Identification of Emerging Technological Hotspots from a Multi-Source Information Perspective: Case Study on Blockchain Financial Technology
Abstract
:1. Introduction
2. Literature Review
2.1. Research on Identification Methods for Emerging Technologies
2.2. Research on Blockchain Financial Technology
3. Emerging Technology Hot Topic Identification Method Based on Multi-Source Information
3.1. Research Approach
3.2. Research Methods
3.2.1. LDA Topic Model
3.2.2. Dual-Index Theme Lifecycle Analysis Method
4. Empirical Research
4.1. Multi-Source Information Acquisition
4.2. Multi-Source Information Preprocessing
4.3. Word Frequency Statistical Analysis
4.4. Theme Identification Based on Multi-Source Information
4.5. Hot Topic Extraction
4.6. Validity Analysis
4.7. Results Analysis
4.7.1. Topic 17: Fintech
4.7.2. Topic 4: Digital Invoices
4.7.3. Topic 2: Cross-Border Payments
4.7.4. Topic 6: Supply Chain Finance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zamani, M.; Yalcin, H.; Naeini, A.B.; Zeba, G.; Daim, T.U. Developing metrics for emerging technologies: Identification and assessment. Technol. Forecast. Soc. Chang. 2022, 176, 121456. [Google Scholar] [CrossRef]
- Zhang, P.; Li, T.; Wang, G.; Luo, C.; Chen, H.; Zhang, J.; Wang, D.; Yu, Z. Multi-source information fusion based on rough set theory: A review. Inf. Fusion 2021, 68, 85–117. [Google Scholar] [CrossRef]
- Nti, I.K.; Adekoya, A.F.; Weyori, B.A. A novel multi-source information-fusion predictive framework based on deep neural networks for accuracy enhancement in stock market prediction. J. Big Data 2021, 8, 17. [Google Scholar] [CrossRef]
- Javed, A.R.; Shahzad, F.; ur Rehman, S.; Zikria, Y.B.; Razzak, I.; Jalil, Z.; Xu, G. Future smart cities: Requirements, emerging technologies, applications, challenges, and future aspects. Cities 2022, 129, 103794. [Google Scholar] [CrossRef]
- Jiang, L.; Zhang, T.; Huang, T. Empirical research of hot topic recognition and its evolution path method for scientific and technological literature. J. Adv. Comput. Intell. Intell. Inform. 2022, 26, 299–308. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R.; Rab, S. Blockchain technology applications in healthcare: An overview. Int. J. Intell. Netw. 2021, 2, 130–139. [Google Scholar] [CrossRef]
- Rahmani, A.; Vaziri Nezhad, R.; Ahmadi Nia, H.; Rezaeian, M. Methodological principles and applications of the Delphi method: A narrative review. J. Rafsanjan Univ. Med. Sci. 2020, 19, 515–538. [Google Scholar] [CrossRef]
- de Liaño, B.G.G.; Pascual-Ezama, D. The Delphi Method as a technique to study Validity of Content. An. Psicol. 2012, 28, 1011–1020. [Google Scholar]
- Zhai, Y.; Ye, Q.; Lu, S.; Jia, M.; Ji, R.; Tian, Y. Multiple expert brainstorming for domain adaptive person re-identification. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part VII 16. pp. 594–611. [Google Scholar]
- Zhang, K. The evaluation about options of innovation method application enterprise’s demand. Economist 2011, 1, 45–50. [Google Scholar]
- Zhang, H.; Daim, T.; Zhang, Y.P. Integrating patent analysis into technology roadmapping: A latent dirichlet allocation based technology assessment and roadmapping in the field of Blockchain. Technol. Forecast. Soc. Chang. 2021, 167, 120729. [Google Scholar] [CrossRef]
- Galvin, R. Science Roadmaps. Science 1998, 280, 803. [Google Scholar] [CrossRef]
- Phaal, R.; Farrukh, C.J.P.; Probert, D.R. Technology roadmapping—A planning framework for evolution and revolution. Technol. Forecast. Soc. Chang. 2004, 71, 5–26. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Zhang, Y.; Wang, M.; Mao, C. Optimization of Topic Recognition Model for News Texts Based on LDA. J. Digit. Inf. Manag. 2019, 17, 257. [Google Scholar] [CrossRef]
- Breitzman, A.; Thomas, P. The Emerging Clusters Model: A tool for identifying emerging technologies across multiple patent systems. Res. Policy 2015, 44, 195–205. [Google Scholar] [CrossRef]
- Rotolo, D.; Hicks, D.; Martin, B.R. What is an emerging technology? Res. Policy 2015, 44, 1827–1843. [Google Scholar] [CrossRef]
- Brady, S.R. Utilizing and adapting the Delphi method for use in qualitative research. Int. J. Qual. Methods 2015, 14, 1609406915621381. [Google Scholar] [CrossRef]
- Armacost, R.L.; Hosseini, J.C.; Pet-Edwards, J. Using the Analytic Hierarchy Process as a Two-phase Integrated Decision Approach for Large Nominal Groups. Group Decis. Negot. 1999, 8, 535–555. [Google Scholar] [CrossRef]
- Shen, Y.-C.; Chang, S.-H.; Lin, G.T.; Yu, H.-C. A hybrid selection model for emerging technology. Technol. Forecast. Soc. Chang. 2010, 77, 151–166. [Google Scholar] [CrossRef]
- Bildosola, I.; Río-Bélver, R.M.; Garechana, G.; Cilleruelo, E. TeknoRoadmap, an approach for depicting emerging technologies. Technol. Forecast. Soc. Chang. 2017, 117, 25–37. [Google Scholar] [CrossRef]
- Huang, L.; Lu, W. Study on the Identification of Emerging Technology by an Attribute Synthetic Measure Model. Sci. Res. Manag. 2009, 30, 190–194. [Google Scholar]
- Kleinberg, J. Bursty and hierarchical structure in streams. In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, AB, Canada, 23–26 July 2002; pp. 91–101. [Google Scholar]
- CiteSpace, C.C., II. Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar]
- Liang, Y.; Liu, Z.; Yang, Z. Analysis of knowledge flow theory in citation analysis. Stud. Sci. Sci. 2010, 28, 668–674. [Google Scholar]
- Li, B.; Chen, X. Identification of emerging technologies in nanotechnology based on citing coupling clustering of patents. J. Intell. 2015, 34, 35–40. [Google Scholar]
- Li, X.; Wang, J.; Yang, Z. Identifying emerging technologies based on subject–action-object. J. Intell. 2016, 35, 80–84. [Google Scholar]
- Yang, C.; Zhu, D.; Wang, X.; Zhu, F.; Heng, X. Technical topic analysis in patents: SAO-based LDA modeling. Libr. Inf. Serv. 2017, 61, 86–96. [Google Scholar]
- Zhijun, R.; Xiaodong, Q.; Jiangtao, Z. Discover Emerging Technologies with LDA Model. Data Anal. Knowl. Discov. 2016, 32, 60–69. [Google Scholar]
- Dong, F.; Liu, Y.; Zhou, Y. Prediction of emerging technologies based on LDA SVM multi class abstract of paper classification. J. Intell. 2017, 36, 40–45. [Google Scholar]
- Gong, S.; Guo, J. Research on Innovation of Technology Finance Model Based on Blockchain. Sci. Manag. Res. 2016, 34, 110–113. [Google Scholar]
- Ding, X. From Internet finance to digital finance: Development trend, characteristics and ideas. J. Nanjing Univ. (Philos. Humanit. Soc. Sci.) 2021, 58, 28–44+162. [Google Scholar]
- Han, J.; Han, M. Research on Innovation of Supply Chain Finance Based on Blockchain Technology. Qilu J. 2022, 2, 131–141. [Google Scholar]
- Liu, Y.; Feng, L. Blockchain Supply Chain Finance and Bank Run Risk. Syst. Sci. Math. 2024, 1–22. [Google Scholar]
- Han, J.; Han, H.; Zhou, Q. Risk Regulation of Digital Finance Based on Blockchain Technology. Sci. Manag. Res. 2024, 42, 137–145. [Google Scholar]
- Su, G. Empowering Digital Innovation in Enterprises with Financial Technology: Theoretical Mechanisms and Empirical Tests. Stat. Decis. Mak. 2024, 40, 161–166. [Google Scholar]
- He, Z. The Impact and Optimization of Electronic Invoices and Digital Payments on the Financial and Tax System. Bus. News 2024, 7, 167–170. [Google Scholar]
- Zheng, D. Data Risk and Governance Path of Cross border Financial Services in the Digital Economy Era. Res. Financ. Issues 2024, 8, 64–74. [Google Scholar]
- Mao, J.; Xie, J.; Gao, Y.; Tang, Q.; Li, Z.; Zhang, B. Navigating Growth: The Nexus of Supply Chain Finance, Digital Maturity, and Financial Health in Chinese A-Share Listed Corporations. Sustainability 2024, 16, 5418. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, S.; Chen, M.; Wu, Y.; Chen, Z. The Sustainable Development of Financial Topic Detection and Trend Prediction by Data Mining. Sustainability 2021, 13, 7585. [Google Scholar] [CrossRef]
- Goghie, A.S. Tokenization and the banking system: Redefining authority in the blockchain era. Compet. Chang. 2024, 10245294241258255. [Google Scholar] [CrossRef]
- Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent dirichlet allocation. J. Mach. Learn. Res. 2003, 3, 993–1022. [Google Scholar]
- Tu, Y.-N.; Seng, J.-L. Indices of novelty for emerging topic detection. Inf. Process. Manag. 2012, 48, 303–325. [Google Scholar] [CrossRef]
- Verhoeven, D.; Bakker, J.; Veugelers, R. Measuring technological novelty with patent-based indicators. Res. Policy 2016, 45, 707–723. [Google Scholar] [CrossRef]
- Wu, X.; Li, H.; Zhang, Z.; Wu, Z. A review of semantic novelty research in scientific literature evaluation. Data Anal. Knowl. Discov. 2024, 8, 29–40. [Google Scholar]
- Mann, G.S.; Mimno, D.; McCallum, A. Bibliometric impact measures leveraging topic analysis. In Proceedings of the 6th ACM/IEEE-CS Joint Conference on Digital Libraries, Chapel Hill, NC, USA, 11–15 June 2006; pp. 65–74. [Google Scholar]
- Bai, J.; Yan, D.; Chen, Q. Trend Prediction of Emerging Topics Based on Topic Model and Curve Fitting. Inf. Stud. Theory Appl. 2020, 7, 130–136. [Google Scholar]
- Treleaven, P.; Brown, R.G.; Yang, D. Blockchain technology in finance. Computer 2017, 50, 14–17. [Google Scholar] [CrossRef]
- Fanning, K.; Centers, D.P. Blockchain and Its Coming Impact on Financial Services. J. Corp. Account. Financ. 2016, 27, 53–57. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Wang, Q.; Wang, J. Improved Collaborative Filtering Recommendation Algorithm. Comput. Sci. 2010, 37, 226–228+243. [Google Scholar]
- Song, B.; Suh, Y. Identifying convergence fields and technologies for industrial safety: LDA-based network analysis. Technol. Forecast. Soc. Chang. 2019, 138, 115–126. [Google Scholar] [CrossRef]
- Li, Q.; Liu, L.; Xu, M.; Wu, B.; Xiao, Y. GDTM: A Gaussian Dynamic Topic Model for Forwarding Prediction Under Complex Mechanisms. IEEE Trans. Comput. Soc. Syst. 2019, 6, 338–349. [Google Scholar] [CrossRef]
Data Type | Data Source | Data Retrieval Scope | Data Count |
---|---|---|---|
Paper Data | CNKI Database | Core Journals, CSSCI Journals, CSCD Journals (2014–2021) | 1447 |
Patent Data | CNKI Database | China Invention Patents, China Utility Model Patents, China Design Patents (2014–2021) | 2444 |
Book Data | National Library Catalog Search System | Chinese and Special Collection Database, Chinese General Book Database | 99 |
Public Opinion Data | Weibo Super Topics | Keyword “Blockchain Finance” | 654 |
Industry Report | Chinese Internet Data Information Network | Keyword “Blockchain Finance” | 29 |
Rank | Label Word | Frequency | Rank | Label Word | Frequency |
---|---|---|---|---|---|
1 | Blockchain | 8438 | 11 | Technology | 836 |
2 | Technology | 4915 | 12 | Intelligent | 831 |
3 | Finance | 2489 | 13 | Model | 822 |
4 | Regulation | 1426 | 14 | Risk | 812 |
5 | Data | 1399 | 15 | Mechanism | 798 |
6 | Digital | 1342 | 16 | Transaction | 766 |
7 | Currency | 1190 | 17 | Contract | 721 |
8 | Information | 1042 | 18 | Internet | 646 |
9 | Innovation | 937 | 19 | Economy | 645 |
10 | Supply Chain | 893 | 20 | Decentralization | 550 |
Rank | Label Word | Frequency | Rank | Label Word | Frequency |
---|---|---|---|---|---|
1 | Blockchain | 21762 | 11 | Storage | 3272 |
2 | Data | 17478 | 12 | Intelligent | 2863 |
3 | Information | 13140 | 13 | Management | 2853 |
4 | Transaction | 10748 | 14 | Payment | 2507 |
5 | System | 6187 | 15 | Service | 2096 |
6 | Business | 5549 | 16 | Encryption | 2048 |
7 | Finance | 4176 | 17 | Consensus | 2008 |
8 | Network | 3826 | 18 | Digital | 1869 |
9 | Contract | 3493 | 19 | Financing | 1404 |
10 | Assets | 3344 | 20 | Supply Chain | 1055 |
Parameter | Parameter Meaning | Value |
---|---|---|
α | Prior distribution parameter for topic distribution θ | 50/K |
β | Prior distribution parameter for topic-word distribution φ | 0.01 |
I | The maximum number of iterations allowed for LDA convergence | 100 |
K | Number of latent topics | - |
Time Period | Number of Topics | Mining Results |
---|---|---|
2014–2017 | 6 | Topic1: Decentralization; Topic2: Digital Currency; Topic3: Mobile Payment; Topic4: Online Credit; Topic5: Securities Trading; Topic6: Supply Chain Finance |
2018 | 10 | Topic1: Artificial Intelligence; Topic2: Audit; Topic3: Decentralization; Topic4: Supply Chain Finance; Topic5: Cross-border Payment; Topic6: Insurance Management; Topic7: Financial Technology; Topic8: Digital Bills; Topic9: Digital Currency; Topic10: Securities Trading |
2019 | 14 | Topic1: Audit; Topic2: Securities Trading; Topic3: Financial Technology; Topic4: Cross-border Payment; Topic5: Artificial Intelligence; Topic6: Data Provenance; Topic7: Data Security; Topic8: Insurance Management; Topic9: Digital Currency; Topic10: Decentralization; Topic11: Digital Bills; Topic12: Library and Archives Management; Topic13: Supply Chain Finance; Topic14: Consensus Mechanism |
2020 | 19 | Topic1: Insurance Management; Topic2: Decentralization; Topic3: Digital Bills; Topic4: Taxation; Topic5: Identity Authentication; Topic6: Library and Archives Management; Topic7: Supply Chain Finance; Topic8: Machine Learning; Topic9: Social Governance; Topic10: Financial Credit Reporting; Topic11: Mobile Payment; Topic12: Consensus Mechanism; Topic13: Public Trust; Topic14: Financial Technology; Topic15: Digital Currency; Topic16: Audit; Topic17: Securities Trading; Topic18: Inclusive Finance; Topic19: Cross-border Payment |
2021 | 22 | Topic1: Decentralization; Topic2: Cross-border Payment; Topic3: Digital Currency; Topic4: Digital Bills; Topic5: Taxation; Topic6: Library and Archives Management; Topic7: Machine Learning; Topic8: Social Governance; Topic9: Insurance Management; Topic10: Data Security; Topic11: Financial Credit Reporting; Topic12: Public Trust; Topic13: Mobile Payment; Topic14: Consensus Mechanism; Topic15: Smart Contracts; Topic16: Supply Chain Finance; Topic17: Financial Technology; Topic18: Audit; Topic19: Securities Trading; Topic20: Inclusive Finance; Topic21: Contract Security and Identity Authentication; Topic22: Loan Trading |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, R.; Bao, Z.; Jia, J.; Lv, K. Identification of Emerging Technological Hotspots from a Multi-Source Information Perspective: Case Study on Blockchain Financial Technology. Information 2024, 15, 581. https://doi.org/10.3390/info15090581
Hu R, Bao Z, Jia J, Lv K. Identification of Emerging Technological Hotspots from a Multi-Source Information Perspective: Case Study on Blockchain Financial Technology. Information. 2024; 15(9):581. https://doi.org/10.3390/info15090581
Chicago/Turabian StyleHu, Ruiyu, Zemenghong Bao, Juncheng Jia, and Kun Lv. 2024. "Identification of Emerging Technological Hotspots from a Multi-Source Information Perspective: Case Study on Blockchain Financial Technology" Information 15, no. 9: 581. https://doi.org/10.3390/info15090581
APA StyleHu, R., Bao, Z., Jia, J., & Lv, K. (2024). Identification of Emerging Technological Hotspots from a Multi-Source Information Perspective: Case Study on Blockchain Financial Technology. Information, 15(9), 581. https://doi.org/10.3390/info15090581