A Survey of Open-Source Autonomous Driving Systems and Their Impact on Research
Abstract
:1. Introduction
1.1. Related Work
1.2. Motivation and Contributions
- Comprehensive Overview: The survey thoroughly examines leading open-source ADS, highlighting their strengths and limitations.
- Research Domain Identification: The survey identifies the applicability and utilization of prominent ADS in key research areas.
- Trend Insights: The survey offers an in-depth understanding of current trends and developments, particularly in interoperability with emerging technologies such as AI/ML solutions and edge computing.
1.3. Survey Organization
2. Materials and Methods
3. Overview of Prominent Open-Source ADS
3.1. Autoware
3.2. Baidu Apollo
3.3. NVIDIA Drive
3.4. OpenPilot
3.5. Openness of Prominent Open-Source ADS
4. Use of Open-Source ADS Platforms in Academic Research
- Sensing and Perception.
- Localization and Mapping.
- Decision Making and Planning.
- Connectivity and Communication.
- Safety, Testing, and Validation.
- Real-Time Aspects.
- Software Quality and Cybersecurity Risks.
- Application of Artificial Intelligence.
4.1. Sensing and Perception
4.2. Localization and Mapping
4.3. Decision Making and Planning
4.4. Connectivity and Communication
4.5. Real-Time Aspects
4.6. Safety, Testing, and Validation
4.7. Software Quality and Cybersecurity Risks
4.8. Application of Artificial Intelligence
5. Impact of Prominent Open-Source ADS Platforms on Research
6. Strengths and Weaknesses of Leading Open-Source ADS Platforms
Interoperability with New Technologies and Future Directions
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ACC | Adaptive cruise control. |
ADAS | Advanced Driver-Assistance System. |
ADS | Autonomous driving system. |
AI | Artificial Intelligence. |
AV | Autonomous vehicle. |
CAN | Controller Area Network. |
CARLA | Car Learning to Act. |
CAV | Connected automated vehicle. |
CNN | Convolutional neural network. |
DBW | Drive-By-Wire. |
DNN | Deep Neural Network. |
GNSS | Global Navigation Satellite System. |
GPU | Graphics Processing Unit. |
HD maps | High-Definition Maps. |
IMU | Inertial Measurement Unit. |
LGSVL | LG Silicon Valley Lab Simulator. |
LiDAR | Light Detection and Ranging. |
ML | Machine learning. |
R-CNN | Recursive Convolutional Neural Network. |
RL | Reinforcement learning. |
RNN | Recurrent Neural Network. |
ROS | Robot Operating System. |
SAE | Society of Automotive Engineers. |
SLAM | Simultaneous Localization and Mapping. |
V2X | Vehicle-to-Everything. |
References
- Autonomous Vehicle Market Size & Share Analysis—Trends & Forecasts (2025–2030). Mordor Intelligence. Available online: https://www.mordorintelligence.com/industry-reports/autonomous-driverless-cars-market-potential-estimation (accessed on 15 February 2025).
- Anderson, J.M.; Kalra, N.; Stanley, K.D.; Sorensen, P.; Samaras, C.; Oluwatola, O.A. Autonomous Vehicle Technology: A Guide for Policymakers; RAND Corp.: Santa Monica, CA, USA, 2016; ISBN 978-0-8330-8398-2. [Google Scholar]
- SAE International. Levels of Driving. Available online: https://www.sae.org/site/blog/sae-j3016-update (accessed on 15 February 2025).
- Cusumano, M.A. Self-driving vehicle technology: Progress and promises. Commun. ACM 2020, 63, 20–22. [Google Scholar] [CrossRef]
- Chai, L. Self-driving cars closer to reality. RoboGlobal White Paper. 2020, pp. 1–13. Available online: https://f.hubspotusercontent40.net/hubfs/7764048/White%20Papers/Autonomous%20Vehicles.pdf (accessed on 15 February 2025).
- DARPA Grand Challenge. Available online: https://en.wikipedia.org/wiki/DARPA_Grand_Challenge (accessed on 15 February 2025).
- TUM-FTM Autonomous Vehicle Lab. Available online: https://www.mos.ed.tum.de/en/ftm/labs/autonomous-vehicle/ (accessed on 15 February 2025).
- PEGASUS Project. Available online: https://pegasus-family.de/ (accessed on 15 February 2025).
- Autoware Foundation. Available online: https://www.autoware.org/ (accessed on 15 February 2025).
- Baidu Apollo. Available online: https://github.com/ApolloAuto/apollo (accessed on 15 February 2025).
- Skruch, P.; Długosz, M.; Szelest, M.; Morys-Magiera, A. Duckietown project pros and cons. In Proceedings of the 2023 21st International Conference on Emerging eLearning Technologies and Applications (ICETA), Stary Smokovec, Slovakia, 26–27 October 2023; pp. 446–450. [Google Scholar] [CrossRef]
- Bechtel, M.G.; McEllhiney, E.; Kim, M.; Yun, H. DeepPicar: A low-cost deep neural network-based autonomous car. In Proceedings of the 2018 IEEE 24th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), Hakodate, Japan, 28–31 August 2018; pp. 11–21. [Google Scholar] [CrossRef]
- Alsherif, M.; Daowd, M.; Bassiuny, A.M.; Metered, H.A. Utilizing transfer learning in the Udacity simulator to train a self-driving car for steering angle prediction. In Proceedings of the 2023 Eleventh International Conference on Intelligent Computing and Information Systems (ICICIS), Cairo, Egypt, 25–27 November 2023; pp. 134–139. [Google Scholar] [CrossRef]
- PolySync. Available online: https://polysync-xrcc.squarespace.com/home (accessed on 15 February 2025).
- OpenXC. Available online: https://openxcplatform.com/ (accessed on 15 February 2025).
- Nvidia-Drive. Available online: https://www.nvidia.com/en-us/self-driving-cars/ (accessed on 15 February 2025).
- Comma.ai OpenPilot. Available online: https://github.com/commaai/openpilot (accessed on 15 February 2025).
- Magosi, Z.F.; Li, H.; Rosenberger, P.; Wan, L.; Eichberger, A. A Survey on Modelling of Automotive Radar Sensors for Virtual Test and Validation of Automated Driving. Sensors 2022, 22, 5693. [Google Scholar] [CrossRef]
- Fernandes, D.; Silva, A.; Névoa, R.; Simões, C.; Gonzalez, D.; Guevara, M.; Novais, P.; Monteiro, J.; Melo-Pinto, P. Point-cloud based 3D object detection and classification methods for self-driving applications: A survey and taxonomy. Inf. Fusion 2021, 68, 161–191. [Google Scholar] [CrossRef]
- Sharafutdinov, D.; Griguletskii, M.; Kopanev, P.; Kurenkov, M.; Ferrer, G.; Burkov, A.; Gonnochenko, A.; Tsetserukou, D. Comparison of modern open-source Visual SLAM approaches. J. Intell. Robot. Syst. 2023, 107, 43. [Google Scholar] [CrossRef]
- Tong, K.; Ajanovic, Z.; Stettinger, G. Overview of tools supporting planning for automated driving. In Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece, 20–23 September 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Badue, C.; Guidolini, R.; Carneiro, R.V.; Azevedo, P.; Cardoso, V.B.; Forechi, A.; Jesus, L.; Berriel, R.; Paixão, T.M.; Mutz, F.; et al. Self-driving cars: A survey. Expert. Syst. Appl. 2021, 165, 113816. [Google Scholar] [CrossRef]
- Yurtsever, E.; Lambert, J.; Carballo, A.; Takeda, K. A survey of autonomous driving: Common practices and emerging technologies. IEEE Access 2020, 8, 58443–58469. [Google Scholar] [CrossRef]
- Mihalj, T.; Li, H.; Babić, D.; Lex, C.; Jeudy, M.; Zovak, G.; Babić, D.; Eichberger, A. Road Infrastructure Challenges Faced by Automated Driving: A Review. Appl. Sci. 2022, 12, 3477. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, H.; Wang, W.; Wang, X. Virtual tools for testing autonomous driving: A survey and benchmark of simulators, datasets, and competitions. Electronics 2024, 13, 3486. [Google Scholar] [CrossRef]
- Silva, I.; Silva, H.; Botelho, F.; Pendão, C. Realistic 3D simulators for automotive: A review of main applications and features. Sensors 2024, 24, 5880. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Ros, G.; Codevilla, F.; Lopez, A.; Koltun, V. CARLA: An Open Urban Driving Simulator. In Proceedings of the 1st Annual Conference on Robot Learning, Mountain View, CA, USA, 13–15 November 2017; pp. 1–16. Available online: https://proceedings.mlr.press/v78/dosovitskiy17a.html (accessed on 15 February 2025).
- Shah, S.; Dey, D.; Lovett, C.; Kapoor, A. AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles. Springer Proc. Adv. Robot. 2017, 5, 621–635. [Google Scholar] [CrossRef]
- Rong, G.; Shin, B.H.; Tabatabaee, H.; Lu, Q.; Lemke, S.; Možeiko, M.; Boise, E.; Uhm, G.; Gerow, M.; Mehta, S.; et al. LGSVL Simulator: A High Fidelity Simulator for Autonomous Driving. In Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece, 20–23 September 2020. [Google Scholar] [CrossRef]
- Kusari, A.; Li, P.; Yang, H.; Punshi, N.; Rasulis, M.; Bogard, S.; LeBlanc, D.J. Enhancing SUMO Simulator for Simulation-Based Testing and Validation of Autonomous Vehicles. In Proceedings of the 2022 IEEE Intelligent Vehicles Symposium (IV), Aachen, Germany, 5–9 June 2022; pp. 829–835. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, W.; Zhang, S.; Yan, W.; Shen, Q.; Wang, C.; Yang, M. Choose your simulator wisely: A review on open-source simulators for autonomous driving. IEEE Trans. Intell. Veh. 2024, 9, 4861–4876. [Google Scholar] [CrossRef]
- Kaur, P.; Taghavi, S.; Tian, Z.; Shi, W. A survey on simulators for testing self-driving cars. In Proceedings of the 2021 Fourth International Conference on Connected and Autonomous Driving (MetroCAD), Detroit, MI, USA, 28–29 April 2021; pp. 62–70. [Google Scholar] [CrossRef]
- Gupta, A.; Anpalagan, A.; Guan, L.; Khwaja, A.S. Deep learning for object detection and scene perception in self-driving cars: Survey, challenges, and open issues. Array 2021, 10, 100057. [Google Scholar] [CrossRef]
- Le Mero, L.; Yi, D.; Dianati, M.; Mouzakitis, A. A survey on imitation learning techniques for end-to-end autonomous vehicles. IEEE Trans. Intell. Transp. Syst. 2022, 23, 14128–14147. [Google Scholar] [CrossRef]
- Garikapati, D.; Shetiya, S.S. Autonomous vehicles: Evolution of artificial intelligence and the current industry landscape. Big Data Cogn. Comput. 2024, 8, 42. [Google Scholar] [CrossRef]
- Yang, H.; Zhou, Y.; Wu, J.; Liu, H.; Yang, L.; Lv, C. Human-Guided Continual Learning for Personalized Decision-Making of Autonomous Driving. IEEE Trans. Intell. Transp. Syst. 2025, 26, 5435–5447. [Google Scholar] [CrossRef]
- Wu, J.; Zhou, Y.; Yang, H.; Huang, Z.; Lv, C. Human-Guided Reinforcement Learning with Sim-to-Real Transfer for Autonomous Navigation. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 14745–14759. [Google Scholar] [CrossRef]
- Guo, H.; Li, J.; Saravanan, N.K.; Wishart, J.; Zhao, J. Developing an automated vehicle research platform by integrating Autoware with the DataSpeed drive-by-wire system. SAE Tech. Pap. 2024. [CrossRef]
- Autoware Workshops. Available online: https://autoware.org/iv2025/ (accessed on 15 February 2025).
- Autoware NIT Academy. Available online: https://autoware.org/nit-academy-joins-the-autoware-foundation/ (accessed on 15 February 2025).
- Apollo Game Engine Sim. Available online: https://developer.apollo.auto/gamesim.html (accessed on 15 February 2025).
- Apollo DevCenter. Available online: https://developer.apollo.auto/devcenter/devcenter.html (accessed on 15 February 2025).
- NVIDIA AI Training Platform. Available online: https://www.nvidia.com/en-us/self-driving-cars/ai-training/ (accessed on 15 February 2025).
- CCAM-SIRIA Roadmap. Available online: https://www.ccam.eu/wp-content/uploads/2023/11/CCAM-SRIA-Update-2023.pdf (accessed on 15 February 2025).
- Chakaravarthy, R.V.; Kwon, H.; Jiang, H. Vision control unit in fully self-driving vehicles using Xilinx MPSoC and open-source stack. In Proceedings of the 2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC), Tokyo, Japan, 18–21 January 2021; pp. 311–317. [Google Scholar]
- Xu, J.; Yao, Y. Poster: A demo of Autoware-based autonomous driving using depth sensing. In Proceedings of the 2023 IEEE/ACM Symposium on Edge Computing (SEC), Wilmington, DE, USA, 6–9 December 2023; pp. 261–263. [Google Scholar] [CrossRef]
- Senel, N.; Kefferpütz, K.; Doycheva, K.; Elger, G. Multi-Sensor Data Fusion for Real-Time Multi-Object Tracking. Processes 2023, 11, 501. [Google Scholar] [CrossRef]
- Gu, J.; Lind, A.; Chhetri, T.R.; Bellone, M.; Sell, R. End-to-End Multimodal Sensor Dataset Collection Framework for Autonomous Vehicles. Sensors 2023, 23, 6783. [Google Scholar] [CrossRef]
- Yin, L.; Luo, B.; Wang, W.; Yu, H.; Wang, C.; Li, C. CoMask: Corresponding Mask-Based End-to-End Extrinsic Calibration of the Camera and LiDAR. Remote Sens. 2020, 12, 1925. [Google Scholar] [CrossRef]
- Genser, S.; Muckenhuber, S.; Solmaz, S.; Reckenzaun, J. Development and Experimental Validation of an Intelligent Camera Model for Automated driving. Sensors 2021, 21, 7583. [Google Scholar] [CrossRef]
- Shikishima, J.; Urasaki, K.; Tasaki, T. PMOD-Net: Point-cloud-map-based metric scale obstacle detection by using a monocular camera. Adv. Robot. 2022, 37, 458–466. [Google Scholar] [CrossRef]
- Hirabayashi, M.; Sujiwo, A.; Monrroy, A.; Kato, S.; Edahiro, M. Traffic light recognition using high-definition map features. Robot. Auton. Syst. 2019, 111, 62–72. [Google Scholar] [CrossRef]
- Dragojević, M.; Stević, S.; Krunić, M.; Lukić, N. Advanced lane finding prototype based on Autoware platform. In Proceedings of the 2020 Zooming Innovation in Consumer Technologies Conference (ZINC), Online, 26–27 May 2020; pp. 169–173. [Google Scholar] [CrossRef]
- Li, H.; Bamminger, N.; Magosi, Z.F.; Feichtinger, C.; Zhao, Y.; Mihalj, T.; Orucevic, F.; Eichberger, A. The Effect of Rainfall and Illumination on Automotive Sensors Detection Performance. Sustainability 2023, 15, 7260. [Google Scholar] [CrossRef]
- Li, C.; Yao, G.; Long, T.; Yuan, X.; Li, P. A Novel Method for 3D Object Detection in Open-Pit Mine Based on Hybrid Solid-State LiDAR Point Cloud. J. Sens. 2024, 2024, 5854745. [Google Scholar] [CrossRef]
- Kessler, T.; Bernhard, J.; Buechel, M.; Esterle, K.; Hart, P.; Malovetz, D.; Le, M.T.; Diehl, F.; Brunner, T.; Knoll, A. Bridging the gap between open source software and vehicle hardware for autonomous driving. In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; pp. 1612–1619. [Google Scholar] [CrossRef]
- Mo, Y.; Vijay, R.; Rufus, R.; de Boer, N.; Kim, J.; Yu, M. Enhanced Perception for Autonomous Vehicles at Obstructed Intersections: An Implementation of Vehicle to Infrastructure (V2I) Collaboration. Sensors 2024, 24, 936. [Google Scholar] [CrossRef]
- Xia, X.; Meng, Z.; Han, X.; Li, H.; Tsukiji, T.; Xu, R.; Zheng, Z.; Ma, J. An automated driving systems data acquisition and analytics platform. Transp. Res. Part C Emerg. Technol. 2023, 151, 104120. [Google Scholar] [CrossRef]
- Piazzoni, A.; Cherian, J.; Dauwels, J.; Chau, L. PEM: Perception Error Model for Virtual Testing of Autonomous Vehicles. IEEE Trans. Intell. Transp. Syst. 2023, 25, 670–681. [Google Scholar] [CrossRef]
- De Moreau, S.; Almehio, Y.; Bursuc, A.; El-Idrissi, H.; Stanciulescu, B.; Moutarde, F. LED: Light enhanced depth estimation at night. arXiv 2024, arXiv:2409.08031. [Google Scholar] [CrossRef]
- Malawade, A.V.; Mortlock, T.; Al Faruque, M.A. HydraFusion: Context-Aware Selective Sensor Fusion for Robust and Efficient Autonomous Vehicle Perception. In Proceedings of the 2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS), Milano, Italy, 4–6 May 2022; pp. 68–79. [Google Scholar] [CrossRef]
- Wang, L.; Musabini, A.; Leonet, C.; Benmokhtar, R.; Breheret, A.; Yedes, C.; Bürger, F.; Boulay, T.; Perrotton, X. Holistic Parking Slot Detection with Polygon-Shaped Representations. In Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit, MI, USA, 1–5 October 2023; pp. 5797–5803. [Google Scholar] [CrossRef]
- Pham, T.; Maghoumi, M.; Jiang, W.; Jujjavarapu, B.S.S.; Sajjadi, M.; Liu, X.; Lin, H.-C.; Chen, B.-J.; Truong, G.; Fang, C.; et al. NVAutoNet: Fast and Accurate 360° 3D Visual Perception for Self Driving. In Proceedings of the 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January 2024; pp. 7361–7370. [Google Scholar] [CrossRef]
- Kemsaram, N.; Das, A.; Dubbelman, G. A Stereo Perception Framework for Autonomous Vehicles. In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 25–28 May 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Kemsaram, N.; Das, A.; Dubbelman, G. Model-Based Systems Engineering to Design an Onboard Surround Vision System for Cooperative Automated Vehicles. In Proceedings of the 2021 2nd International Informatics and Software Engineering Conference (IISEC), Ankara, Turkey, 16–17 December 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Kemsaram, N.; Das, A.; Dubbelman, G. A model-based design of an onboard stereo vision system: Obstacle motion estimation for cooperative automated vehicles. SN Appl. Sci. 2022, 4, 199. [Google Scholar] [CrossRef]
- Bhadani, R.; Bunting, M.; Nice, M.; Tran, N.M.; Elmadani, S.; Work, D.; Sprinkle, J. Strym: A Python Package for Real-time CAN Data Logging, Analysis and Visualization to Work with USB-CAN Interface. In Proceedings of the 2022 2nd Workshop on Data-Driven and Intelligent Cyber-Physical Systems for Smart Cities Workshop (DI-CPS), Milan, Italy, 3–6 May 2022; pp. 14–23. [Google Scholar] [CrossRef]
- Xia, C.; Shen, Y.; Yang, Y.; Deng, X.; Chen, S.; Xin, J.; Zheng, N. Onboard Sensors-Based Self-Localization for Autonomous Vehicle with Hierarchical Map. IEEE Trans. Cybern. 2023, 53, 4218–4231. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Hua, W.; Huang, Z.; Zha, C.; Ma, Y.; Gao, H.; Zhang, S. Online objects localization using stereo camera. In Proceedings of the 2022 IEEE International Conference on Robotics and Biomimetics (ROBIO), Jinghong, China, 5–9 December 2022; pp. 2122–2127. [Google Scholar] [CrossRef]
- Xu, K.; Xiao, X.; Miao, J.; Luo, Q. Data Driven Prediction Architecture for Autonomous Driving and its Application on Apollo Platform. In Proceedings of the 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 19 October–13 November 2020; pp. 175–181. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, Y.; Wu, F.; Liu, Y.; Sun, J.; Huang, W.; Wang, G. Route Coverage Testing for Autonomous Vehicles via Map Modeling. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 11450–11456. [Google Scholar] [CrossRef]
- Bellusci, M.; Cudrano, P.; Mentasti, S.; Cortelazzo, R.E.; Matteucci, M. Semantic interpretation of raw survey vehicle sensory data for lane-level HD map generation. Robot. Auton. Syst. 2024, 172, 104513. [Google Scholar] [CrossRef]
- Lee, J.; Lee, K.; Yoo, A.; Moon, C. Design and Implementation of Edge-Fog-Cloud System through HD Map Generation from LiDAR Data of Autonomous Vehicles. Electronics 2020, 9, 2084. [Google Scholar] [CrossRef]
- Lee, S.W.; Hsu, C.M.; Lee, M.C.; Fu, Y.T.; Atas, F.; Tsai, A. Fast point cloud feature extraction for real-time SLAM. In Proceedings of the 2019 International Automatic Control Conference (CACS), Keelung, Taiwan, 13–16 November 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Tun, W.N.; Kim, S.; Lee, J.W.; Darweesh, H. Open-source tool of vector map for path planning in Autoware autonomous driving software. In Proceedings of the 2019 IEEE International Conference on Big Data and Smart Computing (BigComp), Kyoto, Japan, 27 February–2 March 2019; pp. 1–3. [Google Scholar] [CrossRef]
- Jeong, J.; Yoon, J.Y.; Lee, H.; Darweesh, H.; Sung, W. Tutorial on High-Definition Map Generation for Automated Driving in Urban Environments. Sensors 2022, 22, 7056. [Google Scholar] [CrossRef]
- Kim, M.; Lee, S.; Ha, J.; Lee, H. Make your autonomous mobile robot on the sidewalk using the open-source LiDAR SLAM and Autoware. IEEE Trans. Intell. Veh. 2024, 1–12. [Google Scholar] [CrossRef]
- Wang, Y.; Ren, B.; Zhang, X.; Wang, P.; Wang, C.; Song, R.; Li, Y.; Meng, M.Q.H. ROLO-SLAM: Rotation-Optimized LiDAR-Only SLAM in Uneven Terrain with Ground Vehicle. J. Field Robot. 2025; 1–23, early view. [Google Scholar] [CrossRef]
- Peng, C.W.; Hsu, C.C.; Wang, W.Y. Cost Effective Mobile Mapping System for Color Point Cloud Reconstruction. Sensors 2020, 20, 6536. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.W.; Hsu, C.C.; Wang, W.Y. Mobile mapping system for automatic extraction of geodetic coordinates for traffic signs based on enhanced point cloud reconstruction. IEEE Access 2022, 10, 117374–117384. [Google Scholar] [CrossRef]
- Wischnewski, A.; Stahl, T.; Betz, J.; Lohmann, B. Vehicle Dynamics State Estimation and Localization for High Performance Race Cars. IFAC-PapersOnLine 2019, 52, 154–161. [Google Scholar] [CrossRef]
- Shami, M.B.; Kiss, G.; Haakonsen, T.A.; Lindseth, F. Geo-locating road objects using inverse Haversine formula with NVIDIA Driveworks. arXiv 2024, arXiv:2401.07582. [Google Scholar] [CrossRef]
- Kang, L.; Shen, H. A Control Policy based Driving Safety System for Autonomous Vehicles. In Proceedings of the 2021 IEEE 18th International Conference on Mobile Ad Hoc and Smart Systems (MASS), Denver, CO, USA, 4–7 October 2021; pp. 464–472. [Google Scholar] [CrossRef]
- Kang, L.; Shen, H.; Li, Y.; Xu, S. A Data-Driven Control-Policy-Based Driving Safety Analysis System for Autonomous Vehicles. IEEE Internet Things J. 2023, 10, 14058–14070. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, H.; Zhou, J.; Pan, J.; Hu, J.; Miao, J. Optimal Vehicle Path Planning Using Quadratic Optimization for Baidu Apollo Open Platform. In Proceedings of the 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 19 October–13 November 2020; pp. 978–984. [Google Scholar] [CrossRef]
- Kessler, T.; Esterle, K.; Knoll, A. Mixed-Integer Motion Planning on German Roads Within the Apollo Driving Stack. IEEE Trans. Intell. Veh. 2023, 8, 851–867. [Google Scholar] [CrossRef]
- Bui, D.T.; Li, H.; De Cristofaro, F.; Eichberger, A. Lateral Control Calibration and Testing in a Co-Simulation Framework for Automated Vehicles. Appl. Sci. 2023, 13, 12898. [Google Scholar] [CrossRef]
- Zeng, D.; Zheng, L.; Li, Y.; Zeng, J.; Wang, K. A Personalized Motion Planning Method with Driver Characteristics in Longitudinal and Lateral Directions. Electronics 2023, 12, 5021. [Google Scholar] [CrossRef]
- Li, H.; De Cristofaro, F.; Orucevic, F.; Gu, Z.; Eichberger, A. Quantitative Analysis of the Impact of Baidu Apollo Parameterization on Trajectory Planning in a Critical Scenario. Transp. Res. Procedia 2023, 73, 102–109. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Kong, Q.; Zhu, W.; Zheng, J.; Zhuang, L.; Xu, X. Motion planning in complex urban environments: An industrial application on autonomous last-mile delivery vehicles. J. Field Robot. 2022, 39, 1258–1285. [Google Scholar] [CrossRef]
- Zhang, Z.; Cheng, G.; Guo, Z.; Karimi, H.R.; Lu, Y. Parallel Parking Path Planning and Trajectory Tracking in Narrow Environments for Autonomous Unmanned Vehicles. Optim. Control Appl. Methods, 2025; early view. [Google Scholar] [CrossRef]
- Gassmann, B.; Oboril, F.; Buerkle, C.; Liu, S.; Yan, S.; Elli, M.S.; Alvarez, I.; Aerrabotu, N.; Jaber, S.; van Beek, P.; et al. Towards Standardization of AV Safety: C++ Library for Responsibility Sensitive Safety. In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; pp. 2265–2271. [Google Scholar] [CrossRef]
- Raju, V.M.; Gupta, V.; Lomate, S. Performance of open autonomous vehicle platforms: Autoware and Apollo. In Proceedings of the 2019 IEEE 5th International Conference for Convergence in Technology (I2CT), Bombay, India, 29–31 March 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Abaza, H.; Roy, D.; Fan, S.; Saidi, S.; Motakis, A. Trace-enabled timing model synthesis for ROS2-based autonomous applications. In Proceedings of the 2024 Design, Automation & Test in Europe Conference & Exhibition (DATE), Valencia, Spain, 25–27 March 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Hirata, M.; Tsukada, M.; Okumura, K.; Tamura, Y.; Ochiai, H.; Défago, X. Roadside-assisted cooperative planning using future path sharing for autonomous driving. In Proceedings of the 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), Norman, OK, USA, 27–30 September 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Lattarulo, R.; Hidalgo, C.; Arizala, A.; Perez, J. AUDRIC2: A modular and highly interconnected automated driving framework focus on decision making and vehicle control. In Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN, USA, 19–22 September 2021; pp. 763–769. [Google Scholar] [CrossRef]
- Tao, L.; Watanabe, Y.; Takada, H. A Lightweight Long-Term Vehicular Motion Prediction Method Leveraging Spatial Database and Kinematic Trajectory Data. ISPRS Int. J. Geo-Inf. 2022, 11, 463. [Google Scholar] [CrossRef]
- Gao, F.; Cheng, Y.; Gao, M.; Ma, C.; Liu, H.; Ren, Q.; Zhao, Z. Design and implementation of an autonomous driving delivery robot. In Proceedings of the 2022 41st Chinese Control Conference (CCC), Hefei, China, 25–27 July 2022; pp. 3832–3837. [Google Scholar] [CrossRef]
- Kawaguchi, E.; Sekiguchi, K.; Nonaka, K. Self-driving Electric Wheelchair in Crowded Environments Using a Fuzzy Potential Model Predictive Control. IFAC-PapersOnLine 2023, 56, 11827–11833. [Google Scholar] [CrossRef]
- Malayjerdi, E.; Sell, R.; Malayjerdi, M.; Udal, A.; Bellone, M. Practical path planning techniques in overtaking for autonomous shuttles. J. Field Robot. 2022, 39, 410–425. [Google Scholar] [CrossRef]
- Erke, S.; Bin, D.; Yiming, N.; Qi, Z.; Liang, X.; Dawei, Z. An improved A-Star based path planning algorithm for autonomous land vehicles. Int. J. Adv. Robot. Syst. 2020, 17, 1729881420962263. [Google Scholar] [CrossRef]
- Dutta, T.; Reddy, D.S.; Rajalakshmi, P. Real-Time Deep Learning Based Safe Autonomous Navigation. In Proceedings of the 2024 8th International Conference on Robotics, Control and Automation (ICRCA), Shanghai, China, 12–14 January 2024; pp. 400–406. [Google Scholar] [CrossRef]
- Chung, Y.; Yang, Y.P. Hardware-in-the-Loop Simulation of Self-Driving Electric Vehicles by Dynamic Path Planning and Model Predictive Control. Electronics 2021, 10, 2447. [Google Scholar] [CrossRef]
- Mohamed, S.; Goswami, D.; Nathan, V.; Rajappa, R.; Basten, T. A scenario- and platform-aware design flow for image-based control systems. Microprocess. Microsyst. 2020, 75, 103037. [Google Scholar] [CrossRef]
- Mohamed, S.; De, S.; Bimpisidis, K.; Nathan, V.; Goswami, D.; Corporaal, H.; Basten, T. IMACS: A Framework for Performance Evaluation of Image Approximation in a Closed-loop System. In Proceedings of the 2019 8th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 10–14 June 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Reiter, R.; Kirchengast, M.; Watzenig, D.; Diehl, M. Mixed-integer optimization-based planning for autonomous racing with obstacles and rewards. IFAC-PapersOnLine 2021, 54, 99–106. [Google Scholar] [CrossRef]
- Barrio, A.V.; Alvarez, W.M.; Olaverri-Monreal, C.; Hernández, J.E.N. Development and Validation of an Open Architecture for Autonomous Vehicle Control. In Proceedings of the 2023 IEEE Intelligent Vehicles Symposium (IV), Anchorage, AK, USA, 4–7 June 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Zhou, H.; Zhou, A.; Li, T.; Chen, D.; Peeta, S.; Laval, J. Congestion-mitigating MPC design for adaptive cruise control based on Newell’s car following model: History outperforms prediction. Transp. Res. Part C Emerg. Technol. 2022, 142, 103801. [Google Scholar] [CrossRef]
- Zhou, H.; Zhou, A.; Li, T.; Chen, D.; Peeta, S.; Laval, J. Significance of low-level control to string stability under adaptive cruise control: Algorithms, theory and experiments. Transp. Res. Part C Emerg. Technol. 2022, 140, 103697. [Google Scholar] [CrossRef]
- Zhou, H.; Zhou, A.; Laval, J.; Liu, Y.; Peeta, S. Incorporating Driver Relaxation into Factory Adaptive Cruise Control to Reduce Lane-Change Disruptions. Transp. Res. Rec. 2022, 2676, 13–27. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Huang, L.; Huang, X.; Zhao, H.; Han, X.; Xiang, J.; Wang, H. Cooperative Control for Connected Automated Vehicle Platoon with C-V2X PC5 Interface. In Proceedings of the 2023 IEEE International Conference on Unmanned Systems (ICUS), Hefei, China, 13–15 October 2023; pp. 635–640. [Google Scholar] [CrossRef]
- Zhou, Z.; Akhtar, Z.; Man, K.L.; Siddique, K. A deep learning platooning-based video information-sharing Internet of Things framework for autonomous driving systems. Int. J. Distrib. Sens. Netw. 2019, 15, 1550147719883133. [Google Scholar] [CrossRef]
- Ramos, J.; Figueiredo, A.; Almeida, P.; Aston, T.; Campos, A.; Perna, G.; Mendes, M.; Rito, P.; Sargento, S. Enhancing autonomous vehicles control: Distributed microservices with V2X integration and perception modules. In Proceedings of the 2024 IEEE International Conference on Mobility, Operations, Services and Technologies (MOST), Dallas, TX, USA, 1–3 May 2024; pp. 143–153. [Google Scholar] [CrossRef]
- Mizutani, M.; Tsukada, M.; Iida, Y.; Esaki, H. 3D maps distribution of self-driving vehicles using roadside edges. In Proceedings of the 2020 Eighth International Symposium on Computing and Networking Workshops (CANDARW), Naha, Japan, 24–27 November 2020; pp. 40–45. [Google Scholar] [CrossRef]
- Tsukada, M.; Oi, T.; Ito, A.; Hirata, M.; Esaki, H. AutoC2X: Open-source software to realize V2X cooperative perception among autonomous vehicles. In Proceedings of the 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), Victoria, BC, Canada, 18 November–16 December 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Tsukada, M.; Oi, T.; Kitazawa, M.; Esaki, H. Networked Roadside Perception Units for Autonomous Driving. Sensors 2020, 20, 5320. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Bandaru, V.K.; Wang, Y.; Romero, M.A.; Tarko, A.; Feng, Y. Cooperative Perception System for Aiding Connected and Automated Vehicle Navigation and Improving Safety. Transp. Res. Rec. 2024, 2678, 1498–1510. [Google Scholar] [CrossRef]
- Chen, C.; Tang, Q.; Hu, X.; Huang, Z. Infrastructure sensor-based cooperative perception for early stage connected and automated vehicle deployment. J. Intell. Transp. Syst. 2023, 28, 956–970. [Google Scholar] [CrossRef]
- Donzia, S.K.Y.; Kim, H.K.; Geum, Y.P. Implementation of Autoware application to real-world services based adaptive big data management system for autonomous driving. In Proceedings of the 2021 21st International Conference on Computational Science and Its Applications (ICCSA), Cagliari, Italy, 13–16 September 2021; pp. 251–257. [Google Scholar] [CrossRef]
- Hong, D.; Moon, C. Autonomous Driving System Architecture with Integrated ROS2 and Adaptive AUTOSAR. Electronics 2024, 13, 1303. [Google Scholar] [CrossRef]
- Wang, P.; Chen, Y.; Wang, C.; Liu, F.; Hu, J.; Van, N.N.N. Development and verification of cooperative adaptive cruise control via LTE-V. IET Intell. Transp. Syst. 2019, 13, 991–1000. [Google Scholar] [CrossRef]
- Kemsaram, N.; Das, A.; Dubbelman, G. Architecture Design and Development of an On-board Stereo Vision System for Cooperative Automated Vehicles. In Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece, 20–23 September 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Z.; Zhang, Y.; Shang, Z.; Wang, P.; Zou, Q.; Zhang, X.; Hu, J. Human-Lead-Platooning Cooperative Adaptive Cruise Control. IEEE Trans. Intell. Transp. Syst. 2022, 23, 18253–18272. [Google Scholar] [CrossRef]
- Chen, Q.; Ma, X.; Tang, S.; Guo, J.; Yang, Q.; Fu, S. F-cooper: Feature based cooperative perception for autonomous vehicle edge computing system using 3D point clouds. In Proceedings of the 4th ACM/IEEE Symposium on Edge Computing (SEC ’19), Arlington, Virginia, 7–9 November 2019; pp. 88–100. [Google Scholar] [CrossRef]
- Saez-Perez, J.; Wang, Q.; Alcaraz-Calero, J.M.; Garcia-Rodriguez, J. Design, Implementation, and Empirical Validation of a Framework for Remote Car Driving Using a Commercial Mobile Network. Sensors 2023, 23, 1671. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.; Hasegawa, A.; Azumi, T. Scheduling performance evaluation framework for ROS 2 applications. In Proceedings of the 2022 IEEE 24th International Conference on High Performance Computing & Communications; 8th International Conference on Data Science & Systems, Chengdu, China, 18–21 December 2022; pp. 2031–2038. [Google Scholar] [CrossRef]
- Lee, H.; Choi, Y.; Han, T.; Kim, K. Probabilistically guaranteeing end-to-end latencies in autonomous vehicle computing systems. IEEE Trans. Comput. 2022, 71, 3361–3374. [Google Scholar] [CrossRef]
- Kuboichi, T.; Hasegawa, A.; Peng, B.; Miura, K.; Funaoka, K.; Kato, S.; Azumi, T. CARET: Chain-aware ROS 2 evaluation tool. In Proceedings of the 2022 IEEE 20th International Conference on Embedded and Ubiquitous Computing (EUC), Wuhan, China, 28–30 October 2022; pp. 1–8. [Google Scholar] [CrossRef]
- Li, Z.; Hasegawa, A.; Azumi, T. Autoware_Perf: A tracing and performance analysis framework for ROS 2 applications. J. Syst. Archit. 2022, 123, 102341. [Google Scholar] [CrossRef]
- Becker, P.H.E.; Arnau, J.M.; González, A. Demystifying power and performance bottlenecks in autonomous driving systems. In Proceedings of the 2020 IEEE International Symposium on Workload Characterization (IISWC), Beijing, China, 27–29 October 2020; pp. 205–215. [Google Scholar] [CrossRef]
- Bateni, S.; Liu, C. Predictable data-driven resource management: An implementation using Autoware on autonomous platforms. In Proceedings of the 2019 IEEE Real-Time Systems Symposium (RTSS), Hong Kong, China, 3–6 December 2019; pp. 339–352. [Google Scholar] [CrossRef]
- Kato, S.; Tokunaga, S.; Maruyama, Y.; Maeda, S.; Hirabayashi, M.; Kitsukawa, Y.; Monrroy, A.; Ando, T.; Fujii, Y.; Azumi, T. Autoware on board: Enabling autonomous vehicles with embedded systems. In Proceedings of the 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS), Porto, Portugal, 11–13 April 2018; pp. 287–296. [Google Scholar] [CrossRef]
- Widerspick, C.; Bauer, W.; Fey, D. Latency Measurements for an Emulation Platform on Autonomous Driving Platform NVIDIA Drive PX2. In Proceedings of the ARCS Workshop 2018; 31st International Conference on Architecture of Computing Systems, Braunschweig, Germany, 9–12 April 2018; pp. 1–8. [Google Scholar]
- Sinha, S.; West, R. Towards an integrated vehicle management system in DriveOS. ACM Trans. Embed. Comput. Syst. 2021, 20, 82. [Google Scholar] [CrossRef]
- Odema, M.; Ferlez, J.; Shoukry, Y.; Al Faruque, M.A. SEO: Safety-Aware Energy Optimization Framework for Multi-Sensor Neural Controllers at the Edge. In Proceedings of the 2023 60th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 9–13 July 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Tabani, H.; Mazzocchetti, F.; Benedicte, P.; Abella, J.; Cazorla, F.J. Performance Analysis and Optimization Opportunities for NVIDIA Automotive GPUs. J. Parallel Distrib. Comput. 2021, 152, 21–32. [Google Scholar] [CrossRef]
- Guo, A.; Zhou, Y.; Tian, H.; Fang, C.; Sun, Y.; Sun, W.; Gao, X.; Luu, A.T.; Liu, Y.; Chen, Z. SoVAR: Building Generalizable Scenarios from Accident Reports for Autonomous Driving Testing. In Proceedings of the 2024 39th IEEE/ACM International Conference on Automated Software Engineering (ASE), Sacramento, CA, USA, 27 October–1 November 2024; pp. 268–280. [Google Scholar]
- Towey, D.; Luo, Z.; Zheng, Z.; Zhou, P.; Yang, J.; Ingkasit, P.; Lao, C.; Pike, M.; Zhang, Y. Metamorphic Testing of an Automated Parking System: An Experience Report. In Proceedings of the 2023 IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC), Torino, Italy, 26–30 June 2023; pp. 1774–1779. [Google Scholar] [CrossRef]
- Zhou, R.; Zhang, G.; Huang, H.; Wei, Z.; Zhou, H.; Jin, J.; Chang, F.; Chen, J. How would autonomous vehicles behave in real-world crash scenarios? Accid. Anal. Prev. 2024, 202, 107572. [Google Scholar] [CrossRef]
- Zhou, R.; Lin, Z.; Zhang, G.; Huang, H.; Zhou, H.; Chen, J. Evaluating Autonomous Vehicle Safety Performance Through Analysis of Pre-Crash Trajectories of Powered Two-Wheelers. IEEE Trans. Intell. Transp. Syst. 2024, 25, 13560–13572. [Google Scholar] [CrossRef]
- Li, H.; Nalic, D.; Makkapati, V.; Eichberger, A.; Fang, X.; Tettamanti, T. A Real-Time Co-Simulation Framework for Virtual Test and Validation on a High Dynamic Vehicle Test Bed. In Proceedings of the 2021 IEEE Intelligent Vehicles Symposium (IV), Nagoya, Japan, 11–17 July 2021; pp. 1132–1137. [Google Scholar] [CrossRef]
- Tian, Y.; Fu, A.; Zhang, H.; Tang, L.; Sun, J. Accelerated Verification of Autonomous Driving Systems based on Adaptive Subset Simulation. IEEE Trans. Intell. Veh. 2024, 1–11. [Google Scholar] [CrossRef]
- Li, J.; Zong, R.; Wang, Y.; Deng, W. Complexity Evaluation for Urban Intersection Scenarios in Autonomous Driving Tests: Method and Validation. Appl. Sci. 2024, 14, 10451. [Google Scholar] [CrossRef]
- Li, H.; Makkapati, V.P.; Wan, L.; Tomasch, E.; Hoschopf, H.; Eichberger, A. Validation of Automated Driving Function Based on the Apollo Platform: A Milestone for Simulation with Vehicle-in-the-Loop Testbed. Vehicles 2023, 5, 718–731. [Google Scholar] [CrossRef]
- Luan, W.; Ding, Q.; Wu, Y. Research on Integrated Environment of Autonomous Vehicle Simulation Based on Apollo. In Proceedings of the 2023 5th International Conference on Robotics, Intelligent Control and Artificial Intelligence (RICAI), Hangzhou, China, 1–3 December 2023; pp. 397–401. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, Y.; Liu, Y.; Sun, J.; Wang, G. Collision Avoidance Testing for Autonomous Driving Systems on Complete Maps. In Proceedings of the 2021 IEEE Intelligent Vehicles Symposium (IV), Nagoya, Japan, 11–17 July 2021; pp. 179–185. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, Y.; Zhang, T.; Wu, F.; Liu, Y.; Wang, G. Systematic Testing of Autonomous Driving Systems Using Map Topology-Based Scenario Classification. In Proceedings of the 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE), Melbourne, Australia, 15–19 November 2021; pp. 1342–1346. [Google Scholar] [CrossRef]
- Nguyen, V.; Huber, S.; Gambi, A. SALVO: Automated Generation of Diversified Tests for Self-driving Cars from Existing Maps. In Proceedings of the 2021 IEEE International Conference on Artificial Intelligence Testing (AITest), Oxford, UK, 23–26 August 2021; pp. 128–135. [Google Scholar] [CrossRef]
- Sun, L.; Huang, S.; Zheng, C.; Bai, T.; Hu, Z. Test Case Generation for Autonomous Driving Based on Improved Genetic Algorithm. In Proceedings of the 2023 IEEE 23rd International Conference on Software Quality, Reliability, and Security (QRS), Chiang Mai, Thailand,, 22–26 October 2023; pp. 272–278. [Google Scholar] [CrossRef]
- Li, G.; Li, Y.; Jha, S.; Tsai, T.; Sullivan, M.; Hari, S.K.S.; Kalbarczyk, Z.; Iyer, R. AV-FUZZER: Finding Safety Violations in Autonomous Driving Systems. In Proceedings of the 2020 IEEE 31st International Symposium on Software Reliability Engineering (ISSRE), Coimbra, Portugal, 12–15 October 2020; pp. 25–36. [Google Scholar] [CrossRef]
- Zhang, Q.; Hong, D.K.; Zhang, Z.; Chen, Q.A.; Mahlke, S.; Mao, Z.M. A systematic framework to identify violations of scenario-dependent driving rules in autonomous vehicle software. ACM Meas. Anal. Comput. Syst. 2021, 5, 15. [Google Scholar]
- Ebadi, H.; Moghadam, M.H.; Borg, M.; Gay, G.; Fontes, A.; Socha, K. Efficient and Effective Generation of Test Cases for Pedestrian Detection—Search-based Software Testing of Baidu Apollo in SVL. In Proceedings of the 2021 IEEE International Conference on Artificial Intelligence Testing (AITest), Oxford, UK, 23–26 August 2021; pp. 103–110. [Google Scholar] [CrossRef]
- Zhou, J.; Tang, S.; Guo, Y.; Li, Y.F.; Xue, Y. From Collision to Verdict: Responsibility Attribution for Autonomous Driving Systems Testing. In Proceedings of the 2023 IEEE 34th International Symposium on Software Reliability Engineering (ISSRE), Florence, Italy, 9–12 October 2023; pp. 321–332. [Google Scholar] [CrossRef]
- Wei, Z.; Huang, H.; Zhang, G.; Zhou, R.; Luo, X.; Li, S.; Zhou, H. Interactive Critical Scenario Generation for Autonomous Vehicles Testing Based on In-depth Crash Data Using Reinforcement Learning. IEEE Trans. Intell. Veh. 2024, 1–12. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, J.; Ding, X.; Zhang, M. RBML: A Refined Behavior Modeling Language for Safety-Critical Hybrid Systems. In Proceedings of the 2019 26th Asia-Pacific Software Engineering Conference (APSEC), Putrajaya, Malaysia, 2–5 December 2019; pp. 339–346. [Google Scholar] [CrossRef]
- Zhang, Y.; Towey, D.; Pike, M.; Han, J.C.; Zhou, G.; Yin, C.; Wang, Q.; Xie, C. Metamorphic Testing Harness for the Baidu Apollo Perception-Camera Module. In Proceedings of the 2023 IEEE/ACM 8th International Workshop on Metamorphic Testing (MET), Melbourne, Australia, 14 May 2023; pp. 9–16. [Google Scholar] [CrossRef]
- Zhou, Z.Q.; Zhu, J.; Chen, T.Y.; Towey, D. In-Place Metamorphic Testing and Exploration. In Proceedings of the 2022 IEEE/ACM 7th International Workshop on Metamorphic Testing (MET), Pittsburgh, PA, USA, 9 May 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Antonante, P.; Nilsen, H.G.; Carlone, L. Monitoring of perception systems: Deterministic, probabilistic, and learning-based fault detection and identification. Artif. Intell. 2023, 325, 103998. [Google Scholar] [CrossRef]
- Antonante, P.; Spivak, D.I.; Carlone, L. Monitoring and Diagnosability of Perception Systems. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 168–175. [Google Scholar] [CrossRef]
- Carballo, A.; Wong, D.; Ninomiya, Y.; Kato, S.; Takeda, K. Training engineers in autonomous driving technologies using Autoware. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019; pp. 3347–3354. [Google Scholar] [CrossRef]
- Reddy, D.S.; Charan, K.S.; Kayam, S.K.; Rajalakshmi, P. Robust obstacle detection and collision warning for autonomous vehicles using Autoware Universe. In Proceedings of the 2024 16th International Conference on Computer and Automation Engineering (ICCAE), Melbourne, Australia, 14–16 March 2024; pp. 378–384. [Google Scholar] [CrossRef]
- Stević, S.; Krunić, M.; Dragojević, M.; Kaprocki, N. Development and validation of ADAS perception application in ROS environment integrated with CARLA simulator. In Proceedings of the 2019 27th Telecommunications Forum (TELFOR), Belgrade, Serbia, 26–27 November 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Malayjerdi, M.; Sell, R.; Malayjerdi, E.; Akbaş, M.İ.; Razdan, R. Real-Life Experiences in Using Open Source for Autonomy Applications. Eng. Proc. 2024, 79, 19. [Google Scholar] [CrossRef]
- Seo, S.; Lee, J.; Kim, M. Testing diverse geographical features of autonomous driving systems. In Proceedings of the 2024 IEEE 35th International Symposium on Software Reliability Engineering (ISSRE), Tsukuba, Japan, 28–31 October 2024; pp. 439–450. [Google Scholar] [CrossRef]
- Yang, B.; Yang, J. SITAR: Evaluating the Adversarial Robustness of Traffic Light Recognition in Level-4 Autonomous Driving. In Proceedings of the 2024 IEEE Intelligent Vehicles Symposium (IV), Jeju Island, Republic of Korea, 2–5 June 2024; pp. 1068–1075. [Google Scholar] [CrossRef]
- Miura, K.; Azumi, T. Converting driving scenario framework for testing self-driving systems. In Proceedings of the 2020 IEEE 18th International Conference on Embedded and Ubiquitous Computing (EUC), Guangzhou, China, 29 December–1 January 2020; pp. 56–63. [Google Scholar] [CrossRef]
- Gulzar, M.; Matiisen, T.; Muhammad, N. Scenario driven development for open source autonomous driving stack. In Proceedings of the 2024 IEEE 29th International Conference on Emerging Technologies and Factory Automation (ETFA), Padova, Italy, 10–13 September 2024; pp. 1–8. [Google Scholar] [CrossRef]
- Tong, K.; Solmaz, S.; Sikic, H.; Reckenzaun, J. A Generic Risk Assessment Methodology and its Implementation as a Run-time Monitoring Device for Automated Vehicles. Transp. Res. Procedia 2023, 72, 303–310. [Google Scholar] [CrossRef]
- Tokunaga, S.; Miura, K.; Azumi, T. MATLAB/Simulink benchmark suite for ROS-based self-driving software platform. In Proceedings of the 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), Valencia, Spain, 7–9 May 2019; pp. 83–84. [Google Scholar] [CrossRef]
- Miura, K.; Tokunaga, S.; Ota, N.; Tange, Y.; Azumi, T. Autoware toolbox: Matlab/simulink benchmark suite for ros-based self-driving software platform. In Proceedings of the 30th International Workshop on Rapid System Prototyping (RSP’19), New York, NY, USA, 17–18 October 2019; pp. 8–14. [Google Scholar] [CrossRef]
- Wang, S.H.; Tu, C.H.; Juang, J.C. Automatic traffic modelling for creating digital twins to facilitate autonomous vehicle development. Connect. Sci. 2021, 34, 1018–1037. [Google Scholar] [CrossRef]
- Sell, R.; Malayjerdi, M.; Pikner, H.; Razdan, R.; Malayjerdi, E.; Bellone, M. Open-source level 4 autonomous shuttle for last-mile mobility. In Proceedings of the 2024 IEEE 29th International Conference on Emerging Technologies and Factory Automation (ETFA), Padova, Italy, 10–13 September 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Datla Jagannadha, P.K.; Yilmaz, M.; Sonawane, M.; Chadalavada, S.; Sarangi, S.; Bhaskaran, B.; Bajpai, S.; Reddy, V.A.; Pandey, J.; Jiang, S. Special Session: In-System-Test (IST) Architecture for NVIDIA Drive-AGX Platforms. In Proceedings of the 2019 IEEE 37th VLSI Test Symposium (VTS), Monterey, CA, USA, 23–25 April 2019; pp. 1–8. [Google Scholar] [CrossRef]
- Ghodsi, Z.; Hari, S.K.S.; Frosio, I.; Tsai, T.; Troccoli, A.; Keckler, S.W.; Garg, S.; Anandkumar, A. Generating and characterizing scenarios for safety testing of autonomous vehicles. In Proceedings of the 2021 IEEE Intelligent Vehicles Symposium (IV), Nagoya, Japan, 11–17 July 2021; pp. 157–164. [Google Scholar] [CrossRef]
- Zhao, H.; Hari, S.K.S.; Tsai, T.; Sullivan, M.B.; Keckler, S.W.; Zhao, J. Suraksha: A framework to analyze the safety implications of perception design choices in AVs. In Proceedings of the 2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE), Wuhan, China, 25–28 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 434–445. [Google Scholar] [CrossRef]
- Maaradji, A.; Bouchemal, N.; Smadhi, I.; Bouhraoua, A.; Ghanine, A. Beyond Traditional Simulators: Adopting Videogames for Autonomous Vehicle Testing. In Proceedings of the 2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Abu Dhabi, United Arab Emirates, 13–17 November 2023; pp. 570–575. [Google Scholar] [CrossRef]
- Anih, J.; Kolekar, S.; Dargahi, T.; Babaie, M.; Saraee, M.; Wetherell, J. Deriving Environmental Risk Profiles for Autonomous Vehicles From Simulated Trips. IEEE Access 2023, 11, 38385–38398. [Google Scholar] [CrossRef]
- Weng, B.; Zhu, M.; Redmill, K. A Formal Safety Characterization of Advanced Driver Assist Systems in the Car-Following Regime with Scenario-Sampling. IFAC-PapersOnLine 2022, 55, 266–272. [Google Scholar] [CrossRef]
- Maleki, M.; Farooqui, A.; Sangchoolie, B. CarFASE: A Carla-based Tool for Evaluating the Effects of Faults and Attacks on Autonomous Driving Stacks. In Proceedings of the 2023 53rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W), Porto, Portugal, 27–30 June 2023; pp. 92–99. [Google Scholar] [CrossRef]
- Tabani, H.; Kosmidis, L.; Abella, J.; Cazorla, F.J.; Bernat, G. Assessing the Adherence of an Industrial Autonomous Driving Framework to ISO 26262 Software Guidelines. In Proceedings of the 2019 56th ACM/IEEE Design Automation Conference (DAC), Las Vegas, NV, USA, 2–6 June 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Kochanthara, S.; Singh, T.; Forrai, A.; Cleophas, L. Safety of Perception Systems for Automated Driving: A Case Study on Apollo. ACM Trans. Softw. Eng. Methodol. 2024, 33, 64. [Google Scholar] [CrossRef]
- Garcia, J.; Feng, Y.; Shen, J.; Almanee, S.; Xia, Y.; Chen, Q.A. A Comprehensive Study of Autonomous Vehicle Bugs. In Proceedings of the 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE), Seoul, Republic of Korea, 27 June–19 July 2020; pp. 385–396. [Google Scholar] [CrossRef]
- Huai, Y.; Chen, Y.; Almanee, S.; Ngo, T.; Liao, X.; Wan, Z.; Chen, Q.A.; Garcia, J. Doppelgänger Test Generation for Revealing Bugs in Autonomous Driving Software. In Proceedings of the 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE), Melbourne, Australia, 14–20 May 2023; pp. 2591–2603. [Google Scholar] [CrossRef]
- Bijlsma, T.; Buriachevskyi, A.; Frigerio, A.; Fu, Y.; Goossens, K.; Ors, A.O.; van der Perk, P.J.; Terechko, A.; Vermeulen, B. A Distributed Safety Mechanism using Middleware and Hypervisors for Autonomous Vehicles. In Proceedings of the 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 9–13 March 2020; pp. 1175–1180. [Google Scholar] [CrossRef]
- Alcon, M.; Tabani, H.; Abella, J.; Cazorla, F.J. Enabling unit testing of already-integrated AI software systems: The case of Apollo for autonomous driving. In Proceedings of the 2021 24th Euromicro Conference on Digital System Design (DSD), Palermo, Italy, 1–3 September 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 426–433. [Google Scholar] [CrossRef]
- Mei, Y.; Nie, T.; Sun, J.; Tian, Y. Bayesian Fault Injection Safety Testing for Highly Automated Vehicles with Uncertainty. IEEE Trans. Intell. Veh. 2024, 1–15. [Google Scholar] [CrossRef]
- Jha, S.; Banerjee, S.S.; Tsai, T.; Hari, S.K.; Sullivan, M.B.; Kalbarczyk, Z.T.; Keckler, S.W.; Iyer, R.K. ML-based fault injection for autonomous vehicles: A case for Bayesian fault injection. In Proceedings of the 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Portland, OR, USA, 24–27 June 2019; pp. 112–124. [Google Scholar] [CrossRef]
- Zhang, Y.; Pike, M.; Towey, D.; Han, J.C.; Zhou, Z.Q. Preparing Future SQA Professionals: An Experience Report of Metamorphic Exploration of an Autonomous Driving System. In Proceedings of the 2022 IEEE Global Engineering Education Conference (EDUCON), Tunis, Tunisia, 28–31 March 2022; pp. 2121–2126. [Google Scholar] [CrossRef]
- Zhou, Z.Q.; Sun, L. Metamorphic testing of driverless cars. Commun. ACM 2019, 62, 61–67. [Google Scholar] [CrossRef]
- Yang, Z.; Huang, S.; Wang, X.; Bai, T.; Wang, Y. MT-Nod: Metamorphic testing for detecting non-optimal decisions of autonomous driving systems in interactive scenarios. Inf. Softw. Technol. 2025, 180, 107659. [Google Scholar] [CrossRef]
- Choi, J.; Kim, T.; Ryu, D.; Baik, J.; Kim, S. Just-in-time defect prediction for self-driving software via a deep learning model. J. Web Eng. 2023, 22, 303–326. [Google Scholar] [CrossRef]
- Hong, D.K.; Kloosterman, J.; Jin, Y.; Cao, Y.; Chen, Q.A.; Mahlke, S.; Mao, Z.M. AVGuardian: Detecting and Mitigating Publish-Subscribe Overprivilege for Autonomous Vehicle Systems. In Proceedings of the 2020 IEEE European Symposium on Security and Privacy (EuroS&P), Genoa, Italy, 16–18 June 2020; pp. 445–459. [Google Scholar] [CrossRef]
- Han, X.; Chen, K.; Zhou, Y.; Qiu, M.; Fan, C.; Liu, Y.; Zhang, T. A Unified Anomaly Detection Methodology for Lane-Following of Autonomous Driving Systems. In Proceedings of the 2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), New York City, NY, USA, 30 September–3 October 2021; pp. 836–844. [Google Scholar] [CrossRef]
- Han, X.; Zhou, Y.; Chen, K.; Qiu, H.; Qiu, M.; Liu, Y.; Zhang, T. ADS-Lead: Lifelong Anomaly Detection in Autonomous Driving Systems. IEEE Trans. Intell. Transp. Syst. 2023, 24, 1039–1051. [Google Scholar] [CrossRef]
- Jiang, Y.; Mo, R.; Zhan, W.; Wang, D.; Li, Z.; Ma, Y. Leveraging modular architecture for bug characterization and analysis in automated driving software. ACM Trans. Softw. Eng. Methodol. 2024. [Google Scholar] [CrossRef]
- Cheng, K.; Zhou, Y.; Chen, B.; Wang, R.; Bai, Y.; Liu, Y. Guardauto: A decentralized runtime protection system for autonomous driving. IEEE Trans. Comput. 2021, 70, 1569–1581. [Google Scholar] [CrossRef]
- Luu, Q.H.; Liu, H.; Chen, T.Y.; Vu, H.L. A sequential metamorphic testing framework for understanding autonomous vehicle’s decisions. IEEE Trans. Intell. Veh. 2024, 1–13. [Google Scholar] [CrossRef]
- Liu, Q.; Mo, Y.; Mo, X.; Lv, C.; Mihankhah, E.; Wang, D. Secure pose estimation for autonomous vehicles under cyber- attacks. In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; pp. 1583–1588. [Google Scholar] [CrossRef]
- Underwood, R.; Luu, Q.H.; Liu, H. A metamorphic testing framework and toolkit for modular automated driving systems. In Proceedings of the 2023 IEEE/ACM 8th International Workshop on Metamorphic Testing (MET), Melbourne, Australia, 14 May 2023; pp. 17–24. [Google Scholar] [CrossRef]
- Gan, Y.; Whatmough, P.; Leng, J.; Yu, B.; Liu, S.; Zhu, Y. Braum: Analyzing and protecting autonomous machine software stack. In Proceedings of the 2022 IEEE 33rd International Symposium on Software Reliability Engineering (ISSRE), Charlotte, NC, USA, 31 October–3 November 2022; pp. 85–96. [Google Scholar] [CrossRef]
- Xu, Y.; Bao, Y.; Wang, S.; Zhang, T. Function interaction risks in robot apps: Analysis and policy-based solution. IEEE Trans. Dependable Secure Comput. 2024, 21, 4236–4253. [Google Scholar] [CrossRef]
- Iyer, R.K.; Kalbarczyk, Z.T.; Nakka, N.M. Internals of Fault Injection Techniques. In Dependable Computing; Iyer, R.K., Kalbarczyk, Z.T., Nakka, N.M., Eds.; IEEE: Piscataway, NJ, USA, 2024. [Google Scholar] [CrossRef]
- Kochanthara, S.; Rood, N.; Khabbaz Saberi, A.; Cleophas, L.; Dajsuren, Y.; van den Brand, M. A functional safety assessment method for cooperative automotive architecture. J. Syst. Softw. 2021, 179, 110991. [Google Scholar] [CrossRef]
- Rubaiyat, A.H.M.; Qin, Y.; Alemzadeh, H. Experimental Resilience Assessment of an Open-Source Driving Agent. In Proceedings of the 2018 IEEE 23rd Pacific Rim International Symposium on Dependable Computing (PRDC), Taipei, Taiwan, 4–7 December 2018; pp. 54–63. [Google Scholar] [CrossRef]
- Ali, K.; Jammal, M.; Sharkh, M.A. A Software QA Framework for Autonomous Vehicle Open Source Application: OpenPilot. In Proceedings of the 2023 IEEE 9th World Forum on Internet of Things (WF-IoT), Aveiro, Portugal, 12–27 October 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Moukahal, L.J.; Zulkernine, M.; Soukup, M. Vulnerability-Oriented Fuzz Testing for Connected Autonomous Vehicle Systems. IEEE Trans. Reliab. 2021, 70, 1422–1437. [Google Scholar] [CrossRef]
- Moukahal, L.; Zulkernine, M. Security Vulnerability Metrics for Connected Vehicles. In Proceedings of the 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C), Sofia, Bulgaria, 22–26 July 2019; pp. 17–23. [Google Scholar] [CrossRef]
- Jiao, R.; Liang, H.; Sato, T.; Shen, J.; Chen, Q.A.; Zhu, Q. End-to-end Uncertainty-based Mitigation of Adversarial Attacks to Automated Lane Centering. In Proceedings of the 2021 IEEE Intelligent Vehicles Symposium (IV), Nagoya, Japan, 11–17 July 2021; pp. 266–273. [Google Scholar] [CrossRef]
- Zhang, T.; Guan, W.; Miao, H.; Guan, Q.; Liu, Z.; Wang, C.; Huang, X.; Fang, L.; Duan, Z. VSRQ: Quantitative Assessment Method for Safety Risk of Vehicle Intelligent Connected System. IEEE Trans. Veh. Technol. 2024, 74, 2635–2651. [Google Scholar] [CrossRef]
- von Stein, M.; Elbaum, S. Finding property violations through network falsification: Challenges, adaptations and lessons learned from OpenPilot. In Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering (ASE ’22), Rochester, MI, USA, 10–14 October 2023; ACM: New York, NY, USA, 2023; p. 136. [Google Scholar] [CrossRef]
- Alsubaei, F.S. Reliability and Security Analysis of Artificial Intelligence-Based Self-Driving Technologies in Saudi Arabia: A Case Study of Openpilot. J. Adv. Transp. 2022, 2022, 2085225. [Google Scholar] [CrossRef]
- Zhang, B.; Huang, Y.; Li, G. Salus: A Novel Data-Driven Monitor that Enables Real-Time Safety in Autonomous Driving Systems. In Proceedings of the 2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS), Guangzhou, China, 5–9 December 2022; pp. 85–94. [Google Scholar] [CrossRef]
- Zhang, B.; Huang, Y.; Chen, R.; Li, G. D2MoN: Detecting and Mitigating Real-Time Safety Violations in Autonomous Driving Systems. In Proceedings of the 2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW), Charlotte, NC, USA, 31 October–3 November 2022; pp. 262–267. [Google Scholar] [CrossRef]
- Peng, Z.; Yang, J.; Chen, T.H.; Ma, L. A first look at the integration of machine learning models in complex autonomous driving systems: A case study on Apollo. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE 2020), New York, NY, USA, 8–13 November 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 1240–1250. [Google Scholar] [CrossRef]
- Bansal, A.; Kim, H.; Yu, S.; Li, B.; Hovakimyan, N.; Caccamo, M.; Sha, L. Perception simplex: Verifiable collision avoidance in autonomous vehicles amidst obstacle detection faults. Softw. Test. Verif. Reliab. 2024, 34, e1879. [Google Scholar] [CrossRef]
- Sciangula, G.; Restuccia, F.; Biondi, A.; Buttazzo, G. Hardware Acceleration of Deep Neural Networks for Autonomous Driving on FPGA-based SoC. In Proceedings of the 2022 25th Euromicro Conference on Digital System Design (DSD), Maspalomas, Spain, 31 August–2 September 2022; pp. 406–414. [Google Scholar] [CrossRef]
- Xu, J.; Luo, Q.; Xu, K.; Xiao, X.; Yu, S.; Hu, J.; Miao, J.; Wang, J. An Automated Learning-Based Procedure for Large-scale Vehicle Dynamics Modeling on Baidu Apollo Platform. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 5049–5056. [Google Scholar] [CrossRef]
- Mu, Y.; Liu, W.; Yu, C.; Ning, X.; Cao, Z.; Xu, Z.; Liang, S.; Yang, H.; Wang, Y. Multi-Agent Vulnerability Discovery for Autonomous Driving Policy by Finding AV-Responsible Scenarios. In Proceedings of the 2024 IEEE 20th International Conference on Automation Science and Engineering (CASE), Bari, Italy, 28 August–1 September 2024; pp. 2320–2327. [Google Scholar] [CrossRef]
- Fei, R.; Li, S.; Hei, X.; Xu, Q.; Liu, F.; Hu, B. The Driver Time Memory Car-Following Model Simulating in Apollo Platform with GRU and Real Road Traffic Data. Math. Probl. Eng. 2020, 2020, 4726763. [Google Scholar] [CrossRef]
- Luo, X.; Wei, Z.; Zhang, G.; Huang, H.; Zhou, R. High-risk powered two-wheelers scenarios generation for autonomous vehicle testing using WGAN. Traffic Inj. Prev. 2024, 26, 243–251. [Google Scholar] [CrossRef]
- Grigorescu, S.; Trasnea, B.; Cocias, T.; Macesanu, G. A survey of deep learning techniques for autonomous driving. J. Field Robot. 2020, 37, 362–386. [Google Scholar] [CrossRef]
- Tran, D.N.; Nguyen, H.H.; Pham, L.H.; Jeon, J.W. Object Detection with Deep Learning on Drive PX2. In Proceedings of the 2020 IEEE International Conference on Consumer Electronics—Asia (ICCE-Asia), Seoul, Republic of Korea, 1–3 November 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Lotfi, A.; Hukerikar, S.; Balasubramanian, K.; Racunas, P.; Saxena, N.; Bramley, R.; Huang, Y. Resiliency of automotive object detection networks on GPU architectures. In Proceedings of the 2019 IEEE International Test Conference (ITC), Washington, DC, USA, 9–15 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–9. [Google Scholar] [CrossRef]
- Ravindran, R.; Santora, M.J.; Faied, M.; Fanaei, M. Traffic Sign Identification Using Deep Learning. In Proceedings of the 2019 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 5–7 December 2019; pp. 318–323. [Google Scholar] [CrossRef]
- Lin, G.T.; Shivanna, V.M.; Guo, J.I. A Deep-Learning Model with Task-Specific Bounding Box Regressors and Conditional Back-Propagation for Moving Object Detection in ADAS Applications. Sensors 2020, 20, 5269. [Google Scholar] [CrossRef]
- Yang, M.; Wang, S.; Bakita, J.; Vu, T.; Smith, F.D.; Anderson, J.H.; Frahm, J.-M. Re-Thinking CNN Frameworks for Time-Sensitive Autonomous-Driving Applications: Addressing an Industrial Challenge. In Proceedings of the 2019 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), Montreal, QC, Canada, 16–18 April 2019; pp. 305–317. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Q.; Lian, C. PointLaneNet: Efficient end-to-end CNNs for accurate real-time lane detection. In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 2563–2568. [Google Scholar] [CrossRef]
- Bojarski, M.; Chen, C.; Daw, J.; Değirmenci, A.; Deri, J.; Firner, B.; Flepp, B.; Gogri, S.; Hong, J.; Jackel, L.; et al. The nvidia pilotnet experiments. arXiv 2020, arXiv:2010.08776. [Google Scholar] [CrossRef]
- Chougule, S.; Ismail, A.; Soni, A.; Kozonek, N.; Narayan, V.; Schulze, M. An efficient encoder-decoder CNN architecture for reliable multilane detection in real time. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1444–1451. [Google Scholar] [CrossRef]
- Kemsaram, N.; Das, A.; Dubbelman, G. An integrated framework for autonomous driving: Object detection, lane detection, and free space detection. In Proceedings of the 2019 Third World Conference on Smart Trends in Systems Security and Sustainability (WorldS4), London, UK, 30–31 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 260–265. [Google Scholar] [CrossRef]
- Ahmedov, H.B.; Yi, D.; Sui, J. Application of a brain-inspired deep imitation learning algorithm in autonomous driving. Softw. Impacts 2021, 10, 100165. [Google Scholar] [CrossRef]
- Hassan, I.U.; Zia, H.; Fatima, H.S.; Yusuf, S.A.; Khurram, M. A Lightweight Convolutional Neural Network to Predict Steering Angle for Autonomous Driving Using CARLA Simulator. Model. Simul. Eng. 2022, 2022, 5716820. [Google Scholar] [CrossRef]
- Popov, A.; Degirmenci, A.; Wehr, D.; Hegde, S.; Oldja, R.; Kamenev, A.; Douillard, B.; Nistér, D.; Muller, U.; Bhargava, R.; et al. Mitigating covariate shift in imitation learning for autonomous vehicles using latent space generative world models. arXiv 2024, arXiv:2409.16663. [Google Scholar] [CrossRef]
- Huang, Z.H.; Wu, Y.S.; Lin, Y.D.; Yu, C.M.; Lee, W.B. Neural Network-based Functional Degradation for Cyber-Physical Systems. In Proceedings of the 2024 IEEE 24th International Conference on Software Quality, Reliability and Security (QRS), Cambridge, UK, 1–5 July 2024; pp. 425–434. [Google Scholar] [CrossRef]
- Chen, Y.; Praveen, P.; Priyantha, M.; Muelling, K.; Dolan, J. Learning On-Road Visual Control for Self-Driving Vehicles with Auxiliary Tasks. In Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 7–11 January 2019; pp. 331–338. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, X. End-to-end learning for lane keeping of self-driving cars. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 1856–1860. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, K.; Yu, J.; He, J. End-to-end control of autonomous vehicles based on deep learning with visual attention. In Proceedings of the 2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI), Hangzhou, China, 18–20 December 2020; pp. 584–589. [Google Scholar] [CrossRef]
- Driessen, T.; Siebinga, O.; de Boer, T.; Dodou, D.; de Waard, D.; de Winter, J. How AI from Automated Driving Systems Can Contribute to the Assessment of Human Driving Behavior. Robotics 2024, 13, 169. [Google Scholar] [CrossRef]
- Yordanov, D.; Chakraborty, A.; Hasan, M.M.; Cirstea, S. A Framework for Optimizing Deep Learning-Based Lane Detection and Steering for Autonomous Driving. Sensors 2024, 24, 8099. [Google Scholar] [CrossRef]
- Xiong, W.; Lu, Z.; Li, B.; Wu, Z.; Hang, B.; Wu, J.; Xuan, X. A self-adaptive approach to service deployment under mobile edge computing for autonomous driving. Eng. Appl. Artif. Intell. 2019, 81, 397–407. [Google Scholar] [CrossRef]
- Matsumoto, K.; Javanmardi, E.; Nakazato, J.; Tsukada, M. Localizability estimation for autonomous driving: A deep learning-based place recognition approach. In Proceedings of the 2023 Seventh IEEE International Conference on Robotic Computing (IRC), Laguna Hills, CA, USA, 11–13 December 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 280–283. [Google Scholar] [CrossRef]
- Karl, Y.D.S.; Kim, H.K.; Geum, Y.P. A study on deep learning model autonomous driving based on big data. Int. J. Softw. Innov. 2021, 9, 143–157. [Google Scholar] [CrossRef]
ADS | Keywords Searches |
---|---|
Autoware | Autonomous AND Autoware |
Baidu Apollo | Autonomous AND (Apollo OR “Baidu Apollo”) |
NVIDIA Drive | Autonomous AND (“NVIDIA Drive” OR “Drive PX2” OR DriveWorks) |
OpenPilot | Autonomous AND (OpenPilot OR Comma.ai) |
Database | Autoware | Baidu Apollo | NVIDIA Drive | OpenPilot | Total |
---|---|---|---|---|---|
IEEE Xplore | 38 | 47 | 24 | 15 | 124 |
MDPI | 10 | 6 | 4 | 3 | 23 |
ScienceDirect | 7 | 5 | 6 | 3 | 21 |
Wiley | 2 | 5 | 4 | 1 | 12 |
Sage | 2 | 1 | 0 | 1 | 4 |
Taylor | 3 | 1 | 0 | 0 | 4 |
ACM | 1 | 4 | 1 | 1 | 7 |
Others | 1 | 0 | 3 | 0 | 4 |
Total | 64 | 69 | 42 | 24 | 199 |
Feature | Autoware | Baidu Apollo | NVIDIA Drive | OpenPilot |
---|---|---|---|---|
Hardware | ||||
Interface | DataSpeed | Drive-by-Wire | Vehicle IO | Panda |
Sensor | Lidar, Radar GNSS/IMU Camera | Lidar, Radar GNSS/IMU Camera | Lidar, Radar GNSS/IMU Camera | Car’s built-in Radar GNSS/IMU HDR Camara |
Minimal Hdware | Ava/Autocore/NVIDIA Agx/ Nxp Bluebox | NVIDIA Gpu/multi-core Cpu | DRIVE Agx Orin/Thor/ Hyperion | Comma 3, 3X |
Software | ||||
Programing Lang | C/C++ | C/C++ | C/C++ | C++, Python |
Scripting Lang | C++, Python, Bash | C++, Python, Bash | C/C++, Bash | Python, Bash |
UI | Rviz | Dreamview | DriveWorks SDK | Android-UI |
ROS Integration | Yes | Yes | No | No |
Maps | HD Maps | HD maps | HD maps | Mapbox/OSM |
Cloud Integration | Limited | Extensive | Extensive | Limited |
Security | Community-driven updates | Encryption, secure boot | Encryption, secure boot | Community-driven updates |
Simulators | Gazebo/ Carla/Lgsvl | Apollo Sim/ Carla/Lgsvl/ | Drive Sim | Carla/ MetaDrive |
Others | ||||
Documentation | Comp. Doc Workshops | Comp. Doc Annual Summit | Comp.Doc/ Guides/Support | Less Formal Doc |
Comment | Research-focused | Full autonomy, cloud-integrated | AI-driven, scalable | Consumer-focused, Level 2 Adas |
Key Research | Autoware | Apollo | N. Drive | OpenPilot | Total |
---|---|---|---|---|---|
Sensing and Perception | 9 | 6 | 7 | 1 | 23 |
Localization and Mapping | 7 | 4 | 4 | 0 | 15 |
Decision Making and Planning | 9 | 10 | 5 | 4 | 28 |
Connectivity and communications | 8 | 2 | 4 | 1 | 15 |
Safety, Testing, and Validation | 12 | 24 | 4 | 4 | 44 |
Real-Time Aspects | 8 | 0 | 3 | 0 | 11 |
Software Q. and Cybersecurity | 8 | 14 | 2 | 8 | 32 |
App. Artificial Intelligence | 3 | 9 | 13 | 6 | 31 |
Total | 64 | 69 | 42 | 24 | 199 |
Baidu Apollo | Autoware | NVIDIA Drive | OpenPilot | |
---|---|---|---|---|
Installation | High | Moderate | Moderate | Low |
Expertise | AI, Cloud Comp. | ROS, AI | AI, GPU Prog. | ADAS |
Cost | High | Moderate | Expensive Hardware | Low |
Documentation | Extensive | Extensive, Active community | Extensive, Industry-Focused | Less Formal |
Research Teams | Large, Comm. Projects | Small & Large Prototyping | Large, Comm. Projects | Small |
Weakness | Steep Learning Curve | Limited Clouds Support | Expensive hardware | Level 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aliane, N. A Survey of Open-Source Autonomous Driving Systems and Their Impact on Research. Information 2025, 16, 317. https://doi.org/10.3390/info16040317
Aliane N. A Survey of Open-Source Autonomous Driving Systems and Their Impact on Research. Information. 2025; 16(4):317. https://doi.org/10.3390/info16040317
Chicago/Turabian StyleAliane, Nourdine. 2025. "A Survey of Open-Source Autonomous Driving Systems and Their Impact on Research" Information 16, no. 4: 317. https://doi.org/10.3390/info16040317
APA StyleAliane, N. (2025). A Survey of Open-Source Autonomous Driving Systems and Their Impact on Research. Information, 16(4), 317. https://doi.org/10.3390/info16040317