Combine Virtual Reality and Machine-Learning to Identify the Presence of Dyslexia: A Cross-Linguistic Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. Setup and Virtual Test
2.2. Participants and Experimental Protocols
2.3. Data Analysis
- LR: The hyperparameter optimization process evaluated two types of regularization: L1, which promotes sparse solutions by driving some coefficients to zero, and L2, which distributes regularization more evenly across all parameters. These were assessed in combination with two optimization algorithms: Limited-memory BFGS, a quasi-Newton method suited for smooth, differentiable objectives and typically used with L2 regularization; and Liblinear, a coordinate descent-based solver that efficiently handles both L1 and L2 penalties;
- SVM: This function defining how data are mapped into a higher-dimensional space was explored using three types of kernels: a simple linear kernel, a polynomial kernel (2nd degree), and a RBF kernel, measuring similarity based on the distance between points and using a Gaussian function to assign higher weights to closer data points. The parameter controlling how the influence of individual points decreased with distance was evaluated with two predefined settings, one that scaled the values based on the reciprocal of the number of features in the dataset, and another that automatically adjusted based on the range of input values;
- k-NN: The number of neighboring data points considered for classification was tested with values of 3, 5, and 7;
- DT: The maximum depth allowed in the tree was varied between 10 and 15. The method for determining the best split at each node was tested using two well-known criteria: gini and entropy;
- RF: The number of decision trees combined in the ensemble was tested with values 10, 20, 30, and 40. The other parameters considered were the same as those for the Decision Tree Classifier.
2.4. Statistical Analysis
3. Results
3.1. Italian Group
3.1.1. Differences Between Groups
3.1.2. Classifier Performance
3.2. Spanish Group
3.2.1. Differences Between Groups
3.2.2. Classifier Performance
3.3. Pooled Results
3.3.1. Differences Between Groups
3.3.2. Classifier Performance
4. Discussion
4.1. Limitations
4.2. Future Works
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. 6A03-Developmental Learning Disorder. Available online: https://icd.who.int/browse/2024-01/mms/en#2099676649 (accessed on 22 April 2025).
- Benedetti, I.; Barone, M.; Panetti, V.; Taborri, J.; Urbani, T.; Zingoni, A.; Calabrò, G. Clustering analysis of factors affecting academic career of university students with dyslexia in Italy. Sci. Rep. 2022, 12, 9010. [Google Scholar] [CrossRef]
- Moore, K.A.; Lai, J.; Quinonez-Beltran, J.F.; Wijekumar, K.; Joshi, R.M. A cross-orthographic view of dyslexia identification. J. Cult. Cogn. Sci. 2023, 7, 197–217. [Google Scholar] [CrossRef]
- Hengeveld, K.; Leufkens, S. Transparent and nontransparent languages. Folia Linguist. 2018, 52, 139–175. [Google Scholar] [CrossRef]
- Cossu, G. The acquisition of Italian orthography. In Learning to Read and Write: A Cross-Linguistic Perspective; Cambridge University Press: Cambridge, UK, 1999; Volume 2, pp. 10–33. [Google Scholar]
- Li, J.; Han, X.; Wang, W.; Sun, G.; Cheng, Z. How social support influences university students’ academic achievement and emotional exhaustion: The mediating role of self-esteem. Learn. Individ. Differ. 2018, 61, 120–126. [Google Scholar] [CrossRef]
- Kermode, S.; MacLean, D. A study of the relationship between quality of life, self-esteem and health. Aust. J. Adv. Nurs. 2001, 19, 33–40. [Google Scholar] [PubMed]
- Donnellan, M.B.; Trzesniewski, K.H.; Robins, R.W. Measures of self-esteem. In Measures of Personality and Social Psychological Constructs; Elsevier: Amsterdam, The Netherlands, 2015; pp. 131–157. [Google Scholar]
- Rosenberg, M. Rosenberg self-esteem scale. J. Relig. Health 1965. [Google Scholar] [CrossRef]
- Tinakon, W.; Nahathai, W. A comparison of reliability and construct validity between the original and revised versions of the Rosenberg Self-Esteem Scale. Psychiatry Investig. 2012, 9, 54. [Google Scholar] [CrossRef] [PubMed]
- Alesi, M.; Rappo, G.; Pepi, A. Self-esteem at school and self-handicapping in childhood: Comparison of groups with learning disabilities. Psychol. Rep. 2012, 111, 952–962. [Google Scholar] [CrossRef]
- Conley, T.D.; Ghavami, N.; VonOhlen, J.; Foulkes, P. General and domain-specific self-esteem among regular education and special education students. J. Appl. Soc. Psychol. 2007, 37, 775–789. [Google Scholar] [CrossRef]
- Parshurami, A. A study on self-esteem and adjustment in children with learning disability. Indian J. Ment. Health 2015, 2, 306–311. [Google Scholar] [CrossRef]
- Shah, P. The Relationship between Anxiety, Depression and Self-esteem in Adolescents with Learning Disability. Indian J. Ment. Health 2019, 6, 368–376. [Google Scholar] [CrossRef]
- Burden, R.; Burdett, J. Factors associated with successful learning in pupils with dyslexia: A motivational analysis. Br. J. Spec. Educ. 2005, 32, 100–104. [Google Scholar] [CrossRef]
- Pathrikar, K.R. A study on perceived social support and self esteem in children with and without learning disability. Indian J. Ment. Health 2016, 3, 271–277. [Google Scholar] [CrossRef]
- Catts, H.; Petscher, Y. Early identification of dyslexia: Current advancements and future directions. Perspect. Lang. Lit. 2018, 44, 33–36. [Google Scholar]
- Zingoni, A.; Taborri, J.; Panetti, V.; Bonechi, S.; Aparicio-Martínez, P.; Pinzi, S.; Calabrò, G. Investigating issues and needs of dyslexic students at university: Proof of concept of an artificial intelligence and virtual reality-based supporting platform and preliminary results. Appl. Sci. 2021, 11, 4624. [Google Scholar] [CrossRef]
- Zingoni, A.; Taborri, J.; Calabrò, G. A machine learning-based classification model to support university students with dyslexia with personalized tools and strategies. Sci. Rep. 2024, 14, 273. [Google Scholar] [CrossRef]
- Morciano, G.; Llergo, J.M.A.; Zingoni, A.; Bolívar, E.Y.; Taborri, J.; Calabrò, G. Use of recommendation models to provide support to dyslexic students. Expert Syst. Appl. 2024, 249, 123738. [Google Scholar] [CrossRef]
- van den Boer, M.; Bazen, L.; de Bree, E. The same yet different: Oral and silent reading in children and adolescents with dyslexia. J. Psycholinguist. Res. 2022, 51, 803–817. [Google Scholar] [CrossRef]
- Smyrnakis, I.; Andreadakis, V.; Rina, A.; Boufachrentin, N.; Aslanides, I.M. Silent versus reading out loud modes: An eye-tracking study. J. Eye Mov. Res. 2021, 14, 10–16910. [Google Scholar] [CrossRef]
- Gagliano, A.; Ciuffo, M.; Ingrassia, M.; Ghidoni, E.; Angelini, D.; Benedetto, L.; Germanò, E.; Stella, G. Silent reading fluency: Implications for the assessment of adults with developmental dyslexia. J. Clin. Exp. Neuropsychol. 2015, 37, 972–980. [Google Scholar] [CrossRef]
- Hairrell, A.; Edmonds, M.; Vaughn, S.; Simmons, D. Independent silent reading for struggling readers: Pitfalls and potential. In Revisiting Silent Reading: New Directions for Teachers and Researchers; International Reading Association: Newark, DE, USA, 2010; pp. 275–289. ISBN 979-0-87207-833-8. [Google Scholar]
- Grigorenko, E.L.; Compton, D.L.; Fuchs, L.S.; Wagner, R.K.; Willcutt, E.G.; Fletcher, J.M. Understanding, educating, and supporting children with specific learning disabilities: 50 years of science and practice. Am. Psychol. 2020, 75, 37. [Google Scholar] [CrossRef]
- Kourtesis, P.; Collina, S.; Doumas, L.A.; MacPherson, S.E. Validation of the Virtual Reality Everyday Assessment Lab (VR-EAL): An immersive virtual reality neuropsychological battery with enhanced ecological validity. J. Int. Neuropsychol. Soc. 2021, 27, 181–196. [Google Scholar] [CrossRef]
- Servotte, J.C.; Goosse, M.; Campbell, S.H.; Dardenne, N.; Pilote, B.; Simoneau, I.L.; Guillaume, M.; Bragard, I.; Ghuysen, A. Virtual reality experience: Immersion, sense of presence, and cybersickness. Clin. Simul. Nurs. 2020, 38, 35–43. [Google Scholar] [CrossRef]
- Lin, X.P.; Li, B.B.; Yao, Z.N.; Yang, Z.; Zhang, M. The impact of virtual reality on student engagement in the classroom—A critical review of the literature. Front. Psychol. 2024, 15, 1360574. [Google Scholar] [CrossRef]
- Drigas, A.; Mitsea, E.; Skianis, C. Virtual reality and metacognition training techniques for learning disabilities. Sustainability 2022, 14, 10170. [Google Scholar] [CrossRef]
- Alcalde-Llergo, J.M.; Yeguas-Bolívar, E.; Aparicio-Martínez, P.; Zingoni, A.; Taborri, J.; Pinzi, S. A VR serious game to increase empathy towards students with phonological dyslexia. In Proceedings of the 2023 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE), Milano, Italy, 25–27 October 2023; pp. 184–188. [Google Scholar]
- Alcalde-Llergo, J.M.; Aparicio-Martínez, P.; Zingoni, A.; Pinzi, S.; Yeguas-Bolívar, E. Fostering Inclusion: A Virtual Reality Experience to Raise Awareness of Dyslexia-Related Barriers in University Settings. Electronics 2025, 14, 829. [Google Scholar] [CrossRef]
- Pijnenborg, G.; Nijman, S.; Veling, W. DiscoVR: Results of a multicenter RCT on a social cognitive virtual reality training to enhance social cognition in psychosis. Eur. Psychiatry 2022, 65, S119. [Google Scholar] [CrossRef]
- Maskati, E.; Alkeraiem, F.; Khalil, N.; Baik, R.; Aljuhani, R.; Alsobhi, A. Using virtual reality (VR) in teaching students with dyslexia. Int. J. Emerg. Technol. Learn. 2021, 16, 291–305. [Google Scholar] [CrossRef]
- Maresca, G.; Leonardi, S.; De Cola, M.C.; Giliberto, S.; Di Cara, M.; Corallo, F.; Quartarone, A.; Pidalà, A. Use of virtual reality in children with dyslexia. Children 2022, 9, 1621. [Google Scholar] [CrossRef]
- Maresca, G.; Corallo, F.; De Cola, M.C.; Formica, C.; Giliberto, S.; Rao, G.; Crupi, M.F.; Quartarone, A.; Pidalà, A. Effectiveness of the Use of Virtual Reality Rehabilitation in Children with Dyslexia: Follow-Up after One Year. Brain Sci. 2024, 14, 655. [Google Scholar] [CrossRef] [PubMed]
- Vaitheeshwari, R.; Chih-Hsuan, C.; Chung, C.R.; Yang, H.Y.; Yeh, S.C.; Wu, E.H.K.; Kumar, M. Dyslexia Analysis and Diagnosis Based on Eye Movement. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 4109–4119. [Google Scholar] [CrossRef] [PubMed]
- Chalkiadakis, A.; Seremetaki, A.; Kanellou, A.; Kallishi, M.; Morfopoulou, A.; Moraitaki, M.; Mastrokoukou, S. Impact of artificial intelligence and virtual reality on educational inclusion: A systematic review of technologies supporting students with disabilities. Educ. Sci. 2024, 14, 1223. [Google Scholar] [CrossRef]
- Ko, J.; Jang, S.W.; Lee, H.T.; Yun, H.K.; Kim, Y.S. Effects of virtual reality and non–virtual reality exercises on the exercise capacity and concentration of users in a ski exergame: Comparative study. JMIR Serious Games 2020, 8, e16693. [Google Scholar] [CrossRef]
- Wen, E.; Gupta, C.; Sasikumar, P.; Billinghurst, M.; Wilmott, J.; Skow, E.; Dey, A.; Nanayakkara, S. VR.net: A real-world dataset for virtual reality motion sickness research. IEEE Trans. Vis. Comput. Graph. 2024, 30, 2330–2336. [Google Scholar] [CrossRef]
- Spitzley, K.A.; Karduna, A.R. Feasibility of using a fully immersive virtual reality system for kinematic data collection. J. Biomech. 2019, 87, 172–176. [Google Scholar] [CrossRef]
- Khan, R.U.; Cheng, J.L.A.; Bee, O.Y. Machine learning and Dyslexia: Diagnostic and classification system (DCS) for kids with learning disabilities. Int. J. Eng. Technol. 2018, 7, 97–100. [Google Scholar]
- Tamboer, P.; Vorst, H.; Ghebreab, S.; Scholte, H. Machine learning and dyslexia: Classification of individual structural neuro-imaging scans of students with and without dyslexia. Neuroimage Clin. 2016, 11, 508–514. [Google Scholar] [CrossRef]
- Płoński, P.; Gradkowski, W.; Marchewka, A.; Jednoróg, K.; Bogorodzki, P. Dealing with the heterogeneous multi-site neuroimaging data sets: A discrimination study of children dyslexia. In Proceedings of the Brain Informatics and Health: International Conference, BIH 2014, Warsaw, Poland, 11–14 August 2014; Proceedings; Springer: Cham, Switzerland, 2014; pp. 471–480. [Google Scholar]
- Płoński, P.; Gradkowski, W.; Altarelli, I.; Monzalvo, K.; van Ermingen-Marbach, M.; Grande, M.; Heim, S.; Marchewka, A.; Bogorodzki, P.; Ramus, F.; et al. Multi-parameter machine learning approach to the neuroanatomical basis of developmental dyslexia. Hum. Brain Mapp. 2017, 38, 900–908. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, Y.; Yang, X.; Chen, T.; Cheng, X.; Cheng, W. From sample poverty to rich feature learning: A new metric learning method for few-shot classification. IEEE Access 2024, 12, 124990–125002. [Google Scholar] [CrossRef]
- Yeguas-Bolívar, E.; Alcalde-Llergo, J.M.; Aparicio-Martínez, P.; Taborri, J.; Zingoni, A.; Pinzi, S. Determining the difficulties of students with dyslexia via virtual reality and artificial intelligence: An exploratory analysis. In Proceedings of the 2022 IEEE International Conference on Metrology for Extended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE), Rome, Italy, 26–28 October 2022; pp. 585–590. [Google Scholar]
- Materazzini, M.; Morciano, G.; Alcalde-Llergo, J.M.; Yeguas-Bolivar, E.; Zingoni, A.; Taborri, J. VR-based Silent Reading and Rosenberg Tests: Machine-Learning Approach to Identify Learning Disorders. In Proceedings of the 2024 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE), St Albans, UK, 21–23 October 2024; pp. 541–546. [Google Scholar] [CrossRef]
- Zingoni, A.; Morciano, G.; Alcalde-Llergo, J.M.; Taborri, J.; Yeguas-Bolivar, E.; Aparicio-Martinez, P.; Pinzi, S.; Calabro, G. VRAIlexia project: Provide customized support to university students with dyslexia using Artificial Intelligence and Virtual Reality. In Proceedings of the 2024 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE), St Albans, UK, 21–23 October 2024; pp. 535–540. [Google Scholar] [CrossRef]
- Santulli, F.; Scagnelli, M.; Ciuffo, M.; Baradello, A. SuperReading: Ulteriori prove di efficacia rilevate con i test di valutazione per l’adulto. Dislessia 2018, 15, 35–51. [Google Scholar]
- Ciuffo, M.; Angelini, D.; Barletta Rodolfi, C.; Gagliano, A.; Ghidoni, E.; Stella, G. BDA 16-30 Batteria Dislessia Adulti; Giunti Psychometrics S.r.l.: Florence, Italy, 2018. [Google Scholar]
- VRAIlexia. Available online: https://vrailexia.eu/ (accessed on 22 April 2025).
- Casini, L.; Pech-Georgel, C.; Ziegler, J.C. It’s about time: Revisiting temporal processing deficits in dyslexia. Dev. Sci. 2018, 21, e12530. [Google Scholar] [CrossRef]
- Snowling, M.J.; Hulme, C.; Nation, K. Defining and understanding dyslexia: Past, present and future. Oxf. Rev. Educ. 2020, 46, 501–513. [Google Scholar] [CrossRef]
- Moojen, S.M.P.; Gonçalves, H.A.; Bassôa, A.; Navas, A.L.; de Jou, G.; Miguel, E.S. Adults with dyslexia: How can they achieve academic success despite impairments in basic reading and writing abilities? The role of text structure sensitivity as a compensatory skill. Ann. Dyslexia 2020, 70, 115–140. [Google Scholar] [CrossRef] [PubMed]
- van Viersen, S.; de Bree, E.H.; de Jong, P.F. Protective factors and compensation in resolving dyslexia. Sci. Stud. Read. 2019, 23, 461–477. [Google Scholar] [CrossRef]
- Arsandaux, J.; Boujut, E.; Salamon, R.; Tzourio, C.; Galéra, C. Self-esteem in male and female college students: Does childhood/adolescence background matter more than young-adulthood conditions? Personal. Individ. Differ. 2023, 206, 112117. [Google Scholar] [CrossRef]
- Yang, S.; Huang, P.; Li, B.; Gan, T.; Lin, W.; Liu, Y. The relationship of negative life events, trait-anxiety and depression among Chinese university students: A moderated effect of self-esteem. J. Affect. Disord. 2023, 339, 384–391. [Google Scholar] [CrossRef]
- Rajeswari, S.; Kumari, D.A. Role of Environmental, Social and Governance on Firm Value using Support Vector Machine. In Proceedings of the 2024 2nd International Conference on Advances in Computation, Communication and Information Technology (ICAICCIT), Faridabad, India, 28–29 November 2024; Volume 1, pp. 524–529. [Google Scholar]
- Roy, A.; Chakraborty, S. Support vector machine in structural reliability analysis: A review. Reliab. Eng. Syst. Saf. 2023, 233, 109126. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Lovrić, M.; Pavlović, K.; Žuvela, P.; Spataru, A.; Lučić, B.; Kern, R.; Wong, M.W. Machine learning in prediction of intrinsic aqueous solubility of drug-like compounds: Generalization, complexity, or predictive ability? J. Chemom. 2021, 35, e3349. [Google Scholar] [CrossRef]
Group | Mean Age | Gender (M/F) | Field of Study |
---|---|---|---|
Italian CG | 25.8 ± 2.8 | 11/9 | Engineering–Humanities |
Italian SLD | 21.6 ± 2.8 | 10/10 | Engineering–Humanities |
Spanish CG | 26.0 ± 3.1 | 12/8 | Computer Science–Nursing |
Spanish SLD | 24.9 ± 4.7 | 10/10 | Computer Science–Nursing |
Feature Name | Unit | Test Origin | Description |
---|---|---|---|
Demographic info. | – | General | Basic demographic information (age, sex, and language) |
Reported SLDs | – | General | SLDs diagnosed to the participant (dyslexia, dyscalculia, dysgraphia, and dysorthography) |
Additional problems | – | General | Other cognitive or developmental conditions (e.g., ADHD) |
Device | – | General | Device used during the VR session (headset or cardboard) |
SR response times | Seconds | SR | Time taken to perform each of the nine comprehension tasks during the SR test |
SR accuracy | Boolean | SR | Whether each response in the reading task was correct |
Total reading time | Seconds | SR | Time to complete the entire reading assessment |
Total reading errors | Count | SR | Total number of incorrect answers in the reading test |
Environment noise | Boolean | SR | Quality of the environment during the reading task |
Microphone issues | Boolean | SR | Presence of technical microphone problems |
Self-esteem responses | Ordinal (1–4) | RSES | Responses to 10 items in the RSES |
Self-esteem score | Score (0–30) | RSES | Sum of Rosenberg items indicating global self-esteem |
Total RSES time | Seconds | RSES | Time taken to complete the self-esteem test |
Environment | Categorical | RSES | Conditions during the self-esteem assessment |
SR | RSES | |
---|---|---|
p-value (power) | <0.001 (0.999) | 0.003 (0.932) |
p-value |
SR | RSES | |
---|---|---|
p-value (power) | () | () |
p-value |
SR | RSES | |
---|---|---|
p-value (power) | <0.001 () | () |
p-value |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Materazzini, M.; Morciano, G.; Alcalde-Llergo, J.M.; Yeguas-Bolívar, E.; Calabrò, G.; Zingoni, A.; Taborri, J. Combine Virtual Reality and Machine-Learning to Identify the Presence of Dyslexia: A Cross-Linguistic Approach. Information 2025, 16, 719. https://doi.org/10.3390/info16090719
Materazzini M, Morciano G, Alcalde-Llergo JM, Yeguas-Bolívar E, Calabrò G, Zingoni A, Taborri J. Combine Virtual Reality and Machine-Learning to Identify the Presence of Dyslexia: A Cross-Linguistic Approach. Information. 2025; 16(9):719. https://doi.org/10.3390/info16090719
Chicago/Turabian StyleMaterazzini, Michele, Gianluca Morciano, José Manuel Alcalde-Llergo, Enrique Yeguas-Bolívar, Giuseppe Calabrò, Andrea Zingoni, and Juri Taborri. 2025. "Combine Virtual Reality and Machine-Learning to Identify the Presence of Dyslexia: A Cross-Linguistic Approach" Information 16, no. 9: 719. https://doi.org/10.3390/info16090719
APA StyleMaterazzini, M., Morciano, G., Alcalde-Llergo, J. M., Yeguas-Bolívar, E., Calabrò, G., Zingoni, A., & Taborri, J. (2025). Combine Virtual Reality and Machine-Learning to Identify the Presence of Dyslexia: A Cross-Linguistic Approach. Information, 16(9), 719. https://doi.org/10.3390/info16090719