Behavioral Intentions in Metaverse Tourism: An Extended Technology Acceptance Model with Flow Theory
Abstract
:1. Introduction
2. Theoretical Background and Hypotheses
2.1. Metaverse and Metaverse Tourism
2.2. Technology Acceptance Model (TAM)
2.3. Flow Theory
2.4. Hypothetical Relationships
2.4.1. Relationships between Flow and Perceived Usefulness and Perceived Ease of Use
2.4.2. Relationships between Perceived Usefulness and Perceived Ease of Use and Attitude
2.4.3. Relationships between Attitude and Support
2.4.4. Relationships between Attitude and Behavioral Intention
2.4.5. Relationships between Support and Behavioral Intention
3. Methodology
3.1. Measurement
3.2. Data Collection and Analysis
4. Results
4.1. Descriptive Statistics of Respondents
4.2. Measurement Model
4.3. Structural Model
5. Discussion and Conclusions
6. Limitations and Future Research Agenda
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dwivedi, Y.K.; Hughes, L.; Baabdullah, A.M.; Ribeiro-Navarrete, S.; Giannakis, M.; Al-Debei, M.M.; Dennehy, D.; Metri, B.; Buhalis, D.; Cheung, C.M.; et al. Metaverse beyond the hype: Multidisciplinary perspectives on emerging challenges opportunities and agenda for research practice and policy. Int. J. Inf. Manag. 2022, 66, 102542. [Google Scholar] [CrossRef]
- Yang, F.X.; Wang, Y. Rethinking Metaverse Tourism: A Taxonomy and an Agenda for Future Research. J. Hosp. Tour. Res. 2023. [Google Scholar] [CrossRef]
- Koohang, A.; Nord, J.H.; Ooi, K.B.; Tan, G.W.-H.; Al-Emran, M.; Aw, E.C.-X.; Baabdullah, A.M.; Buhalis, D.; Cham, T.-H.; Dennis, C.; et al. Shaping the Metaverse into Reality: A Holistic Multidisciplinary Understanding of Opportunities Challenges and Avenues for Future Investigation. J. Compu. Inf. Syst. 2023, 63, 735–765. [Google Scholar] [CrossRef]
- Gursoy, D.; Malodia, S.; Dhir, A. The metaverse in the hospitality and tourism industry: An overview of current trends and future research directions. J. Hosp. Mark. Manag. 2022, 31, 527–534. [Google Scholar] [CrossRef]
- Lee, S.O.; Wu, Q.; Hyun, S.S. Hospitality and tourism experience in metaverse: An examination of users’ behavior motivations and preferences. J. Hosp. Mark. Manag. 2024, 1–17. [Google Scholar] [CrossRef]
- Go, H.; Kang, M. Metaverse tourism for sustainable tourism development: Tourism agenda 2030. Tour. Rev. 2023, 78, 381–394. [Google Scholar] [CrossRef]
- Jafar, R.M.S.; Ahmad, W. Tourist loyalty in the metaverse: The role of immersive tourism experience and cognitive perceptions. Tour. Rev. 2023, 79, 321–336. [Google Scholar] [CrossRef]
- Zhang, J.; Quoquab, F.; Mohammad, J. Metaverse tourism and Gen-Z and Gen-Y’s motivation: “Will you or won’t you travel virtually?”. Tour. Rev. 2023, 79, 304–320. [Google Scholar] [CrossRef]
- Mandal, S.; Paul, J.; Kotni, V.D.P.; Chintaluri, M.G. The orientation of Gen Zs towards metaverse tourism. J. Destin. Mark. Manag. 2024, 32, 100871. [Google Scholar] [CrossRef]
- Kraus, S.; Kumar, S.; Lim, W.M.; Kaur, J.; Sharma, A.; Schiavone, F. From moon landing to metaverse: Tracing the evolution of Technological Forecasting and Social Change. Technol. Forecast. Soc. Chang. 2023, 189, 122381. [Google Scholar] [CrossRef]
- Smart, J.; Cascio, J.; Paffendorf, J.; Bridges, C.; Hummel, J.; Hursthouse, J.; Moss, R. A cross-industry public foresight project. In Proc. Metaverse Roadmap Pathways 3DWeb; World Wide Web Consortium: Cambridge, MA, USA, 2007; pp. 1–28. [Google Scholar]
- Zhou, X.; Yang, Q.; Zheng, X.; Liang, W.; Wang, K.I.-K.; Ma, J.; Pan, Y.; Jin, Q. Personalized federation learning with model-contrastive learning for multi-modal user modeling in human-centric metaverse. IEEE J. Sel. Areas Commun. 2024, 42, 817–831. [Google Scholar] [CrossRef]
- Cheng, R.; Wu, N.; Chen, S.; Han, B. Will metaverse be nextg internet? Vision hype and reality. IEEE Netw. 2022, 36, 197–204. [Google Scholar] [CrossRef]
- Ratican, J.; Hutson, J.; Wright, A. A proposed meta-reality immersive development pipeline: Generative ai models and extended reality (xr) content for the metaverse. J. Intell. Learn. Syst. Appl. 2023, 15. [Google Scholar] [CrossRef]
- Louw, C.; Louw, B.L. The digital disruption of virtual reality and the future of the steel roller coaster: An initial industry analysis. Afr. J. Hosp. Tour. Leis. 2018, 7, 1–16. [Google Scholar]
- Wreford, O.; Williams, N.L.; Ferdinand, N. Together alone: An exploration of the virtual event experience. Event Manag. 2019, 23, 721–732. [Google Scholar] [CrossRef]
- Buhalis, D.; Lin, M.S.; Leung, D. Metaverse as a driver for customer experience and value co-creation: Implications for hospitality and tourism management and marketing. Int. J. Contemp. Hosp. Manag. 2022, 35, 701–716. [Google Scholar] [CrossRef]
- Qureshi, M.I.; Khan, N.; Qayyum, S.; Malik, S.; Hishan, S.S.; Ramayah, T. Classifications of sustainable manufacturing practices in ASEAN region: A systematic review and bibliometric analysis of the past decade of research. Sustainability 2020, 12, 8950. [Google Scholar] [CrossRef]
- Lin, L.P.L.; Huang, S.C.L.; Ho, Y.C. Could virtual reality effectively market slow travel in a heritage destination? Tour. Manag. 2020, 78, 104027. [Google Scholar] [CrossRef]
- Tussyadiah, I.P.; Wang, D.; Jung, T.H.; Tom-Dieck, M.C. Virtual reality presence and attitude change: Empirical evidence from tourism. Tour. Manag. 2018, 66, 140–154. [Google Scholar] [CrossRef]
- Koo, C.; Kwon, J.; Chung, N.; Kim, J. Metaverse tourism: Conceptual framework and research propositions. Curr. Issues Tour. 2023, 26, 3268–3274. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived Usefulness Perceived Ease of Use and User Acceptance of Information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef]
- Granić, A.; Marangunić, N. Technology acceptance model in educational context: A systematic literature review. Br. J. Educ. Technol. 2019, 50, 2572–2593. [Google Scholar] [CrossRef]
- Salloum, S.A.; Alhamad, A.Q.M.; Al-Emran, M.; Monem, A.A.; Shaalan, K. Exploring students’ acceptance of e-learning through the development of a comprehensive technology acceptance model. IEEE Access 2019, 7, 128445–128462. [Google Scholar] [CrossRef]
- Kamal, S.A.; Shafiq, M.; Kakria, P. Investigating acceptance of telemedicine services through an extended technology acceptance model (TAM). Technol. Soc. 2020, 60, 101212. [Google Scholar] [CrossRef]
- Fedorko, I.; Bacik, R.; Gavurova, B. Technology acceptance model in e-commerce segment. Manag. Mark. 2018, 13, 1242–1256. [Google Scholar] [CrossRef]
- Oh, J.H. A study on factors affecting the intention to use the metaverse by applying the extended technology acceptance model (ETAM): Focused on the virtual world metaverse. J. Korea Contents Assoc. 2021, 21, 204–216. [Google Scholar]
- Wu, R.; Yu, Z. Investigating users’ acceptance of the metaverse with an extended technology acceptance model. Int. J. Hum.-Comput. Interact. 2023, 40, 5810–5826. [Google Scholar] [CrossRef]
- Liu, H.; Park, K.S. Exploring the impact of metaverse tourism experiences on actual visit intentions: An integrated model of presence the Technology Acceptance Model and the Theory of Planned Behavior. Int. J. Tour. Res. 2024, 26, e2616. [Google Scholar] [CrossRef]
- Csikszentmihalyi, M.; Csikszentmihalyi, M.; Abuhamdeh, S.; Nakamura, J. Flow. In Flow and the Foundations of Positive Psychology: The Collected Works of Mihaly Csikszentmihalyi; Springer: Dordrecht, The Netherlands, 2014; pp. 227–238. [Google Scholar]
- Van-Roy, R.; Zaman, B. Need-supporting gamification in education: An assessment of motivational effects over time. Comput. Educ. 2018, 127, 283–297. [Google Scholar] [CrossRef]
- Rodríguez-Ardura, I.; Meseguer-Artola, A. Flow experiences in personalised e-learning environments and the role of gender and academic performance. Interact. Learn. Environ. 2021, 29, 59–82. [Google Scholar] [CrossRef]
- Wu, L.; Chiu, M.L.; Chen, K.W. Defining the determinants of online impulse buying through a shopping process of integrating perceived risk expectation-confirmation model and flow theory issues. Int. J. Inf. Manag. 2020, 52, 102099. [Google Scholar] [CrossRef]
- Huskey, R.; Craighead, B.; Miller, M.B.; Weber, R. Does intrinsic reward motivate cognitive control? A naturalistic-fMRI study based on the synchronization theory of flow. Cogn. Affect. Behav. Neurosci. 2018, 18, 902–924. [Google Scholar] [CrossRef] [PubMed]
- Ceja, L.; Navarro, J. Dynamic patterns of flow in the workplace: Characterizing within-individual variability using a complexity science approach. J. Organ. Behav. 2011, 32, 627–651. [Google Scholar] [CrossRef]
- Wu, C.H.J.; Liang, R.D. The relationship between white-water rafting experience formation and customer reaction: A flow theory perspective. Tour. Manag. 2011, 32, 317–325. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, X.; Li, Z.; Tan, Z. Multi-experiences in the art performance tourism: Integrating experience economy model with flow theory. J. Travel Tour. Mark. 2021, 38, 491–510. [Google Scholar] [CrossRef]
- Hoffman, D.L.; Novak, T.P. Flow online: Lessons learned and future prospects. J. Interact. Mark. 2009, 23, 23–34. [Google Scholar] [CrossRef]
- Gao, L.; Bai, X.; Park, A. Understanding sustained participation in virtual travel communities from the perspectives of is success model and flow theory. J. Hosp. Tour. Res. 2017, 41, 475–509. [Google Scholar] [CrossRef]
- Kim, M.J.; Hall, C.M. A hedonic motivation model in virtual reality tourism: Comparing visitors and non-visitors. Int. J. Inf. Manag. 2019, 46, 236–249. [Google Scholar] [CrossRef]
- Patil, K.P.; Pramod, D. ‘Real Worlds Illusion!’ Consumer Response to Metaverse Technology Applying Flow Theory. In Proceedings of the 2023 7th International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, 18–19 August 2023; pp. 1–6. [Google Scholar]
- Seo, H.; Yoh, E. The Effects of Flow in a Metaverse-based Virtual Brand Space on Satisfaction and Purchase Intention of Virtual and Actual Fashion Products. J. Korean Soc. Cloth. Text. 2023, 47, 891–906. [Google Scholar]
- Hudson, S.; Matson-Barkat, S.; Pallamin, N.; Jegou, G. With or without you? Interaction and immersion in a virtual reality experience. J. Bus. Res. 2019, 100, 459–468. [Google Scholar] [CrossRef]
- Hamari, J.; Shernoff, D.J.; Rowe, E.; Coller, B.; Asbell-Clarke, J.; Edwards, T. Challenging games help students learn: An empirical study on engagement flow and immersion in game-based learning. Comput. Hum. Behav. 2016, 54, 170–179. [Google Scholar] [CrossRef]
- Huang, Y.C.; Li, L.N.; Lee, H.Y.; Browning, M.H.; Yu, C.P. Surfing in virtual reality: An application of extended technology acceptance model with flow theory. Comput. Hum. Behav. Rep. 2023, 9, 100252. [Google Scholar] [CrossRef]
- Ahmad, N.; Abdulkarim, H. The impact of flow experience and personality type on the intention to use virtual world. Int. J. Hum.–Comput. Interact. 2019, 35, 1074–1085. [Google Scholar] [CrossRef]
- Han, S.L.; An, M.; Han, J.J.; Lee, J. Telepresence time distortion and consumer traits of virtual reality shopping. J. Bus. Res. 2020, 118, 311–320. [Google Scholar] [CrossRef]
- Yang, C.; Yan, S.; Wang, J.; Xue, Y. Flow experiences and virtual tourism: The role of technological acceptance and technological readiness. Sustainability 2022, 14, 5361. [Google Scholar] [CrossRef]
- Ruangkanjanases, A.; Khan, A.; Sivarak, O.; Rahardja, U.; Chen, S.C. Modeling the Consumers’ Flow Experience in E-commerce: The Integration of ECM and TAM with the Antecedents of Flow Experience. SAGE Open 2024, 14, 21582440241258595. [Google Scholar] [CrossRef]
- Fishbein, M.; Ajzen, I. Predicting and Changing Behavior: The Reasoned Action Approach; Psychology Press: Hove, UK, 2011. [Google Scholar]
- Marangunić, N.; Granić, A. Technology acceptance model: A literature review from 1986 to 2013. Univers. Access Inf. Soc. 2015, 14, 81–95. [Google Scholar] [CrossRef]
- El-Said, O.; Aziz, H. Virtual tours a means to an end: An analysis of virtual tours’ role in tourism recovery post COVID-19. J. Travel Res. 2022, 61, 528–548. [Google Scholar] [CrossRef]
- Gursoy, D.; Jurowski, C.; Uysal, M. Resident attitudes: A structural modeling approach. Ann. Tour. Res. 2022, 29, 79–105. [Google Scholar] [CrossRef]
- Nunkoo, R.; Ramkissoon, H. Small island urban tourism: A residents’ perspective. Curr. Issues Tour. 2010, 13, 37–60. [Google Scholar] [CrossRef]
- Lai, P.H.; Nepal, S.K. Local perspectives of ecotourism development in Tawushan Nature Reserve Taiwan. Tour. Manag. 2006, 27, 1117–1129. [Google Scholar] [CrossRef]
- Lepp, A. Attitudes towards initial tourism development in a community with no prior tourism experience: The case of Bigodi Uganda. J. Sustain. Tour. 2008, 16, 5–22. [Google Scholar] [CrossRef]
- Nicholas, L.N.; Thapa, B.; Ko, Y.J. Residents’ perspectives of a world heritage site: The pitons management area st. Lucia. Ann. Tour. Res. 2009, 36, 390–412. [Google Scholar] [CrossRef]
- Nunkoo, R.; Gursoy, D. Residents’ support for tourism: An identity perspective. Ann. Tour. Res. 2012, 39, 243–268. [Google Scholar] [CrossRef]
- Hyun, M.Y.; O’Keefe, R.M. Virtual destination image: Testing a telepresence model. J. Bus. Res. 2012, 65, 29–35. [Google Scholar] [CrossRef]
- Chen, C.F.; Tsai, D. How destination image and evaluative factors affect behavioral intentions? Tour. Manag. 2007, 28, 1115–1122. [Google Scholar] [CrossRef]
- Lusch, R.F.; O’Brien, M.; Sindhav, B. The critical role of trust in obtaining retailer support for a supplier’s strategic organizational change. J. Retail. 2003, 79, 249–258. [Google Scholar] [CrossRef]
- Gursoy, D.; Rutherford, D.G. Host attitudes toward tourism: An improved structural model. Ann. Tour. Res. 2004, 31, 495–516. [Google Scholar] [CrossRef]
- Joo, D.; Xu, W.; Lee, J.; Lee, C.K.; Woosnam, K.M. Residents’ perceived risk emotional solidarity and support for tourism amidst the COVID-19 pandemic. J. Destin. Mark. Manag. 2021, 19, 100553. [Google Scholar] [CrossRef]
- Hamari, J.; Koivisto, J. Why do people use gamification services? Int. J. Inf. Manag. 2015, 35, 419–431. [Google Scholar] [CrossRef]
- Ali, F.; Ryu, K.; Hussain, K. Influence of experiences on memories satisfaction and behavioral intentions: A study of creative tourism. J. Travel Tour. Mark. 2016, 33, 85–100. [Google Scholar] [CrossRef]
- Bayih, B.E.; Singh, A. Modeling domestic tourism: Motivations satisfaction and tourist behavioral intentions. Heliyon 2020, 6, e04839. [Google Scholar] [CrossRef] [PubMed]
- Churchill, G.A., Jr. A paradigm for developing better measures of marketing constructs. J. Mark. Res. 1979, 16, 64–73. [Google Scholar] [CrossRef]
- Yao, Y.; Jia, G.; Hou, Y. Impulsive travel intention induced by sharing conspicuous travel experience on social media: A moderated mediation analysis. J. Hosp. Tour. Manag. 2021, 49, 431–438. [Google Scholar] [CrossRef]
- Kucukusta, D.; Law, R.; Besbes, A.; Legohérel, P. Re-examining perceived usefulness and ease of use in online booking: The case of Hong Kong online users. Int. J. Cont. Hosp. Manag. 2015, 27, 185–198. [Google Scholar] [CrossRef]
- Lu, J.; Xiao, X.; Xu, Z.; Wang, C.; Zhang, M.; Zhou, Y. The potential of virtual tourism in the recovery of tourism industry during the COVID-19 pandemic. Curr. Issues Tour. 2022, 25, 441–457. [Google Scholar] [CrossRef]
- Lee, T.H. Influence analysis of community resident support for sustainable tourism development. Tour. Manag. 2013, 34, 37–46. [Google Scholar] [CrossRef]
- Itani, O.S.; Hollebeek, L.D. Light at the end of the tunnel: Visitors’ virtual reality (versus in-person) attraction site tour-related behavioral intentions during and post-COVID-19. Tour. Manag. 2021, 84, 104290. [Google Scholar] [CrossRef]
- Gay, L.R.; Airasian, P.A. The Research Design. Res. Method 2007. Available online: https://core.ac.uk/download/pdf/300827262.pdf (accessed on 19 September 2024).
- Nunnally, J.C. An overview of psychological measurement. In Clinical Diagnosis of Mental Disorders: A Handbook; Springer: Boston, MA, USA, 1978; pp. 97–146. [Google Scholar]
- Hair, J.F.; Sarstedt, M.; Ringle, C.M.; Mena, J.A. An assessment of the use of partial least squares structural equation modeling in marketing research. J. Acad. Mark. Sci. 2012, 40, 414–433. [Google Scholar] [CrossRef]
- Kaplanidou, K.; Vogt, C. Do sport tourism events have a brand image. In Proceedings of the 2006 Northeastern Recreation Research Symposium, Bolton Landing, NY, USA, 9–11 April 2006; pp. 2–7. [Google Scholar]
Characteristics | N (%) | Characteristics | N (%) |
---|---|---|---|
Gender | Career | ||
Male | 256 (49.4) | Professional/Technical Position | 65 (12.5) |
Female | 262 (50.6) | Entrepreneur (Including Self-Employed) | 20 (3.9) |
Age | Service Industry | 17 (3.3) | |
14–19 years old | 42 (8.1) | Office Worker | 219 (42.3) |
20–29 years old | 171 (33.0) | Civil Service | 20 (3.9) |
30–39 years old | 204 (39.4) | Military | 2 (0.4) |
40–49 years old | 83 (16.0) | Students | 117 (22.6) |
50–59 years old | 17 (3.3) | Housewife | 21 (4.1) |
60–69 years old | 1 (0.2) | Freelance | 20 (3.9) |
Education | Others | 17 (3.3) | |
High school | 67 (12.9) | Residence | |
College | 42 (8.1) | Seoul | 196 (37.8) |
University | 352 (68.0) | Busan | 29 (5.6) |
Postgraduate or above | 57 (11.0) | Daegu | 15 (2.9) |
Marital status | Incheon | 32 (6.2) | |
Married | 319 (61.6) | Gwangju | 10 (1.9) |
Unmarried | 198 (38.2) | Daejeon | 12 (2.3) |
Divorced | 1 (0.2) | Ulsan | 3 (0.6) |
Monthly income | Gyeonggi-do | 148 (28.6) | |
less than USD 800 | 108 (20.8) | Gangwon-do | 7 (1.4) |
USD 800~USD 1600 | 43 (8.3) | Chungcheongbuk-do | 7 (1.4) |
USD 1600~USD 2400 | 106 (20.5) | Chungcheongnam-do | 13 (2.5) |
USD 2400~USD 3200 | 87 (16.8) | Jeollabuk-do | 10 (1.9) |
USD 3200~USD 4000 | 59 (11.4) | Jeollanam-do | 7 (1.4) |
USD 4000~USD 4800 | 40 (7.7) | Gyeongsangbuk-do | 12 (2.3) |
USD 4800~USD 5600 | 20 (3.9) | Gyeongsangnam-do | 10 (1.9) |
USD 5600~USD 6400 | 23 (4.4) | Jeju Island | 4 (0.8) |
Over USD 6400 | 32 (6.2) | Sejong | 3 (0.6) |
Measurement | χ2 | df | Normed χ2 | CFI | NFI | NNFI | RMSEA |
---|---|---|---|---|---|---|---|
Model | 543.762 | 284 | 1.915 | 0.954 | 0.909 | 0.947 | 0.042 |
Suggested value * | ≤3 | ≥0.9 | ≥0.9 | ≥0.9 | ≤0.08 |
Factors and Scale Items | Standardized Loading | Cronbach’s Alpha |
---|---|---|
F1: Flow (FL) | ||
I imagine making the metaverse amazing. | 0.731 | 0.890 |
Metaverse is an important part of my daily life. | 0.845 | |
I feel joy in the metaverse. | 0.709 | |
I strive to obtain information related to the metaverse. | 0.704 | |
The metaverse is my favorite hobby activity. | 0.794 | |
I lose track of time when I am in the metaverse. | 0.777 | |
F2: Perceived Usefulness (PU) | ||
The metaverse will be useful to me. | 0.767 | 0.881 |
The metaverse will enhance my daily life. | 0.814 | |
I can achieve the desired results through the metaverse. | 0.821 | |
The metaverse provides me with valuable information. | 0.825 | |
F3: Perceived Ease of Use (PEOU) | ||
The configuration of the metaverse is convenient to use. | 0.735 | 0.823 |
The method of using the metaverse is generally easy and simple. | 0.763 | |
Using the metaverse requires little effort. | 0.701 | |
It is easy to obtain the desired information through the metaverse. | 0.740 | |
F4: Attitude (AT) | ||
The metaverse is of high quality. | 0.662 | 0.745 |
The metaverse is valuable. | 0.752 | |
The metaverse is attractive. | 0.710 | |
F5: Support (SU) | ||
I think there should be more promotion of metaverse tourism. | 0.803 | 0.898 |
I support policies for metaverse tourism. | 0.843 | |
The influence of metaverse tourism will gradually grow. | 0.813 | |
Metaverse tourism needs to be promoted. | 0.858 | |
F6: Behavioral Intention (BI) | ||
I will recommend metaverse tourism to people around me. | 0.875 | 0.916 |
I will speak positively about metaverse tourism to people around me. | 0.863 | |
I will share information about metaverse tourism with people around me. | 0.821 | |
I will visit metaverse tourist destinations in the future. | 0.763 | |
When planning real trips in the future, I will prioritize the tourist destinations I visited in the metaverse. | 0.815 |
Construct | FL | PU | PEOU | AT | SU | BI |
---|---|---|---|---|---|---|
FL | 1.000 | |||||
PU | 0.777 (0.603) | 1.000 | ||||
PEOU | 0.673 (0.452) | 0.753 (0.567) | 1.000 | |||
AT | 0.713 (0.509) | 0.750 (0.562) | 0.586 (0.343) | 1.000 | ||
SU | 0.526 (0.277) | 0.625 (0.390) | 0.443 (0.197) | 0.659 (0.435) | 1.000 | |
BI | 0.620 (0.385) | 0.666 (0.444) | 0.495 (0.245) | 0.641 (0.411) | 0.889 * (0.790) | 1.000 |
CR | 0.892 | 0.882 | 0.825 | 0.752 | 0.898 | 0.916 |
AVE | 0.580 | 0.651 | 0.541 | 0.503 | 0.688 | 0.686 |
Hypotheses | Coefficients | t-Values | Test of Hypotheses | |
---|---|---|---|---|
H1 | FL→PU | 0.820 *** | 38.604 | Accepted |
H2 | FL→PEOU | 0.713 *** | 21.035 | Accepted |
H3 | PU→AT | 0.770 *** | 17.721 | Accepted |
H4 | PEOU→AT | 0.103 * | 2.020 | Accepted |
H5 | AT→SU | 0.708 *** | 15.338 | Accepted |
H6 | AT→BI | 0.192 ** | 3.043 | Accepted |
H7 | SU→BI | 0.753 *** | 13.534 | Accepted |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Li, M.-Q.; Wang, J.-H. Behavioral Intentions in Metaverse Tourism: An Extended Technology Acceptance Model with Flow Theory. Information 2024, 15, 632. https://doi.org/10.3390/info15100632
Wu Q, Li M-Q, Wang J-H. Behavioral Intentions in Metaverse Tourism: An Extended Technology Acceptance Model with Flow Theory. Information. 2024; 15(10):632. https://doi.org/10.3390/info15100632
Chicago/Turabian StyleWu, Qi, Ming-Qi Li, and Jun-Hui Wang. 2024. "Behavioral Intentions in Metaverse Tourism: An Extended Technology Acceptance Model with Flow Theory" Information 15, no. 10: 632. https://doi.org/10.3390/info15100632
APA StyleWu, Q., Li, M. -Q., & Wang, J. -H. (2024). Behavioral Intentions in Metaverse Tourism: An Extended Technology Acceptance Model with Flow Theory. Information, 15(10), 632. https://doi.org/10.3390/info15100632