 | 6.79 | 3 | Beautiful | 2395 | 6.17 |
4 | Shopping | 1548 | 6.43 | 4 | Nice | 1797 | 4.63 |
5 | Beautiful | 1054 | 4.37 | 5 | Casino | 1775 | 4.57 |
6 | Big | 930 | 3.86 | 6 | Staff | 1438 | 3.70 |
7 | Luxury | 900 | 3.74 | 7 | Amazing | 1418 | 3.65 |
8 | Nice | 820 | 3.40 | 8 | Service | 1284 | 3.31 |
9 | Food | 808 | 3.35 | 9 | Clean | 1239 | 3.19 |
10 | Great | 792 | 3.29 | 10 | Restaurants | 1382 | 3.56 |
11 | Mall | 749 | 3.11 | 11 | Good | 1100 | 2.83 |
12 | Shop | 595 | 2.47 | 12 | Food | 1056 | 2.72 |
13 | Large | 560 | 2.32 | 13 | Shop | 1053 | 2.71 |
14 | Gondola | 531 | 2.20 | 14 | Suite | 942 | 2.43 |
15 | Amazing | 457 | 1.90 | 15 | Best | 877 | 2.26 |
16 | Best | 447 | 1.86 | 16 | Pool | 835 | 2.15 |
17 | Huge | 447 | 1.86 | 17 | Shopping | 712 | 1.83 |
18 | Restaurant | 421 | 1.75 | 18 | Gondola | 657 | 1.69 |
19 | Canal | 415 | 1.72 | 19 | Friendly | 595 | 1.53 |
20 | Comfortable | 335 | 1.39 | 20 | Enjoy | 536 | 1.38 |
21 | Free | 318 | 1.32 | 21 | Excellent | 519 | 1.34 |
22 | Worth | 290 | 1.20 | 22 | View | 492 | 1.27 |
23 | Spacious | 290 | 1.20 | 23 | Awesome | 489 | 1.26 |
24 | Staff | 280 | 1.16 | 24 | Spacious | 465 | 1.20 |
25 | Shuttle | 278 | 1.15 | 25 | Fun | 444 | 1.14 |
26 | Expensive | 256 | 1.06 | 26 | Wonderful | 440 | 1.13 |
27 | Awesome | 251 | 1.04 | 27 | Recommend | 435 | 1.12 |
28 | Grand | 249 | 1.03 | 28 | Huge | 433 | 1.11 |
29 | Clean | 242 | 1.00 | 29 | Luxury | 430 | 1.11 |
30 | Sky | 240 | 1.00 | 30 | Canal | 426 | 1.10 |
31 | Court | 237 | 0.98 | 31 | Comfortable | 395 | 1.02 |
32 | Building | 236 | 0.98 | 32 | Large | 376 | 0.97 |
33 | Facilities | 235 | 0.98 | 33 | Helpful | 372 | 0.96 |
34 | Wide | 232 | 0.96 | 34 | Bathroom | 336 | 0.87 |
35 | Enjoy | 222 | 0.92 | 35 | Parking | 333 | 0.86 |
36 | Gambling | 215 | 0.89 | 36 | Free | 326 | 0.84 |
37 | Convenient | 213 | 0.88 | 37 | Gorgeous | 324 | 0.83 |
38 | Fun | 212 | 0.88 | 38 | Grand | 321 | 0.83 |
39 | Crowded | 208 | 0.86 | 39 | Front desk | 320 | 0.82 |
40 | Old | 204 | 0.85 | 40 | Pretty | 290 | 0.75 |
41 | Price | 202 | 0.84 | 41 | Coffee | 263 | 0.68 |
42 | View | 190 | 0.79 | 42 | Atmosphere | 262 | 0.67 |
43 | Famous | 187 | 0.78 | 43 | Mall | 250 | 0.64 |
44 | Street | 183 | 0.76 | 44 | Fantastic | 245 | 0.63 |
45 | Excellent | 182 | 0.76 | 45 | Dining | 244 | 0.63 |
46 | Interior | 160 | 0.66 | 46 | Price | 243 | 0.63 |
47 | Gorgeous | 160 | 0.66 | 47 | Security | 235 | 0.60 |
48 | Egg tart | 159 | 0.66 | 48 | Bed | 233 | 0.60 |
49 | Atmosphere | 157 | 0.65 | 49 | Architecture | 225 | 0.58 |
50 | Lobby | 155 | 0.64 | 50 | Amenities | 219 | 0.56 |
Frequency | Freeman’s Degree Centrality | Eigenvector Centrality | ||||
---|---|---|---|---|---|---|
Frequency | Rank | Coefficient | Rank | Coefficient | Rank | |
Room | 4454 | 1 | 28.09 | 1 | 60.75 | 1 |
Great | 2913 | 2 | 20.32 | 2 | 48.73 | 2 |
Beautiful | 2395 | 3 | 16.01 | 3 | 39.08 | 3 |
Nice | 1797 | 4 | 12.62 | 6 | 32.15 | 6 |
Casino | 1775 | 5 | 14.24 | 4 | 34.27 | 4 |
Staff | 1438 | 6 | 13.58 | 5 | 33.94 | 5 |
Amazing | 1418 | 7 | 10.57 | 10 | 26.31 | 10 |
Service | 1284 | 8 | 10.59 | 9 | 27.85 | 9 |
Clean | 1239 | 9 | 11.49 | 8 | 30.42 | 7 |
Restaurants | 1382 | 10 | 11.81 | 7 | 29.56 | 8 |
Good | 1100 | 11 | 8.85 | 14 | 22.29 | 12 |
Food | 1056 | 12 | 9.58 | 11 | 24.23 | 11 |
Shop | 1053 | 13 | 9.18 | 12 | 22.12 | 13 |
Suite | 942 | 14 | 8.92 | 13 | 21.49 | 14 |
Best | 877 | 15 | 6.55 | 18 | 16.44 | 18 |
Pool | 835 | 16 | 7.56 | 15 | 19.05 | 15 |
Shopping | 712 | 17 | 6.95 | 16 | 16.80 | 17 |
Gondola | 657 | 18 | 5.18 | 20 | 11.97 | 22 |
Friendly | 595 | 19 | 6.61 | 17 | 17.31 | 16 |
Enjoy | 536 | 20 | 4.67 | 23 | 11.22 | 24 |
Excellent | 519 | 21 | 4.83 | 22 | 12.32 | 20 |
View | 492 | 22 | 4.19 | 27 | 11.19 | 25 |
Awesome | 489 | 23 | 3.71 | 32 | 9.55 | 29 |
Spacious | 465 | 24 | 5.36 | 19 | 14.20 | 19 |
Fun | 444 | 25 | 3.58 | 34 | 8.95 | 34 |
Wonderful | 440 | 26 | 3.73 | 31 | 9.39 | 31 |
Recommend | 435 | 27 | 4.89 | 21 | 12.10 | 21 |
Huge | 433 | 28 | 4.41 | 24 | 10.95 | 27 |
Luxury | 430 | 29 | 3.86 | 29 | 9.41 | 30 |
Canal | 426 | 30 | 4.07 | 28 | 9.19 | 32 |
Comfortable | 395 | 31 | 4.37 | 26 | 11.12 | 26 |
Large | 376 | 32 | 3.79 | 30 | 9.77 | 28 |
Helpful | 372 | 33 | 4.38 | 25 | 11.40 | 23 |
Bathroom | 336 | 34 | 3.64 | 33 | 9.02 | 33 |
Parking | 333 | 35 | 3.03 | 37 | 7.13 | 37 |
Free | 326 | 36 | 3.33 | 36 | 7.67 | 36 |
Gorgeous | 324 | 37 | 2.83 | 38 | 6.82 | 38 |
Grand | 321 | 38 | 3.36 | 35 | 7.75 | 35 |
Front desk | 320 | 39 | 2.60 | 41 | 6.72 | 39 |
Pretty | 290 | 40 | 2.51 | 42 | 6.46 | 42 |
Coffee | 263 | 41 | 2.43 | 43 | 6.32 | 43 |
Atmosphere | 262 | 42 | 2.23 | 47 | 5.72 | 47 |
Mall | 250 | 43 | 2.31 | 46 | 5.72 | 48 |
Fantastic | 245 | 44 | 2.40 | 45 | 5.92 | 45 |
Dining | 244 | 45 | 2.71 | 40 | 6.47 | 41 |
Price | 243 | 46 | 2.43 | 44 | 6.13 | 44 |
Security | 235 | 47 | 2.18 | 49 | 5.65 | 49 |
Bed | 233 | 48 | 2.77 | 39 | 6.72 | 40 |
Architecture | 225 | 49 | 1.88 | 50 | 4.49 | 50 |
Amenities | 219 | 50 | 2.19 | 48 | 5.77 | 46 |
Frequency | Freeman’s Degree Centrality | Eigenvector Centrality | ||||
---|---|---|---|---|---|---|
Frequency | Rank | Coefficient | Rank | Coefficient | Rank | |
Casino | 2258 | 1 | 24.36 | 1 | 57.73 | 1 |
Good | 1745 | 2 | 16.03 | 4 | 41.46 | 4 |
Room | 1637 | 3 | 19.56 | 3 | 46.02 | 3 |
Shopping | 1548 | 4 | 20.04 | 2 | 51.13 | 2 |
Beautiful | 1054 | 5 | 9.07 | 9 | 23.49 | 11 |
Big | 930 | 6 | 10.14 | 7 | 28.59 | 7 |
Luxury | 900 | 7 | 9.49 | 8 | 25.52 | 8 |
Nice | 820 | 8 | 7.09 | 15 | 19.63 | 14 |
Food | 808 | 9 | 13.07 | 5 | 33.03 | 5 |
Great | 792 | 10 | 8.50 | 11 | 23.90 | 9 |
Mall | 749 | 11 | 10.45 | 6 | 31.07 | 6 |
Shop | 595 | 12 | 9.00 | 10 | 23.80 | 10 |
Large | 560 | 13 | 7.28 | 13 | 21.16 | 13 |
Gondola | 531 | 14 | 7.19 | 14 | 17.59 | 16 |
Amazing | 457 | 15 | 4.85 | 21 | 13.30 | 21 |
Best | 447 | 16 | 4.79 | 22 | 13.74 | 20 |
Huge | 447 | 17 | 6.53 | 16 | 18.69 | 15 |
Restaurant | 421 | 18 | 8.27 | 12 | 22.29 | 12 |
Canal | 415 | 19 | 5.96 | 17 | 14.93 | 18 |
Comfortable | 335 | 20 | 4.63 | 24 | 12.05 | 24 |
Free | 318 | 21 | 5.59 | 19 | 14.38 | 19 |
Worth | 290 | 22 | 3.66 | 27 | 9.58 | 27 |
Spacious | 290 | 23 | 4.74 | 23 | 12.86 | 22 |
Staff | 280 | 24 | 4.37 | 25 | 11.50 | 25 |
Shuttle | 278 | 25 | 4.96 | 20 | 12.27 | 23 |
Expensive | 256 | 26 | 3.66 | 28 | 9.28 | 28 |
Awesome | 251 | 27 | 2.10 | 46 | 5.66 | 46 |
Grand | 249 | 28 | 4.15 | 26 | 10.48 | 26 |
Clean | 242 | 29 | 3.42 | 31 | 9.16 | 29 |
Sky | 240 | 30 | 3.63 | 29 | 9.15 | 30 |
Court | 237 | 31 | 5.64 | 18 | 15.44 | 17 |
Building | 236 | 32 | 3.19 | 34 | 8.60 | 34 |
Facilities | 235 | 33 | 3.06 | 35 | 7.89 | 35 |
Wide | 232 | 34 | 2.09 | 47 | 5.94 | 43 |
Enjoy | 222 | 35 | 3.39 | 32 | 8.90 | 33 |
Gambling | 215 | 36 | 2.45 | 40 | 7.14 | 38 |
Convenient | 213 | 37 | 2.71 | 38 | 7.07 | 39 |
Fun | 212 | 38 | 2.77 | 37 | 7.54 | 36 |
Crowded | 208 | 39 | 2.13 | 45 | 5.70 | 45 |
Old | 204 | 40 | 2.37 | 42 | 6.32 | 41 |
Price | 202 | 41 | 3.52 | 30 | 8.94 | 32 |
View | 190 | 42 | 3.34 | 33 | 9.05 | 31 |
Famous | 187 | 43 | 2.92 | 36 | 7.25 | 37 |
Street | 183 | 44 | 2.38 | 41 | 6.10 | 42 |
Excellent | 182 | 45 | 1.63 | 50 | 4.18 | 50 |
Interior | 160 | 46 | 2.28 | 43 | 5.80 | 44 |
Gorgeous | 160 | 47 | 1.67 | 49 | 4.22 | 49 |
Egg tart | 159 | 48 | 1.89 | 48 | 4.58 | 48 |
Atmosphere | 157 | 49 | 2.17 | 44 | 5.62 | 47 |
Lobby | 155 | 50 | 2.50 | 39 | 6.58 | 40 |
Clusters | Extracted Words | Significant Words |
---|---|---|
Experience | beautiful/fantastic/staff/gorgeous/ recommend/great/helpful/friendly/ best/awesome/amazing/dining/ wonderful/excellent | beautiful/fantastic/great/ recommend/helpful/ friendly/awesome/ wonderful/excellent |
Amenity | parking/free | parking/free |
Physical Environment | view/nice/huge/bed/pretty/bathroom/coffee/frontdesk/nice/clean/service/ room/good/luxury/amenities/price/spacious/comfortable/large/pool/security | view/huge/bed/bathroom/ coffee/front desk/clean/service/room/ amenities/price/spacious/comfortable/large/pool/security |
Entertainment | gondola/fun/casino/shop/enjoy/ restaurants/grand/shopping/canal/architecture/atmosphere/mall/food | gondola/casino/shop/ restaurants/shopping/canal/atmosphere/mall/food |
Clusters | Extracted Words | Significant Words |
---|---|---|
Value | amazing/shuttle/free/staff/price/ interior/luxury/nice/expensive/ famous/worth | free/price/luxury/ expensive/worth |
Facility | best/court/grand/street/restaurant/ facilities/building/lobby/good/food/crowed/convenient | court/street/restaurant/ facilities/building/lobby/ food/convenient |
Entertainment | big/gambling/enjoy/atmosphere/ gondola/egg tart/ shopping/fun/mall/shop/huge/canal/casino/beautiful/sky | gambling/gondola/egg tart/shopping/mall/shop/canal/ casino/sky |
Experience | comfortable/view/awesome/ excellent/clean/wide/great/old/ gorgeous/room/large | comfortable/view/ awesome/excellent/clean/wide/great/old/gorgeous/large |
Words | Factor Loading | Eigen Value | Variance (%) | |
---|---|---|---|---|
Physical Environment | Bed | 0.709 | 2.021 | 13.118 |
Bathroom | 0.594 | |||
Room | 0.583 | |||
Comfortable | 0.571 | |||
Suite | 0.451 | |||
Entertainment | Shop | 0.878 | 1.709 | 12.308 |
Shopping | 0.828 | |||
Restaurants | 0.490 | |||
Experience | Staff | 0.759 | 1.483 | 11.75 |
Friendly | 0.746 | |||
Helpful | 0.656 | |||
Amenity | Free | 0.823 | 1.365 | 9.813 |
Parking | 0.821 | |||
Total variance (%) = 46.988 | ||||
KMO (Kaiser Meyer Olkin) = 0.598 | ||||
Bartlett chi-square (p) = 11,743.309 (p < 0.001) |
Words | Factor Loading | Eigen Value | Variance(%) | |
---|---|---|---|---|
Entertainment | Shopping | 0.927 | 2.605 | 14.470 |
Shop | 0.905 | |||
Mall | 0.556 | |||
Value | Food | 0.815 | 1.604 | 8.912 |
Court | 0.791 | |||
Expensive | 0.432 | |||
Price | 0.423 | |||
Experience | Room | 0.697 | 1.453 | 8.072 |
Spacious | 0.659 | |||
Comfortable | 0.576 | |||
Clean | 0.503 | |||
Amenity | Shuttle | 0.862 | 1.392 | 7.731 |
Free | 0.858 | |||
Physical Environment | Canal | 0.684 | 1.295 | 7.193 |
Gondola | 0.614 | |||
Grand | 0.495 | |||
Famous | 0.460 | |||
Egg tart | 0.413 | |||
Total variance (%) = 46.378 | ||||
KMO (Kaiser–Meyer–Olkin) = 0.615 | ||||
Bartlett chi-square (p) = 21528.938 (p < 0.001) |
Model | Unstandardized Coefficient | Standardized Coefficient | t | |
---|---|---|---|---|
Β | SE | Beta | ||
(Constant) | 4.573 | 0.009 | 489.324 | |
Physical Environment (PE) | −0.137 | 0.009 | −0.151 | −14.668 *** |
Entertainment (En) | 0.189 | 0.009 | 0.208 | 20.239 *** |
Experience (Ex) | 0.055 | 0.009 | 0.060 | 5.865 *** |
Amenity (A) | 0.127 | 0.009 | 0.140 | 13.598 *** |
Model | Unstandardized Coefficient | Standardized Coefficient | t | |
---|---|---|---|---|
Β | SE | Beta | ||
(Constant) | 4.494 | 0.009 | 486.264 | |
Entertainment (En) | 0.009 | 0.009 | 0.011 | 0.953 |
Value (V) | −0.051 | 0.009 | −0.061 | −5.487 *** |
Experience (Ex) | −0.017 | 0.009 | −0.020 | −1.809 |
Amenity (A) | −0.007 | 0.009 | −0.009 | −0.786 |
Physical Environment (PE) | 0.25 | 0.009 | 0.030 | 2.687 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, M.; Kim, H.-S. An Exploratory Study of Electronic Word-of-Mouth Focused on Casino Hotels in Las Vegas and Macao. Information 2022, 13, 135. https://doi.org/10.3390/info13030135
Tang M, Kim H-S. An Exploratory Study of Electronic Word-of-Mouth Focused on Casino Hotels in Las Vegas and Macao. Information. 2022; 13(3):135. https://doi.org/10.3390/info13030135
Chicago/Turabian StyleTang, Mengying, and Hak-Seon Kim. 2022. "An Exploratory Study of Electronic Word-of-Mouth Focused on Casino Hotels in Las Vegas and Macao" Information 13, no. 3: 135. https://doi.org/10.3390/info13030135
APA StyleTang, M., & Kim, H. -S. (2022). An Exploratory Study of Electronic Word-of-Mouth Focused on Casino Hotels in Las Vegas and Macao. Information, 13(3), 135. https://doi.org/10.3390/info13030135