Neuromarketing and Health Marketing Synergies: A Protection Motivation Theory Approach to Breast Cancer Screening Advertising
Abstract
1. Introduction
2. Literature Review
The Protection Motivation Theoretical Framework
3. Materials and Methods
3.1. Participants
3.2. Experimental Setting and Stimuli
3.3. Facial Expression Analysis (FEA)
3.4. Data Calibration and Processing
3.4.1. Calibration
3.4.2. Arousal Index
3.4.3. Aggregation
3.5. Qualitative Interviews
4. Results
4.1. Biometric Emotion Recognition Results
4.2. Thematic Coding and NVivo Analysis
4.3. Protection Motivation Theory: A Thematic Analysis
4.4. Expanded PMT Constructs and Subcodes
4.4.1. Perceived Severity (Blue)
4.4.2. Perceived Vulnerability (Green)
4.4.3. Response Efficacy (Orange)
4.4.4. Self-Efficacy (Red)
4.5. Cross-Modal Convergence: Biometric vs. Interview Data
4.6. Thematic Interview Analysis: Key Insights
4.6.1. Perceived Severity and Vulnerability
“When I heard my friend saying she ignored the lump for a year, I froze. That could be me.”(P14)
“I’ve been putting it off for too long. I don’t want to end up like that.”(P9)
“The fear in her sight was real. It made me think about how fragile life is.”(P27)
4.6.2. Coping Appraisal and Self-Efficacy
“I didn’t know it was that easy to book an appointment. That ad gave me hope.”(P3)
“The ad saying ‘your power is prevention’ really helped. I felt reassured.”(P20)
“I could relate to her—it was a regular woman just performing chemotherapy.”(P6)
4.6.3. Message Credibility and Emotional Fit
“I want facts, not just drama. The one with the doctor felt more real.”(P21)
“It’s okay to scare me, but at least show what I can do.”(P11)
“That feeling made me feel like watching a horror movie. I stopped watching.”(P28)
5. Discussion and Conclusions
5.1. Managerial Implications
5.2. Social Implications
5.3. Theoretical and Methodological Implications
5.4. Limitations and Future Research
5.5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PMT | Protection Motivation Theory |
FEA | Facial Expression Analysis |
HBM | Health Belief Model |
TPB | Theory of Planned Behavior |
TTM | Transtheoretical Model |
GDPR | General Data Protection Regulation |
FACS | Facial Action Coding System |
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Skandali, D.; Yfantidou, I. Exploring the impact of cognitive dissonance on women’s intentions to pursue breast cancer screening in health marketing communications. Corp. Commun. Int. J. 2025. [Google Scholar] [CrossRef]
- Tabar, L.; Yen, M.-F.; Vitak, B.; Chen, H.-H.T.; Smith, R.A.; Duffy, S.W. Mammography service screening and mortality in breast cancer patients: 20-year follow-up before and after introduction of screening. Lancet Oncol. 2011, 12, 111–118. [Google Scholar] [CrossRef]
- Rogers, R.W. A protection motivation theory of fear appeals and attitude change. J. Psychol. 1975, 91, 93–114. [Google Scholar] [CrossRef] [PubMed]
- Floyd, D.L.; Prentice-Dunn, S.; Rogers, R.W. A meta-analysis of research on protection motivation theory. J. Appl. Soc. Psychol. 2000, 30, 407–429. [Google Scholar] [CrossRef]
- Norman, P.; Boer, H.; Seydel, E.R. Protection motivation theory. In Predicting Health Behaviour; Conner, M., Norman, P., Eds.; Open University Press: Maidenhead, UK, 2005; pp. 81–126. [Google Scholar]
- Wong, M.C.S.; Wong, E.L.Y.; Huang, J.; Cheung, A.W.L.; Law, K.; Chong, M.K.C.; Ng, R.W.Y.; Lai, C.K.C.; Boon, S.S.; Lau, J.T.F.; et al. Acceptance of the COVID-19 vaccine based on the Health Belief Model: A population-based survey in Hong Kong. Vaccine 2021, 39, 1148–1156. [Google Scholar] [CrossRef]
- Gerend, M.A.; Shepherd, J.E. Predicting human papillomavirus vaccine uptake in young adult women: Comparing the Health Belief Model and Theory of Planned Behavior. Ann. Behav. Med. 2012, 44, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Ruiter, R.A.; Abraham, C.; Kok, G. Scary warnings and rational precautions: A review of the psychology of fear appeals. Psychol. Health 2001, 16, 613–630. [Google Scholar] [CrossRef]
- Lewinski, P.; Fransen, M.L.; Tan, E.S.H. Predicting advertising effectiveness by facial expressions in response to amusing persuasive stimuli. J. Neurosci. Psychol. Econ. 2014, 7, 1–14. [Google Scholar] [CrossRef]
- Poels, K.; Dewitte, S. How to capture the heart? Reviewing 20 years of emotion measurement in advertising. J. Advert. Res. 2006, 46, 18–37. [Google Scholar] [CrossRef]
- Facial Action Coding System (FACS). Noldus Information Technology. 2025. Available online: https://www.noldus.com/applications/facial-action-coding-system (accessed on 9 April 2025).
- García-Madariaga, J.; Rodríguez-Rivera, F.; Blasco-López, M.F.; Burgos, I.M. Analyzing the impact of neuromarketing in advertising through eye-tracking and facial recognition. Front. Psychol. 2019, 10, 8. [Google Scholar]
- Georgakarakou, C.; Zounis, S.; Psomadaki, O. Emotional responses to cause-related marketing advertisements: Insights from facial expression analysis. J. Retail. Consum. Serv. 2020, 54, 102031. [Google Scholar]
- Yfantidou, I.; Skandali, D. Resonating messages: A mixed-methods investigation of breast cancer screening advertisements. Corp. Commun. Int. J. 2025, 30, 696–723. [Google Scholar] [CrossRef]
- Plotnikoff, R.C.; Trinh, L. Protection Motivation Theory: A case for physical activity behavior. Exerc. Sport Sci. Rev. 2010, 38, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Babazadeh, T.; Nadrian, H.; Banayejeddi, M.; Rezapour, B. Determinants of skin cancer preventive behaviors among rural farmers in Iran: An application of Protection Motivation Theory. J. Cancer Educ. 2017, 32, 604–612. [Google Scholar] [CrossRef]
- Sommestad, T.; Karlzén, H.; Hallberg, J. A meta-analysis of studies on Protection Motivation Theory and information security behaviour. Int. J. Inf. Secur. Priv. 2015, 9, 26–46. [Google Scholar] [CrossRef]
- Becker, M.H. The Health Belief Model and sick role behavior. Health Educ. Monogr. 1974, 2, 409–419. [Google Scholar] [CrossRef]
- Ajzen, I. The Theory of Planned Behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Prochaska, J.O.; DiClemente, C.C. Stages and processes of self-change of smoking: Toward an integrative model of change. J. Consult. Clin. Psychol. 1983, 51, 390–395. [Google Scholar] [CrossRef]
- Watkins, R.E.; Cooke, F.C.; Donovan, R.J.; MacIntyre, C.R.; Itzwerth, R.; Plant, A.J. Influenza pandemic preparedness: Motivation for protection among small and medium businesses in Australia. BMC Public Health 2007, 7, 157. [Google Scholar] [CrossRef]
- Ezati, R.; Mohseni, S.; Takhti, H.K.; Azad, M.H.; Shahabi, N.; Aghamolaei, T.; Norozian, F. Application of the Protection Motivation Theory for predicting COVID-19 preventive behaviors in Hormozgan, Iran: A cross-sectional study. BMC Public Health 2021, 21, 10500. [Google Scholar] [CrossRef]
- Moeini, B.; Ezati, E.; Barati, M.; Rezapur-Shahkolai, F.; Mezerji, N.M.G.; Afshari, M. Skin cancer preventive behaviors in Iranian farmers: Applying Protection Motivation Theory. Work. Health Saf. 2019, 67, 231–240. [Google Scholar] [CrossRef]
- Tsioufis, M.; Alexopoulos, T.A. On the Coupling of the European Day-Ahead Power Markets: A Convergence Analysis. In Handbook of Smart Energy Systems; Springer International Publishing: Cham, Switzerland, 2023; pp. 307–325. [Google Scholar]
- Jeihooni, A.K.; Esmaeilifar, Z.; Badehian, Z.; Khaleghi, A.A.; Ziapour, A.; Yari, A. COVID-19 preventive behaviors in pre-hospital emergency personnel: Application of Protection Motivation Theory. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Xiao, H.; Li, S.; Chen, X.; Yu, B.; Gao, M.; Yan, H.; Okafor, C.N.; Hotez, P.J. Protection Motivation Theory in predicting intention to engage in protective behaviors against schistosomiasis among middle school students in rural China. PLOS Neglected Trop. Dis. 2014, 8, e3246. [Google Scholar] [CrossRef]
- Okati-Aliabad, H.; Hosseini, E.S.; Morowati Sharifabad, M.A.; Borzu, Z.A.; Ardakani, M.E.; Shahreki, S. Determinants of sun protection behaviors among students: A path analysis based on the Protection Motivation Theory. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Dricu, M.; Frühholz, S. A neurocognitive model of perceptual decision-making on emotional signals. Hum. Brain Mapp. 2020, 41, 1532–1556. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, G.; Bag, S. Modern-day marketing concepts based on face recognition and neuromarketing: A review and future research directions. Benchmarking: Int. J. 2024, 31, 410–438. [Google Scholar] [CrossRef]
- Maduku, D.K. When Low Social Trust Undermines Social Marketing Campaigns: The Impact of Social Trust on the Effectiveness of COVID-19 Vaccination Campaigns. Soc. Mark. Q. 2024, 30, 236–254. [Google Scholar] [CrossRef]
- Sturzaker, R.K. Can we make social marketing more ‘nimble’? Soc. Mark. Q. 2023, 29, 182–186. [Google Scholar] [CrossRef]
- Alhraiwil, N.J.; Alghaith, L.; Alharbi, W.; AlAjaji, S.; Alhumaid, A.; Aldossary, M.S. Mobilizing a Kingdom during a pandemic: The health marketing campaigns applied by the Saudi Ministry of health to promote (COVID-19) vaccine confidence and uptake. Cureus 2024, 16, e53734. [Google Scholar] [CrossRef]
- Ko, Y.; Kim, H.; Seo, Y.; Han, J.-Y.; Yoon, H.J.; Lee, J.; Seo, J.K. The persuasive effects of social media narrative PSAs on COVID-19 vaccination intention among unvaccinated young adults: The mediating role of empathy and psychological reactance. J. Soc. Mark. 2023, 13, 490–509. [Google Scholar] [CrossRef]
- Murphy, K.; Graham, D.; Faries, M. Integrating autonomy in public health messaging. Front. Commun. 2024, 9, 1346031. [Google Scholar] [CrossRef]
- Rayner, K.; Castelhano, M.S. Eye movements during reading, scene perception, and visual search. Q. J. Experi-Ment. Psychol. 2008, 61, 893–909. [Google Scholar]
- Kulke, L.; Feyerabend, D.; Schacht, A. A comparison of the Affectiva iMotions facial expression analysis software with electro-myography for identifying facial expressions of emotion. Front. Psychol. 2020, 11, 329. [Google Scholar] [CrossRef]
- Marques, C.; Vilela, A. FaceReader insights into the emotional response of Douro wines. Appl. Sci. 2024, 14, 10053. [Google Scholar] [CrossRef]
- de Wijk, R.A.; Ushiama, S.; Ummels, M.; Zimmerman, P.; Kaneko, D.; Vingerhoeds, M.H. Reading food experiences from the face: Effects of familiarity and branding of soy sauce on facial expressions and video-based remote photoplethysmography heart rate. Foods 2021, 10, 1345. [Google Scholar] [CrossRef]
- Ekman, P.; Friesen, W.V.; Hager, J.C. Facial Action Coding System: Manual and Investigator’s Guide; Research Nexus: Salt Lake City, UT, USA, 2002. [Google Scholar]
- Bathke, A.C.; Schabenberger, O.; Tobias, R.D.; Madden, L.V. Greenhouse–Geisser Adjustment and the ANOVA-Type Statistic: Cousins or Twins? Am. Stat. 2009, 63, 239–246. [Google Scholar] [CrossRef]
- Yilmaz, A.E.; Aktas Altunay, S. Post-hoc comparison tests for odds ratios. Electron. J. Appl. Stat. Anal. 2022, 15, 75–94. [Google Scholar] [CrossRef]
- Cismaru, M.; Nagpal, A.; Krishnamurthy, P. The role of cost and response efficacy in persuasiveness of health recommendations. J. Health Psychol. 2009, 14, 135–141. [Google Scholar] [CrossRef] [PubMed]
Advertisement | Happiness | Sadness | Fear | Anger | Disgust | Surprise | Neutrality | Arousal |
---|---|---|---|---|---|---|---|---|
Ad 1 | 0.12 | 0.19 | 0.31 | 0.08 | 0.06 | 0.21 | 0.18 | 0.54 |
Ad 2 | 0.10 | 0.22 | 0.45 | 0.09 | 0.07 | 0.35 | 0.13 | 0.62 |
Ad 3 | 0.15 | 0.17 | 0.20 | 0.07 | 0.05 | 0.18 | 0.23 | 0.48 |
Ad 4 | 0.31 | 0.14 | 0.22 | 0.06 | 0.03 | 0.16 | 0.19 | 0.51 |
Ad 5 | 0.13 | 0.24 | 0.42 | 0.11 | 0.08 | 0.33 | 0.14 | 0.59 |
Ad 6 | 0.18 | 0.15 | 0.27 | 0.10 | 0.04 | 0.26 | 0.20 | 0.53 |
Emotion | F (df) | p-Value | η2p | Significant Post Hoc Contrasts (Bonferroni-Adjusted, p < 0.05) |
---|---|---|---|---|
Fear | F(3.12, 145.2) = 12.67 | <0.001 | 0.22 | Ad 2 > Ad 3, Ad 5 > Ad 1, Ad 5 > Ad 3 |
Surprise | F(4.04, 188.1) = 10.32 | <0.001 | 0.19 | Ad 2 > Ad 1, Ad 5 > Ad 3 |
Happiness | F(2.88, 134.5) = 7.41 | 0.002 | 0.14 | Ad 4 > Ad 1, Ad 4 > Ad 2, Ad 4 > Ad 5 |
Sadness | F(3.56, 164.4) = 2.47 | 0.061 | 0.07 | Not significant |
Anger | F(3.22, 148.3) = 1.98 | 0.083 | 0.05 | Not significant |
Disgust | F(3.01, 138.4) = 2.25 | 0.078 | 0.06 | Not significant |
Neutrality | F(2.93, 134.9) = 1.73 | 0.114 | 0.04 | Not significant |
Arousal | F(3.42, 156.1) = 9.88 | <0.001 | 0.18 | Ad 2 > Ad 3, Ad 5 > Ad 1 |
PMT Construct | Theme Description | Coded References (n = 487) | Example Quote |
---|---|---|---|
Perceived Severity | Emotional response to consequences of inaction | 138 | “That could be me if I keep postponing the test.” (P14) |
Perceived Vulnerability | Recognition of personal health risk | 76 | “It made me realize I’m not invincible.” (P9) |
Response Efficacy | Belief that the suggested behavior is effective | 92 | “They showed that early screening works.” (P6) |
Self-Efficacy | Confidence in one’s ability to take preventive action | 84 | “I can do this—it’s not that hard to book a test.” (P3) |
Message Credibility and Emotional Fit | Perception of realism and emotional balance of message | 97 | “I need both emotion and facts to trust the message.” (P21) |
Emotion | Ad 1 (B/I) | Ad 2 (B/I) | Ad 3 (B/I) | Ad 4 (B/I) | Ad 5 (B/I) | Ad 6 (B/I) |
---|---|---|---|---|---|---|
Neutral | ✓/✓ | ✓/✓ | ✓/✓ | ✓/✓ | ✓/✓ | ✓/✓ |
Happy | ✓/✓ | ✓/ | ✓/ | |||
Sad | ✓/✓ | |||||
Angry | ||||||
Surprised | ✓/ | ✓/ | ✓/ | |||
Scared | ✓/✓ | ✓/ | ✓/ | |||
Disgusted | ✓/✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skandali, D.; Yfantidou, I.; Tsourvakas, G. Neuromarketing and Health Marketing Synergies: A Protection Motivation Theory Approach to Breast Cancer Screening Advertising. Information 2025, 16, 715. https://doi.org/10.3390/info16090715
Skandali D, Yfantidou I, Tsourvakas G. Neuromarketing and Health Marketing Synergies: A Protection Motivation Theory Approach to Breast Cancer Screening Advertising. Information. 2025; 16(9):715. https://doi.org/10.3390/info16090715
Chicago/Turabian StyleSkandali, Dimitra, Ioanna Yfantidou, and Georgios Tsourvakas. 2025. "Neuromarketing and Health Marketing Synergies: A Protection Motivation Theory Approach to Breast Cancer Screening Advertising" Information 16, no. 9: 715. https://doi.org/10.3390/info16090715
APA StyleSkandali, D., Yfantidou, I., & Tsourvakas, G. (2025). Neuromarketing and Health Marketing Synergies: A Protection Motivation Theory Approach to Breast Cancer Screening Advertising. Information, 16(9), 715. https://doi.org/10.3390/info16090715