Supraharmonic Detection Algorithm Based on Interpolation of Self-Convolutional Window All-Phase Compressive Sampling Matching Pursuit
Abstract
:1. Introduction
2. Interpolation of Self-Convolutional Window All-Phase Compressive Sampling Matching Pursuit
2.1. MSD and Its Self-Convolutional Windows
2.2. All-Phase Compressive Sensing Model
2.2.1. Theory of Compressive Sampling
2.2.2. Windowed Measurement Matrix Structure
2.2.3. Sparse Base Selection
2.2.4. Compressive Sampling Matching Pursuit with All-Phase
2.3. Four-Spectrum-Line Interpolation Principle
2.4. Parameter Correction Formula
3. Simulation Analysis
3.1. Analysis of Supraharmonic Signals
3.2. Simulation Analysis of Supraharmonic Detection Accuracy under Different Compression Ratios
3.3. Error Analysis of Fundamental Frequency Fluctuation
3.4. Simulation Analysis of Signals Containing White Noise
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhuang, S.; Zhao, W.; Wang, R.; Wang, Q.; Huang, S. New measurement algorithm for supraharmonics based on multiple measurement vectors model and orthogonal matching pursuit. IEEE Trans. Instrum. Meas. 2019, 68, 1671–1679. [Google Scholar] [CrossRef]
- Garrido, J.; Moreno-Munoz, A.; Gil-de-Castro, A.; Morales-Leal, T. Supraharmonics emission from LED lamps: A reduction proposal based on random pulse-width modulation. Electr. Power Syst. Res. 2018, 164, 11–19. [Google Scholar] [CrossRef]
- Wasowski, M.; Habrych, M.; Sikorski, T.; Kostyła, P.; Jurczyk, M.; Gornicki, L.; Sokol, J.; Golemo, M. Sources of non-intentional Supraharmonics in LV network and its impact on OSGP PLC communication–experimental study. IEEE Trans. Power Deliv. 2022, 37, 5244–5254. [Google Scholar] [CrossRef]
- Sutaria, J.; Rönnberg, S. Propagation of supraharmonics in a data center with different operating modes of UPS. IEEE Access 2023, 11, 36823–36833. [Google Scholar] [CrossRef]
- Emanuel, A.; McEachern, A. Electric power definitions: A debate. In Proceedings of the IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013; pp. 21–25. [Google Scholar]
- Sefl, O.; Prochazka, R. Investigation of supraharmonics’ influence on partial discharge activity using an internal cavity sample. Int. J. Elec. Power 2022, 134, 107440. [Google Scholar] [CrossRef]
- Tefferi, M.; Nakamura, N.; Barnes, B.; Uzelac, N. Supraharmonic Measurements in Distributed Energy Resources: Power quality observations in a microgrid. IEEE Electr. Mag. 2023, 11, 88–96. [Google Scholar] [CrossRef]
- Espín-Delgado, Á.; Rönnberg, S. Modeling and Analysis of Supraharmonic Propagation for Stochastic Studies. IEEE Trans. Power Delivery 2022, 37, 4899–4910. [Google Scholar] [CrossRef]
- Banuelos-Cabral, E.S.; Gutiérrez-Robles, J.A.; Nuño-Ayón, J.J.; Sotelo-Castañón, J.; Naredo, J.L. Extended vector fitting for subharmonics, harmonics, interharmonics, and supraharmonics estimation in electrical systems. Electr. Power Syst. Res. 2023, 224, 109664. [Google Scholar] [CrossRef]
- IEC Standard 61000-4-30; Electromagnetic Compatibility (EMC)—Part 4-30: Testing and Measurement Techniques—Power Quality Measurement Methods. IEC: Geneva, Switzerland, 2015.
- IEC Standard 61000-4-7; General Guide on Harmonics and Interharmonics Measurements, for Power Supply Systems and Equipment Connected Thereto. International Electrotechnical Commission. IEC: Geneva, Switzerland, 2010.
- Mendes, T.M.; Ferreira, D.D.; Silva, L.R.; Khosravy, M.; Meyer, J.; Duque, C.A. Supraharmonic estimation by polyphase DFT filter bank. Comput. Electr. Eng. 2021, 92, 107202. [Google Scholar] [CrossRef]
- Gallarreta, A.; Fernández, I.; González-Ramos, J.; de la Vega, D.; Angulo, I.; Arrinda, A. Technique for the comprehensive characterization of supraharmonic disturbances (9–150 kHz) in the joint time-frequency domain. Sustain. Energy Grids 2023, 36, 101181. [Google Scholar] [CrossRef]
- Sandrolini, L.; Mariscotti, A. Impact of short-time fourier transform parameters on the accuracy of EMI spectra estimates in the 2-150 kHz supraharmonic interval. Electr. Power Syst. Res. 2021, 195, 107130. [Google Scholar] [CrossRef]
- Mariscotti, A.; Sandrolini, L.; Pasini, G. Variability caused by setup and operating conditions for conducted EMI of switched mode power supplies over the 2–1000 kHz interval. IEEE Trans. Instrum. Meas. 2022, 71, 1–9. [Google Scholar] [CrossRef]
- Lodetti, S.; Bruna, J.; Melero, J.J.; Khokhlov, V.; Meyer, J. A robust wavelet-based hybrid method for the simultaneous measurement of harmonic and supraharmonic distortion. IEEE Trans. Instrum. Meas. 2020, 69, 6704–6712. [Google Scholar] [CrossRef]
- Li, K.; Zhao, W.; Li, S.; Huang, S. Supraharmonics Measurement Based on Colored Noise Suppressed Matrix Pencil Method. IEEE Access 2023, 11, 94346–94357. [Google Scholar] [CrossRef]
- Mendes, T.M.; Duque, C.A.; Silva, L.R.; Ferreira, D.D.; Meyer, J. Supraharmonic analysis by filter bank and compressive sensing. Electr. Power Syst. Res. 2019, 169, 105–114. [Google Scholar] [CrossRef]
- Wang, J.; Qiao, W.; Qu, L. Wind turbine bearing fault diagnosis based on sparse representation of condition monitoring signals. IEEE Trans. Ind. Appl. 2018, 55, 1844–1852. [Google Scholar] [CrossRef]
- Borkowski, J.; Mroczka, J.; Matusiak, A.; Kania, D. Frequency estimation in interpolated discrete fourier transform with generalized maximum sidelobe decay windows for the control of power. IEEE Trans. Ind. Informat. 2020, 17, 1614–1624. [Google Scholar] [CrossRef]
- Liu, Z.; Himmel, J.; Bonfig, K.W. Improved processing of harmonics and interharmonics by time-domain averaging. IEEE Trans. Power Deliv. 2005, 20, 2370–2380. [Google Scholar] [CrossRef]
- Qian, H.; Zhao, R.; Chen, T. Interharmonics analysis based on interpolating windowed FFT algorithm. IEEE Trans. Power Deliv. 2007, 22, 1064–1069. [Google Scholar] [CrossRef]
- Rife, D.C.; Vincent, G.A. Use of the discrete Fourier transform in the measurement of frequencies and levels of tones. Bell Syst. Tech. J. 1970, 49, 197–228. [Google Scholar] [CrossRef]
- Volarić, I.; Sucic, V. Adaptive thresholding for sparse image reconstruction. Information 2024, 15, 71. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, J.; Liu, W.; Liu, X.; Ma, C.; Xu, L. A temporal Convolutional Network for EMG compressed sensing reconstruction. Measurement 2024, 225, 113944. [Google Scholar] [CrossRef]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, W.; Cui, Y.; Lu, L.; Lin, J. On recovery of block sparse signals via block compressive sampling matching pursuit. IEEE Access 2019, 7, 175554–175563. [Google Scholar] [CrossRef]
- Su, T.; Yang, M.; Jin, T.; Flesch, R.C.C. Power harmonic and interharmonic detection method in renewable power based on Nuttall double-window all-phase FFT algorithm. IET Renew. Power Gener. 2018, 12, 953–961. [Google Scholar] [CrossRef]
- Li, Q.; Yang, A.; Guo, P.; Xin, X. High accuracy and low complexity frequency offset estimation method based on all phase FFT for M-QAM coherent optical systems. IEEE Photon. J. 2021, 14, 1–6. [Google Scholar] [CrossRef]
- Deng, Y.; Zhao, G.; Zhu, K.; Zhou, T.; Xu, Z. NCAFI: Nuttall convolution window all-phase FFT interpolation-based harmonic detection algorithm for infrared imaging detection. Infrared Phys. Technol. 2022, 125, 104310. [Google Scholar] [CrossRef]
Window Function Type | Main Lobe Width | Sidelobe Peak Level/ (dB) | Sidelobe Attenuation Rate/ (dB/(oct)) |
---|---|---|---|
Hanning | 8π/N | −31.79 | 18 |
Blackman | 12π/N | −58.83 | 18 |
Six-term MSD | 24π/N | −87.94 | 66 |
Self-convolutional MSD | 24π/N | −175.88 | 132 |
fh/(kHz) | Ah/(V) | φh/(°) |
---|---|---|
10.2 | 1 | 90 |
20.2 | 0.5 | 30 |
29.8 | 0.6 | 45 |
50.0 | 0.8 | 60 |
70.2 | 0.4 | 90 |
90.2 | 0.2 | 60 |
Frequency (kHz) | MCS-OMP | CoSaMP | SaCoSaMP | ISWApCoSaMP |
---|---|---|---|---|
10.2 | 2.13 × 10−2 | 5.83 × 10−4 | 4.12 × 10−7 | 2.26 × 10−9 |
20.2 | 2.32 × 10−2 | 1.06 × 10−3 | 5.78 × 10−7 | 3.76 × 10−9 |
29.8 | 8.93 × 10−7 | 3.30 × 10−7 | 6.34 × 10−7 | 5.44 × 10−9 |
50.0 | 4.94 × 10−7 | 4.15 × 10−4 | 4.10 × 10−7 | 4.83 × 10−6 |
70.2 | 2.99 × 10−7 | 9.96 × 10−3 | 1.07 × 10−4 | 4.96 × 10−9 |
90.2 | 4.24 × 10−7 | 9.73 × 10−8 | 2.19 × 10−4 | 3.17 × 10−6 |
Frequency (kHz) | MCS-OMP | CoSaMP | SaCoSaMP | ISWApCoSaMP |
---|---|---|---|---|
10.2 | 4.53 × 10−11 | 1.40 × 10−7 | 2.45 × 10−10 | 1.88 × 10−13 |
20.2 | 8.36 × 10−12 | 1.22 × 10−7 | 1.27 × 10−9 | 3.38 × 10−14 |
29.8 | 5.32 × 10−10 | 4.04 × 10−11 | 4.57 × 10−10 | 1.98 × 10−13 |
50.0 | 1.86 × 10−9 | 2.10 × 10−8 | 3.69 × 10−10 | 1.62 × 10−10 |
70.2 | 2.37 × 10−9 | 2.59 × 10−7 | 2.41 × 10−9 | 4.79 × 10−14 |
90.2 | 7.37 × 10−10 | 8.81 × 10−12 | 2.17 × 10−9 | 5.90 × 10−11 |
Frequency (kHz) | MCS-OMP | CoSaMP | SaCoSaMP | ISWApCoSaMP |
---|---|---|---|---|
10.2 | 4.85 × 10−6 | 1.92 × 10−8 | 4.19 × 10−7 | 3.76 × 10−10 |
20.2 | 8.36 × 10−7 | 2.34 × 10−8 | 1.09 × 10−6 | 1.86 × 10−9 |
29.8 | 7.68 × 10−7 | 8.38 × 10−9 | 6.62 × 10−7 | 1.58 × 10−9 |
50.0 | 1.96 × 10−6 | 3.22 × 10−10 | 7.48 × 10−7 | 1.52 × 10−10 |
70.2 | 4.27 × 10−5 | 2.54 × 10−9 | 4.69 × 10−7 | 6.84 × 10−10 |
90.2 | 1.07 × 10−4 | 4.84 × 10−8 | 5.59 × 10−6 | 2.46 × 10−9 |
Algorithm | MCS-OMP | CoSaMP | SaCoSaMP | ISWApCoSaMP |
---|---|---|---|---|
Time/(s) | 1.163852 | 1.292706 | 1.875785 | 1.330277 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Y.; Yan, W.; Wang, W. Supraharmonic Detection Algorithm Based on Interpolation of Self-Convolutional Window All-Phase Compressive Sampling Matching Pursuit. Information 2024, 15, 127. https://doi.org/10.3390/info15030127
Ji Y, Yan W, Wang W. Supraharmonic Detection Algorithm Based on Interpolation of Self-Convolutional Window All-Phase Compressive Sampling Matching Pursuit. Information. 2024; 15(3):127. https://doi.org/10.3390/info15030127
Chicago/Turabian StyleJi, Yu, Wenxu Yan, and Wenyuan Wang. 2024. "Supraharmonic Detection Algorithm Based on Interpolation of Self-Convolutional Window All-Phase Compressive Sampling Matching Pursuit" Information 15, no. 3: 127. https://doi.org/10.3390/info15030127
APA StyleJi, Y., Yan, W., & Wang, W. (2024). Supraharmonic Detection Algorithm Based on Interpolation of Self-Convolutional Window All-Phase Compressive Sampling Matching Pursuit. Information, 15(3), 127. https://doi.org/10.3390/info15030127