Consumer Satisfaction Benchmarking Analysis Using Group Decision Support System (GDSS) PROMETHEE Methodology in a GIS Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. GDSS PROMETHEE
2.2. CRITIC
3. Proposed Framework
3.1. Description
3.2. Model Development
4. Case Study
4.1. Problem Formation
4.2. Results
5. Discussion
5.1. Internal and External Benchmarking Analysis
5.2. Extending the Analysis to the Competitor’s Service Areas
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, I.; Mehta, S.S.; Ganeshkumar, C.; Natarajan, V. Learning from Failure to Enhance Performance: A Systematic Literature Review of Retail Failure. Benchmarking Int. J. 2023, 30, 532–561. [Google Scholar] [CrossRef]
- Merizqi, S.; Suharjito. Performance Evaluation System of Retail Industry Using Analytical Hierarchy. IJSTR 2019, 8, 3308–3315. [Google Scholar]
- Cristea, C.; Cristea, M. KPIs for Operational Performance Assessment in Flexible Packaging Industry. Sustainability 2021, 13, 3498. [Google Scholar] [CrossRef]
- Gauri, D.K.; Pauler, J.G.; Trivedi, M. Benchmarking Performance in Retail Chains: An Integrated Approach. Mark. Sci. 2009, 28, 502–515. [Google Scholar] [CrossRef]
- Zihayat, M.; Ayanso, A.; Davoudi, H.; Kargar, M.; Mengesha, N. Leveraging Non-Respondent Data in Customer Satisfaction Modeling. J. Bus. Res. 2021, 135, 112–126. [Google Scholar] [CrossRef]
- Daskalopoulou, I.; Petrou, A. Service Quality and Store Performance: Some Evidence from Greece. Manag. Serv. Qual. Int. J. 2005, 15, 24–40. [Google Scholar] [CrossRef]
- Roses, L.K.; Hoppen, N.; Henrique, J.L. Management of Perceptions of Information Technology Service Quality. J. Bus. Res. 2009, 62, 876–882. [Google Scholar] [CrossRef]
- Chan, L.K.; Hui, Y.V.; Lo, H.P.; Tse, S.K.; Tso, G.K.F.; Wu, M.L. Consumer Satisfaction Index: New Practice and Findings. Eur. J. Mark. 2003, 37, 872–909. [Google Scholar] [CrossRef]
- Gee, R.; Coates, G.; Nicholson, M. Understanding and Profitably Managing Customer Loyalty. Mark. Intell. Plan. 2008, 26, 359–374. [Google Scholar] [CrossRef]
- Grigoroudis, E.; Siskos, Y. A Survey of Customer Satisfaction Barometers: Some Results from the Transportation-Communications Sector. Eur. J. Oper. Res. 2004, 152, 334–353. [Google Scholar] [CrossRef]
- Grigoroudis, E.; Siskos, Y. Customer Satisfaction Evaluation: Methods for Measuring and Implementing Service Quality; International Series in Operations Research & Management Science; Springer: New York, NY, USA; Dordrecht, The Netherlands; Heidelberg, Germany; London, UK, 2010; ISBN 978-1-4419-1639-6. [Google Scholar]
- Roy, B. Paradigms and Challenges. In Multiple Criteria Decision Analysis: State of the Art Surveys; International Series in Operations Research & Management Science; Springer: New York, NY, USA, 2005; Volume 78, pp. 3–24. ISBN 978-0-387-23067-2. [Google Scholar]
- Dincer, H.; Hacioglu, U. Performance Evaluation with Fuzzy VIKOR and AHP Method Based on Customer Satisfaction in Turkish Banking Sector. Kybernetes 2013, 42, 1072–1085. [Google Scholar] [CrossRef]
- Hoe, L.W.; Siew, L.W.; Beng, Y.H.; Yan, F.C.; I-Xin, Y. Evaluation on the Customer Satisfaction in Intercity Bus Transportation Using Analytic Hierarchy Process Model. In Advances in Material Science and Engineering; Awang, M., Emamian, S.S., Eds.; Lecture Notes in Mechanical Engineering; Springer: Singapore, 2021; pp. 200–209. ISBN 9789811636400. [Google Scholar]
- Song, Y.; Li, G.; Li, T.; Li, Y. A Purchase Decision Support Model Considering Consumer Personalization about Aspirations and Risk Attitudes. J. Retail. Consum. Serv. 2021, 63, 102728. [Google Scholar] [CrossRef]
- Tsai, P.-H.; Chen, C.-J.; Hsiao, W.-H.; Lin, C.-T. Factors Influencing the Consumers’ Behavioural Intention to Use Online Food Delivery Service: Empirical Evidence from Taiwan. J. Retail. Consum. Serv. 2023, 73, 103329. [Google Scholar] [CrossRef]
- Ahani, A.; Nilashi, M.; Yadegaridehkordi, E.; Sanzogni, L.; Tarik, A.R.; Knox, K.; Samad, S.; Ibrahim, O. Revealing Customers’ Satisfaction and Preferences through Online Review Analysis: The Case of Canary Islands Hotels. J. Retail. Consum. Serv. 2019, 51, 331–343. [Google Scholar] [CrossRef]
- Grigoroudis, E.; Siskos, Y. Preference Disaggregation for Measuring and Analysing Customer Satisfaction: The MUSA Method. Eur. J. Oper. Res. 2002, 143, 148–170. [Google Scholar] [CrossRef]
- Tiganis, A.; Grigoroudis, E.; Chrysochou, P. Customer Satisfaction in Short Food Supply Chains: A Multiple Criteria Decision Analysis Approach. Food Qual. Prefer. 2023, 104, 104750. [Google Scholar] [CrossRef]
- Vieira, I.; Ferreira, D.; Pedro, M.I. The Satisfaction of Healthcare Consumers: Analysis and Comparison of Different Methodologies. Int Trans Oper. Res 2023, 30, 545–571. [Google Scholar] [CrossRef]
- Kitsios, F.; Stefanakakis, S.; Kamariotou, M.; Dermentzoglou, L. E-Service Evaluation: User Satisfaction Measurement and Implications in Health Sector. Comput. Stand. Interfaces 2019, 63, 16–26. [Google Scholar] [CrossRef]
- Richey, R.G.; Tokman, M.; Skinner, L.R. Exploring Collaborative Technology Utilization in Retailer–Supplier Performance. J. Bus. Res. 2008, 61, 842–849. [Google Scholar] [CrossRef]
- Jacob, C.; Guéguen, N. Does the Geographic Proximity of Products Influence a Consumer’s Decision? An Evaluation in a Restaurant. Ann. Tour. Res. 2015, 52, 169–172. [Google Scholar] [CrossRef]
- Drezner, Z.; Eiselt, H.A. Competitive Location Models: A Review. Eur. J. Oper. Res. 2024, 316, 5–18. [Google Scholar] [CrossRef]
- Merino, M.; Ramirez-Nafarrate, A. Estimation of Retail Sales under Competitive Location in Mexico. J. Bus. Res. 2016, 69, 445–451. [Google Scholar] [CrossRef]
- De Beule, M.; Van Den Poel, D.; Van De Weghe, N. Assessing the Principles of Spatial Competition between Stores within a Retail Network. Appl. Geogr. 2015, 62, 125–135. [Google Scholar] [CrossRef]
- Zou, H.; Zheng, Y.; Zhang, Y.; Liu, Y. A Geospatial Perspective on the Factors Influencing Tourist Dining Satisfaction. J. Geovis. Spat. Anal. 2024, 8, 25. [Google Scholar] [CrossRef]
- Dye, A.S.; Shaw, S.-L. A GIS-Based Spatial Decision Support System for Tourists of Great Smoky Mountains National Park. J. Retail. Consum. Serv. 2007, 14, 269–278. [Google Scholar] [CrossRef]
- Hernandez, T. Enhancing Retail Location Decision Support: The Development and Application of Geovisualization. J. Retail. Consum. Serv. 2007, 14, 249–258. [Google Scholar] [CrossRef]
- Cliquet, G. From Geomarketing to Spatial Marketing. In Spatial Economics Volume II; Colombo, S., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 277–305. ISBN 978-3-030-40093-4. [Google Scholar]
- Brans, J.-P.; Mareschal, B. Promethee Methods. In Multiple Criteria Decision Analysis: State of the Art Surveys; International Series in Operations Research & Management Science; Springer: New York, NY, USA, 2005; Volume 78, pp. 163–186. ISBN 978-0-387-23067-2. [Google Scholar]
- Macharis, C.; Brans, J.P.; Mareschal, B. The GDSS Promethee Procedure. J. Decis. Syst. 1998, 7, 283–307. [Google Scholar]
- Kita, P.; Furková, A.; Reiff, M.; Konštiak, P.; Sitášová, J. Impact of Consumer Preferences on Food Chain Choice: An Empirical Study of Consumers in Bratislava. Acta Univ. Agric. Silvic. Mendel. Brun. 2017, 65, 293–298. [Google Scholar] [CrossRef]
- Barbosa, A.D.S.; Shayani, R.A.; Oliveira, M.A.G.D. A Multi-Criteria Decision Analysis Method for Regulatory Evaluation of Electricity Distribution Service Quality. Util. Policy 2018, 53, 38–48. [Google Scholar] [CrossRef]
- Rabbani, M.; Heidari, R.; Farrokhi-Asl, H. A Bi-Objective Mixed-Model Assembly Line Sequencing Problem Considering Customer Satisfaction and Customer Buying Behaviour. Eng. Optim. 2018, 50, 2123–2142. [Google Scholar] [CrossRef]
- Tuzkaya, G.; Sennaroglu, B.; Kalender, Z.T.; Mutlu, M. Hospital Service Quality Evaluation with IVIF-PROMETHEE and a Case Study. Socio-Econ. Plan. Sci. 2019, 68, 100705. [Google Scholar] [CrossRef]
- Fofan, A.C.; Oliveira, L.A.B.D.; Melo, F.J.C.D.; Jerônimo, T.D.B.; Medeiros, D.D.D. An Integrated Methodology Using PROMETHEE and Kano’s Model to Rank Strategic Decisions. Eng. Manag. J. 2019, 31, 270–283. [Google Scholar] [CrossRef]
- Shirazi, H.; Kia, R.; Ghasemi, P. Ranking of Hospitals in the Case of COVID-19 Outbreak: A New Integrated Approach Using Patient Satisfaction Criteria. Int. J. Healthc. Manag. 2020, 13, 312–324. [Google Scholar] [CrossRef]
- Gupta, K.; Roy, S.; Poonia, R.C.; Nayak, S.R.; Kumar, R.; Alzahrani, K.J.; Alnfiai, M.M.; Al-Wesabi, F.N. Evaluating the Usability of mHealth Applications on Type 2 Diabetes Mellitus Using Various MCDM Methods. Healthcare 2021, 10, 4. [Google Scholar] [CrossRef]
- Mohammadnazari, Z.; Mousapour Mamoudan, M.; Alipour-Vaezi, M.; Aghsami, A.; Jolai, F.; Yazdani, M. Prioritizing Post-Disaster Reconstruction Projects Using an Integrated Multi-Criteria Decision-Making Approach: A Case Study. Buildings 2022, 12, 136. [Google Scholar] [CrossRef]
- Zhao, X.; Gao, L.; Huang, Z. Customer Satisfaction Evaluation for Drugs: A Research Based on Online Reviews and PROMETHEE-II Method. PLoS ONE 2023, 18, e0283340. [Google Scholar] [CrossRef]
- Macharis, C.; Mareschal, B.; Waaub, J.P.; Milan, L. PROMETHEE-GDSS Revisited: Applications so Far and New Developments. Int. J. Multicriteria Decis. Mak. 2015, 5, 129. [Google Scholar] [CrossRef]
- Ishizaka, A.; Nemery, P. Selecting the Best Statistical Distribution with PROMETHEE and GAIA. Comput. Ind. Eng. 2011, 61, 958–969. [Google Scholar] [CrossRef]
- Gonçalves, T.J.M.; Belderrain, M.C.N. Performance Evaluation with PROMETHEE GDSS and GAIA: A Study on the ITA-SAT Satellite Project. J. Aerosp. Technol. Manag. 2012, 4, 381–392. [Google Scholar] [CrossRef]
- Ishizaka, A.; Nemery, P. A Multi-Criteria Group Decision Framework for Partner Grouping When Sharing Facilities. Group Decis. Negot. 2013, 22, 773–799. [Google Scholar] [CrossRef]
- Tavana, M.; Behzadian, M.; Pirdashti, M.; Pirdashti, H. A PROMETHEE-GDSS for Oil and Gas Pipeline Planning in the Caspian Sea Basin. Energy Econ. 2013, 36, 716–728. [Google Scholar] [CrossRef]
- Hashemian, S.M.; Behzadian, M.; Samizadeh, R.; Ignatius, J. A Fuzzy Hybrid Group Decision Support System Approach for the Supplier Evaluation Process. Int. J. Adv. Manuf. Technol. 2014, 73, 1105–1117. [Google Scholar] [CrossRef]
- Milan, L.; Kin, B.; Verlinde, S.; Macharis, C. Multi-Actor Multi-Criteria Analysis for Sustainable City Distribution: A New Assessment Framework. Int. J. Multicriteria Decis. Mak. 2015, 5, 334. [Google Scholar] [CrossRef]
- Hosseini Motlagh, S.M.; Behzadian, M.; Ignatius, J.; Goh, M.; Sepehri, M.M.; Hua, T.K. Fuzzy PROMETHEE GDSS for Technical Requirements Ranking in HOQ. Int. J. Adv. Manuf. Technol. 2015, 76, 1993–2002. [Google Scholar] [CrossRef]
- Seddiki, M.; Anouche, K.; Bennadji, A.; Boateng, P. A Multi-Criteria Group Decision-Making Method for the Thermal Renovation of Masonry Buildings: The Case of Algeria. Energy Build. 2016, 129, 471–483. [Google Scholar] [CrossRef]
- Fontana, M.E.; Morais, D.C. Water Distribution Network Segmentation Based on Group Multi-Criteria Decision Approach. Production 2017, 27, e20162083. [Google Scholar] [CrossRef]
- Živković, Ž.; Nikolić, D.; Savić, M.; Djordjević, P.; Mihajlović, I. Prioritizing Strategic Goals in Higher Education Organizations by Using a SWOT–PROMETHEE/GAIA–GDSS Model. Group Decis. Negot. 2017, 26, 829–846. [Google Scholar] [CrossRef]
- Gonçalo, T.E.E.; Morais, D.C. Group Multicriteria Model for Allocating Resources to Combat Drought in the Brazilian Semi-Arid Region. Water Policy 2018, 20, 1145–1160. [Google Scholar] [CrossRef]
- Janssens, J.; Sörensen, K.; Janssens, G.K. Studying the Influence of Algorithmic Parameters and Instance Characteristics on the Performance of a Multiobjective Algorithm Using the P romethee Method. Cybern. Syst. 2019, 50, 444–464. [Google Scholar] [CrossRef]
- Savun-Hekimoğlu, B.; Erbay, B.; Hekimoğlu, M.; Burak, S. Evaluation of Water Supply Alternatives for Istanbul Using Forecasting and Multi-Criteria Decision Making Methods. J. Clean. Prod. 2021, 287, 125080. [Google Scholar] [CrossRef]
- Ziemba, P. Multi-Criteria Group Assessment of E-Commerce Websites Based on the New PROSA GDSS Method—The Case of Poland. IEEE Access 2021, 9, 126595–126609. [Google Scholar] [CrossRef]
- Ziemba, P.; Gago, I. Compromise Multi-Criteria Selection of E-Scooters for the Vehicle Sharing System in Poland. Energies 2022, 15, 5048. [Google Scholar] [CrossRef]
- Ziemba, P.; Piwowarski, M.; Nermend, K. Remote Work in Post-Pandemic Reality—Multi-Criteria Evaluation of Teleconferencing Software. Sustainability 2023, 15, 9919. [Google Scholar] [CrossRef]
- Omari, Y.; Hamdadou, D.; Mami, M.A. Towards An Intelligent Agent-Based Multi-Criteria Group Decision Support System : A Case Study In Land Use Management. Int. J. Comput. Digit. Syst. 2023, 13, 303–325. [Google Scholar] [CrossRef]
- Mareschal, B.; Tsaples, G. The History and Future of PROMETHEE. In EURO Working Group on DSS; Papathanasiou, J., Zaraté, P., Freire De Sousa, J., Eds.; Integrated Series in Information Systems; Springer International Publishing: Cham, Switzerland, 2021; pp. 259–272. ISBN 978-3-030-70376-9. [Google Scholar]
- Brans, J.P.; Vincke, P.; Mareschal, B. How to Select and How to Rank Projects: The Promethee Method. Eur. J. Oper. Res. 1986, 24, 228–238. [Google Scholar] [CrossRef]
- Diakoulaki, D.; Mavrotas, G.; Papayannakis, L. Determining Objective Weights in Multiple Criteria Problems: The Critic Method. Comput. Oper. Res. 1995, 22, 763–770. [Google Scholar] [CrossRef]
- Veronesi, F.; Schito, J.; Grassi, S.; Raubal, M. Automatic Selection of Weights for GIS-Based Multicriteria Decision Analysis: Site Selection of Transmission Towers as a Case Study. Appl. Geogr. 2017, 83, 78–85. [Google Scholar] [CrossRef]
- ELSTAT; 2021 Population Statistics, Hellenic Statistical Authority. Available online: https://www.statistics.gr/en/home (accessed on 17 March 2024).
- Thessaloniki SDI; 2023 Building Blocks Dataset. Municipality of Thessaloniki Spatial Data Infrastructure Portal. Available online: https://sdi.thessaloniki.gr/?lon=2559228.1678767&lat=4953667.066475&zoom=15 (accessed on 20 January 2024).
- Greek Coffee Union; 2023.: Greek Coffee Consumer Profile. Available online: https://helleniccoffeeassociation.gr/eipan-mas/21038/ereyna-kapa-research-a-meros-to-profil-ellina (accessed on 16 April 2024). In Greek.
- Han, S.; Jia, X.; Chen, X.; Gupta, S.; Kumar, A.; Lin, Z. Search Well and Be Wise: A Machine Learning Approach to Search for a Profitable Location. J. Bus. Res. 2022, 144, 416–427. [Google Scholar] [CrossRef]
- Dewi, L.; Putri, S.H. Service quality, customer value, and price to consumer satisfaction at kopi kenangan coffee shop. Int. J. Soc. Sci. 2022, 1, 987–992. [Google Scholar] [CrossRef]
- Sage, J.L.; Goldberger, J.R. Decisions to Direct Market: Geographic Influences on Conventions in Organic Production. Appl. Geogr. 2012, 34, 57–65. [Google Scholar] [CrossRef]
- Atsnawiyah, D.; Rizan, M.; Rahmi. The Influence of Cafe Atmosphere and Food Quality on Customer Satisfaction in Building Customer Loyalty of Masalalu Café Rawa Domba Jakarta. J. Din. Manaj. Bisnis 2021, 5, 113–138. [Google Scholar] [CrossRef]
- Taufik, A.; Santoso, S.; Fahmi, M.I.; Restuanto, F.; Yamin, S. The Role of Service and Product Quality on Customer Loyalty: The Role of Service and Product Quality on Customer Loyalty. J. Consum. Sci. 2022, 7, 68–82. [Google Scholar] [CrossRef]
- Yu, J.; Subramanian, N.; Ning, K.; Edwards, D. Product Delivery Service Provider Selection and Customer Satisfaction in the Era of Internet of Things: A Chinese e-Retailers’ Perspective. Int. J. Prod. Econ. 2015, 159, 104–116. [Google Scholar] [CrossRef]
- Tjahjaningsih, E.; Ningsih, D.H.U.; Utomo, A.P. The Effect of Service Quality and Product Diversity on Customer Loyalty: The Role of Customer Satisfaction and Word of Mouth. J. Asian Financ. Econ. Bus. 2020, 7, 481–490. [Google Scholar] [CrossRef]
- Ganou, E.; Karavasilis, G.; Vrana, V.; Kehris, E. Online Food Ordering and Delivery Applications: An Empirical Study of the Factors Affecting Intention to Reuse. In Transcending Borders in Tourism Through Innovation and Cultural Heritage; Katsoni, V., Şerban, A.C., Eds.; Springer Proceedings in Business and Economics; Springer International Publishing: Cham, Switzerland, 2022; pp. 961–975. ISBN 978-3-030-92490-4. [Google Scholar]
Store ID | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Responders # | 20 | 44 | 57 | 37 | 43 | 60 | 54 | 44 | 60 | 50 | 43 | 52 | 48 | 34 | 54 | 21 | 28 |
Store ID | Positive Flows | Negative Flows | Net Flows | Rankings | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | A | B | C | A | B | C | A | B | C | |
14 | 0.063 | 0.070 | 0.056 | 0.058 | 0.053 | 0.077 | 0.005 | 0.017 | −0.022 | 2nd | 1st | 3rd |
15 | 0.045 | 0.059 | 0.056 | 0.059 | 0.046 | 0.056 | −0.014 | 0.013 | 0.000 | 3rd | 1st | 2nd |
16 | 0.028 | 0.079 | 0.100 | 0.124 | 0.056 | 0.028 | −0.096 | 0.024 | 0.072 | 3rd | 2nd | 1st |
17 | 0.036 | 0.051 | 0.128 | 0.108 | 0.087 | 0.020 | −0.072 | −0.036 | 0.108 | 3rd | 2nd | 1st |
18 | 0.016 | 0.064 | 0.320 | 0.242 | 0.154 | 0.004 | −0.226 | −0.090 | 0.316 | 3rd | 2nd | 1st |
19 | 0.043 | 0.033 | 0.168 | 0.104 | 0.121 | 0.020 | −0.060 | −0.088 | 0.148 | 2nd | 3rd | 1st |
20 | 0.057 | 0.054 | 0.089 | 0.075 | 0.078 | 0.047 | −0.018 | −0.025 | 0.043 | 2nd | 3rd | 1st |
21 | 0.075 | 0.032 | 0.074 | 0.046 | 0.085 | 0.051 | 0.029 | −0.053 | 0.023 | 1st | 3rd | 2nd |
22 | 0.126 | 0.048 | 0.032 | 0.021 | 0.080 | 0.105 | 0.105 | −0.032 | −0.073 | 1st | 2nd | 3rd |
23 | 0.076 | 0.038 | 0.048 | 0.022 | 0.114 | 0.079 | 0.096 | −0.077 | −0.019 | 1st | 3rd | 2nd |
24 | 0.085 | 0.050 | 0.051 | 0.033 | 0.065 | 0.064 | 0.043 | −0.028 | −0.015 | 1st | 3rd | 2nd |
25 | 0.180 | 0.014 | 0.086 | 0.039 | 0.069 | 0.079 | 0.046 | −0.019 | −0.028 | 1st | 2nd | 3rd |
26 | 0.048 | 0.038 | 0.063 | 0.019 | 0.180 | 0.081 | 0.161 | −0.166 | 0.005 | 1st | 3rd | 2nd |
27 | 0.085 | 0.056 | 0.063 | 0.052 | 0.068 | 0.029 | −0.004 | −0.030 | 0.034 | 2nd | 3rd | 1st |
28 | 0.078 | 0.044 | 0.099 | 0.040 | 0.079 | 0.086 | 0.045 | −0.023 | −0.022 | 1st | 3rd | 2nd |
29 | 0.103 | 0.080 | 0.017 | 0.071 | 0.101 | 0.049 | 0.007 | −0.057 | 0.050 | 2nd | 3rd | 1st |
30 | 0.076 | 0.038 | 0.048 | 0.028 | 0.047 | 0.125 | 0.075 | 0.033 | −0.108 | 1st | 2nd | 3rd |
Store ID | Average Criteria Weights (%) | Criterion Importance Rankings | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cr. 1 1 | Cr. 2 2 | Cr. 3 3 | Cr. 4 4 | Cr. 5 5 | Cr. 1 | Cr. 2 | Cr. 3 | Cr. 4 | Cr. 5 | |
14 | 18.87 | 18.60 | 19.31 | 19.46 | 23.76 | 4 | 5 | 3 | 2 | 1 |
15 | 14.02 | 20.91 | 17.20 | 19.14 | 28.72 | 5 | 2 | 4 | 3 | 1 |
16 | 15.42 | 13.52 | 24.85 | 29.95 | 16.26 | 4 | 5 | 2 | 1 | 3 |
17 | 16.30 | 23.32 | 18.38 | 20.69 | 21.32 | 5 | 1 | 4 | 3 | 2 |
18 | 17.99 | 21.99 | 18.57 | 22.47 | 18.98 | 5 | 2 | 4 | 1 | 3 |
19 | 27.09 | 18.40 | 19.86 | 21.08 | 13.57 | 1 | 4 | 3 | 2 | 5 |
20 | 21.74 | 15.74 | 19.76 | 14.59 | 28.16 | 2 | 4 | 3 | 5 | 1 |
21 | 20.14 | 17.39 | 27.41 | 16.12 | 18.93 | 2 | 4 | 1 | 5 | 3 |
22 | 16.35 | 20.22 | 22.14 | 20.06 | 21.24 | 5 | 3 | 1 | 4 | 2 |
23 | 15.80 | 15.55 | 15.52 | 27.67 | 25.47 | 3 | 4 | 5 | 1 | 2 |
24 | 20.16 | 13.96 | 14.15 | 20.62 | 31.11 | 3 | 5 | 4 | 2 | 1 |
25 | 19.92 | 17.78 | 18.03 | 19.79 | 24.48 | 2 | 5 | 4 | 3 | 1 |
26 | 17.01 | 18.01 | 19.30 | 29.72 | 15.96 | 4 | 3 | 2 | 1 | 5 |
27 | 18.59 | 16.55 | 15.24 | 23.48 | 26.14 | 3 | 4 | 5 | 2 | 1 |
28 | 21.91 | 16.27 | 16.15 | 20.13 | 25.54 | 2 | 4 | 5 | 3 | 1 |
29 | 17.73 | 11.47 | 27.99 | 18.43 | 24.38 | 4 | 5 | 1 | 3 | 2 |
30 | 21.89 | 25.85 | 20.08 | 15.34 | 16.84 | 2 | 1 | 3 | 5 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saridou, A.S.; Vavatsikos, A.P. Consumer Satisfaction Benchmarking Analysis Using Group Decision Support System (GDSS) PROMETHEE Methodology in a GIS Environment. Information 2024, 15, 694. https://doi.org/10.3390/info15110694
Saridou AS, Vavatsikos AP. Consumer Satisfaction Benchmarking Analysis Using Group Decision Support System (GDSS) PROMETHEE Methodology in a GIS Environment. Information. 2024; 15(11):694. https://doi.org/10.3390/info15110694
Chicago/Turabian StyleSaridou, Anastasia S., and Athanasios P. Vavatsikos. 2024. "Consumer Satisfaction Benchmarking Analysis Using Group Decision Support System (GDSS) PROMETHEE Methodology in a GIS Environment" Information 15, no. 11: 694. https://doi.org/10.3390/info15110694
APA StyleSaridou, A. S., & Vavatsikos, A. P. (2024). Consumer Satisfaction Benchmarking Analysis Using Group Decision Support System (GDSS) PROMETHEE Methodology in a GIS Environment. Information, 15(11), 694. https://doi.org/10.3390/info15110694