A FinTech-Aligned Optimization Framework for IoT-Enabled Smart Agriculture to Mitigate Greenhouse Gas Emissions
Abstract
1. Introduction
2. Background and Research Contribution
2.1. GHG Emissions and Primary Contributors in Agriculture
2.2. Related Work
2.3. Problem Definition and Research Contribution
- Integrated diagnostics and predictions: The proposed framework implements a two-stage approach that first models the underlying GHG emission drivers from IoT sensor networks and then uses this embedded knowledge to perform the optimization.
- Interpretable recommendations: The framework provides direct, quantifiable coefficients that link specific management variables to emission outcomes.
- Cluster-oriented and profile-specific optimizations: The framework defines distinct emission profiles before optimization, offering a more tailored approach specific to the unique context of different IoT-enabled agricultural systems.
3. Greenhouse Gas Emission Modeling
3.1. Dataset Description and Preprocessing
3.2. Principal Component Analysis and Interpretation
3.3. Clustering Analysis and Emission Profiles Definition
3.4. Greenhouse Gas Emission Modeling
3.5. Evaluation Metrics for Modeling
4. Greenhouse Gas Emission Optimization
4.1. Optimization Problem and Constraint Definition
4.2. FinTech-Aligned GHG Emission Optimization
4.3. Evaluation Metrics for Optimization
5. Experimental Results
5.1. Data Fitting Results
5.2. Emission Optimization Results
6. Emission Control via Market-Informed Optimization: A European Case Study
Sensitivity Analysis on Carbon Price
7. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. Greenhouse Gas Emissions from Agrifood Systems: Global, Regional And Country Trends 2000–2022. 2024. Available online: https://openknowledge.fao.org/items/74bfebdb-3272-4e6a-98f4-ee36c7146d44 (accessed on 21 May 2025).
- Polymeni, S.; Skoutas, D.N.; Sarigiannidis, P.; Kormentzas, G.; Skianis, C. Smart agriculture and greenhouse gas emission mitigation: A 6G-IoT perspective. Electronics 2024, 13, 1480. [Google Scholar] [CrossRef]
- Basheer, S.; Wang, X.; Farooque, A.A.; Nawaz, R.A.; Pang, T.; Neokye, E.O. A review of greenhouse gas emissions from agricultural soil. Sustainability 2024, 16, 4789. [Google Scholar] [CrossRef]
- Jensen, T.A.; Antille, D.L.; Tullberg, J.N. Improving on-farm energy use efficiency by optimizing machinery operations and management: A review. Agric. Res. 2025, 14, 15–33. [Google Scholar] [CrossRef]
- Rosa, L.; Gabrielli, P. Achieving net-zero emissions in agriculture: A review. Environ. Res. Lett. 2023, 18, 063002. [Google Scholar] [CrossRef]
- Kazimierczuk, K.; Barrows, S.E.; Olarte, M.V.; Qafoku, N.P. Decarbonization of agriculture: The greenhouse gas impacts and economics of existing and emerging climate-smart practices. ACS Eng. Au 2023, 3, 426–442. [Google Scholar] [CrossRef]
- Guo, L.B.; Gifford, R.M. Soil carbon stocks and land use change: A meta analysis. Glob. Change Biol. 2002, 8, 345–360. [Google Scholar] [CrossRef]
- Bryan, B.A.; Nolan, M.; McKellar, L.; Connor, J.D.; Newth, D.; Harwood, T.; King, D.; Navarro, J.; Cai, Y.; Gao, L.; et al. Land-use and sustainability under intersecting global change and domestic policy scenarios: Trajectories for Australia to 2050. Glob. Environ. Change 2016, 38, 130–152. [Google Scholar] [CrossRef]
- Pannell, D.J.; Marshall, G.R.; Barr, N.; Curtis, A.; Vanclay, F.; Wilkinson, R. Understanding and promoting adoption of conservation practices by rural landholders. Aust. J. Exp. Agric. 2006, 46, 1407–1424. [Google Scholar] [CrossRef]
- Knowler, D.; Bradshaw, B. Farmers’ adoption of conservation agriculture: A review and synthesis of recent research. Food Policy 2007, 32, 25–48. [Google Scholar] [CrossRef]
- Dimitriou, N.; Sarakis, L.; Loukatos, D.; Kormentzas, G.; Skianis, C. Vertical handover (VHO) framework for future collaborative wireless networks. Int. J. Netw. Manag. 2011, 21, 548–564. [Google Scholar] [CrossRef]
- Polymeni, S.; Plastras, S.; Skoutas, D.N.; Kormentzas, G.; Skianis, C. The impact of 6G-IoT technologies on the development of agriculture 5.0: A review. Electronics 2023, 12, 2651. [Google Scholar] [CrossRef]
- Polymeni, S.; Skoutas, D.N.; Kormentzas, G.; Skianis, C. Findeas: A fintech-based approach on designing and assessing iot systems. IEEE Internet Things J. 2022, 9, 25196–25206. [Google Scholar] [CrossRef]
- Loukoianova, E.; Natalucci, F.M.; Wang, Y.D.; Kanada, S. Fintech Applications for Boosting Climate Finance; IMF Staff Climate Notes 2024/008; International Monetary Fund: Washington, DC, USA, 2024. [Google Scholar]
- Weber, P.; Carl, K.V.; Hinz, O. Applications of explainable artificial intelligence in finance—A systematic review of finance, information systems, and computer science literature. Manag. Rev. Q. 2024, 74, 867–907. [Google Scholar] [CrossRef]
- Huang, Y.; Ren, W.; Wang, L.; Hui, D.; Grove, J.H.; Yang, X.; Tao, B.; Goff, B. Greenhouse gas emissions and crop yield in no-tillage systems: A meta-analysis. Agric. Ecosyst. Environ. 2018, 268, 144–153. [Google Scholar] [CrossRef]
- Buccioni, A.; Cappucci, A.; Mele, M. Methane emission from enteric fermentation: Methanogenesis and fermentation. In Climate Change Impact on Livestock: Adaptation and Mitigation; Springer: New Delhi, India, 2015; pp. 171–186. [Google Scholar]
- Chen, H.; Zhu, Q.; Peng, C.; Wu, N.; Wang, Y.; Fang, X.; Jiang, H.; Xiang, W.; Chang, J.; Deng, X.; et al. Methane emissions from rice paddies natural wetlands, lakes in China: Synthesis new estimate. Glob. Change Biol. 2013, 19, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Gao, Y.; Zhao, J.; Xue, Y.; Zhang, W.; Wu, W.; Jiang, H.; Cao, D. Agricultural methane emissions in China: Inventories, driving forces and mitigation strategies. Environ. Sci. Technol. 2023, 57, 13292–13303. [Google Scholar] [CrossRef]
- Lazcano, C.; Zhu-Barker, X.; Decock, C. Effects of organic fertilizers on the soil microorganisms responsible for N2O emissions: A review. Microorganisms 2021, 9, 983. [Google Scholar] [CrossRef]
- Ussiri, D.; Lal, R.; Ussiri, D.; Lal, R. The role of fertilizer management in mitigating nitrous oxide emissions. In Soil Emission of Nitrous Oxide and Its Mitigation; Springer: Dordrecht, The Netherlands, 2013; pp. 315–346. [Google Scholar]
- Lynch, J.; Cain, M.; Frame, D.; Pierrehumbert, R. Agriculture’s contribution to climate change and role in mitigation is distinct from predominantly fossil CO2-emitting sectors. Front. Sustain. Food Syst. 2021, 4, 518039. [Google Scholar] [CrossRef]
- Pearson, T.R.; Brown, S.; Murray, L.; Sidman, G. Greenhouse gas emissions from tropical forest degradation: An underestimated source. Carbon Balance Manag. 2017, 12, 1–11. [Google Scholar] [CrossRef]
- US EPA. Understanding Global Warming Potentials. 2025. Available online: https://www.epa.gov/ghgemissions/understanding-global-warming-potentials (accessed on 25 June 2025).
- Hang, S.; Li, J.; Xu, X.; Lyu, Y.; Li, Y.; Gong, H.; Xu, Y.; Ouyang, Z. An Optimization scheme of balancing GHG emission and income in circular agriculture system. Sustainability 2021, 13, 7154. [Google Scholar] [CrossRef]
- Su, Y.; Xu, L. Global Optimization and Control of Greenhouse Climate Setpoints for Energy Saving and Crop Yield Increase. Agriculture 2025, 15, 939. [Google Scholar] [CrossRef]
- Li, K.; Mi, Y.; Zheng, W. An optimal control method for greenhouse climate management considering crop growth’s spatial distribution and energy consumption. Energies 2023, 16, 3925. [Google Scholar] [CrossRef]
- Madondo, M.; Azmat, M.; Dipietro, K.; Horesh, R.; Jacobs, M.; Bawa, A.; Srinivasan, R.; O’Donncha, F. A swat-based reinforcement learning framework for crop management. arXiv 2023, arXiv:2302.04988. [Google Scholar] [CrossRef]
- Platero-Horcajadas, M.; Pardo-Pina, S.; Cámara-Zapata, J.M.; Brenes-Carranza, J.A.; Ferrández-Pastor, F.J. Enhancing greenhouse efficiency: Integrating IoT and reinforcement learning for optimized climate control. Sensors 2024, 24, 8109. [Google Scholar] [CrossRef]
- Mallick, S.; Airaldi, F.; Dabiri, A.; Sun, C.; De Schutter, B. Reinforcement learning-based model predictive control for greenhouse climate control. Smart Agric. Technol. 2025, 10, 100751. [Google Scholar] [CrossRef]
- Popa, D.C.; Laurent, Y.; Popa, R.A.; Pasat, A.; Bălănescu, M.; Svertoka, E.; Pogurschi, E.N.; Vidu, L.; Marin, M.P. A Platform for GHG Emissions Management in Mixed Farms. Agriculture 2023, 14, 78. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, B.; Wang, J.; Jin, D.; Zhang, H. Assessing Global Agricultural Greenhouse Gas Emissions: Key Drivers and Mitigation Strategies. Agronomy 2025, 15, 1336. [Google Scholar] [CrossRef]
- Behvandi, O.; Ghorbani, H. Predicting future climate scenarios: A machine learning perspective on greenhouse gas emissions in agrifood systems. Front. Environ. Sci. 2024, 12, 1471599. [Google Scholar] [CrossRef]
- FAO. FAOSTAT Database. 2025. Available online: https://www.fao.org/faostat/en/#data (accessed on 29 April 2025).
- Tubiello, F.N.; Salvatore, M.; Rossi, S.; Ferrara, A.; Fitton, N.; Smith, P. The FAOSTAT database of greenhouse gas emissions from agriculture. Environ. Res. Lett. 2013, 8, 015009. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Greenacre, M.; Groenen, P.J.F.; Hastie, T.; D’Enza, A.I.; Markos, A.; Tuzhilina, E. Principal component analysis. Nat. Rev. Methods Prim. 2022, 2, 100. [Google Scholar] [CrossRef]
- David, C.C.; Jacobs, D.J. Principal component analysis: A method for determining the essential dynamics of proteins. In Protein Dynamics: Methods and Protocols; Humana Press: New York, NY, USA, 2014; pp. 193–226. [Google Scholar]
- Cattell, R.B. The scree test for the number of factors. Multivar. Behav. Res. 1966, 1, 245–276. [Google Scholar] [CrossRef] [PubMed]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Levers, C.; Müller, D.; Erb, K.; Haberl, H.; Jepsen, M.R.; Metzger, M.J.; Meyfroidt, P.; Plieninger, T.; Plutzar, C.; Stürck, J.; et al. Archetypical patterns and trajectories of land systems in Europe. Reg. Environ. Change 2018, 18, 715–732. [Google Scholar] [CrossRef]
- Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A k-means clustering algorithm. J. R. Stat. Society. Ser. C 1979, 28, 100–108. [Google Scholar] [CrossRef]
- Burkardt, J. K-means clustering. In Virginia Tech, Advanced Research Computing, Interdisciplinary Center for Applied Mathematics; Virginia Tech: Blacksburg, VA, USA, 2009. [Google Scholar]
- Anastasiadis, M.; Aivatoglou, G.; Spanos, G.; Voulgaridis, A.; Votis, K. Combining text analysis techniques with unsupervised machine learning methodologies for improved software vulnerability management. In Proceedings of the 2022 IEEE International Conference on Cyber Security and Resilience (CSR), Rhodes, Greece, 27–29 July 2022; pp. 273–278. [Google Scholar]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef]
- Shahapure, K.R.; Nicholas, C. Cluster quality analysis using silhouette score. In Proceedings of the 2020 IEEE 7th International Conference On Data Science And Advanced Analytics (Dsaa), Sydney, NSW, Australia, 6–9 October 2020; pp. 747–748. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J.H.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: New York, NY, USA, 2009; Volume 2. [Google Scholar]
- Chmelíková, L.; Schmid, H.; Anke, S.; Hülsbergen, K.J. Energy-use efficiency of organic and conventional plant production systems in Germany. Sci. Rep. 2024, 14, 1806. [Google Scholar] [CrossRef]
- Storrle, M.; Brauckmann, H.J.; Broll, G. Greenhouse Gas Emissions from Livestock Manure Management in Southwestern Siberia, Russia. Sustain. Agric. Res. 2017, 6, 265146. [Google Scholar] [CrossRef]
- Mosnier, C.; Britz, W.; Julliere, T.; De Cara, S.; Jayet, P.A.; Havlík, P.; Frank, S.; Mosnier, A. Greenhouse gas abatement strategies and costs in French dairy production. J. Clean. Prod. 2019, 236, 117589. [Google Scholar] [CrossRef]
- Castro, A.J.; López-Rodríguez, M.D.; Giagnocavo, C.; Gimenez, M.; Céspedes, L.; La Calle, A.; Gallardo, M.; Pumares, P.; Cabello, J.; Rodríguez, E.; et al. Six collective challenges for sustainability of Almería greenhouse horticulture. Int. J. Environ. Res. Public Health 2019, 16, 4097. [Google Scholar] [CrossRef]
- O’ Mara, F.; Richards, K.G.; Shalloo, L.; Donnellan, T.; Finn, J.A.; Lanigan, G. Sustainability of ruminant livestock production in Ireland. Anim. Front. 2021, 11, 32–43. [Google Scholar] [CrossRef]
- Morzuch, B.J.; Ruark, G.A. Principal components regression to mitigate the effects of multicollinearity. For. Sci. 1991, 37, 191–199. [Google Scholar] [CrossRef]
- Polymeni, S.; Pitsiavas, V.; Spanos, G.; Matthewson, Q.; Lalas, A.; Votis, K.; Tzovaras, D. Toward Sustainable Mobility: AI-Enabled Automated Refueling for Fuel Cell Electric Vehicles. Energies 2024, 17, 4324. [Google Scholar] [CrossRef]
- Nordhaus, W. Climate change: The ultimate challenge for economics. Am. Econ. Rev. 2019, 109, 1991–2014. [Google Scholar] [CrossRef]
- World Bank. State and Trends of Carbon Pricing 2024; Technical Report; World Bank: Singapore, 2024. [Google Scholar]
- Frank, S.; Beach, R.; Havlík, P.; Valin, H.; Herrero, M.; Mosnier, A.; Hasegawa, T.; Creason, J.; Ragnauth, S.; Obersteiner, M. Structural change as a key component for agricultural non-CO2 mitigation efforts. Nat. Commun. 2018, 9, 1060. [Google Scholar] [CrossRef]
- Arrieta, A.B.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; García, S.; Gil-López, S.; Molina, D.; Benjamins, R.; et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 2020, 58, 82–115. [Google Scholar] [CrossRef]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 789–813. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning: With Applications in R; Springer: New York, NY, USA, 2013; Volume 103. [Google Scholar]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice; OTexts: Melbourne, VIC, Australia, 2018. [Google Scholar]
- Nocedal, J.; Wright, S.J. Numerical Optimization; Springer: New York, NY, USA, 2006. [Google Scholar]
- Havlík, P.; Valin, H.; Herrero, M.; Obersteiner, M.; Schmid, E.; Rufino, M.C.; Mosnier, A.; Thornton, P.K.; Böttcher, H.; Conant, R.T.; et al. Climate change mitigation through livestock system transitions. Proc. Natl. Acad. Sci. USA 2014, 111, 3709–3714. [Google Scholar] [CrossRef]
- De Cara, S.; Jayet, P.A. Marginal abatement costs of greenhouse gas emissions from European agriculture, cost effectiveness, and the EU non-ETS burden sharing agreement. Ecol. Econ. 2011, 70, 1680–1690. [Google Scholar] [CrossRef]
- Montgomery, D.C.; Peck, E.A.; Vining, G.G. Introduction to Linear Regression Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Boyd, S.P.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Saltelli, A. Sensitivity analysis for importance assessment. Risk Anal. 2002, 22, 579–590. [Google Scholar] [CrossRef]
- International Energy Agency. World Energy Outlook 2023. Available online: https://www.iea.org/reports/world-energy-outlook-2023 (accessed on 22 August 2025).
- Bertsekas, D. Dynamic Programming and Optimal Control: Volume I; Athena Scientific: Belmont, MA, USA, 2012; Volume 4. [Google Scholar]
- Rose, D.C.; Sutherland, W.J.; Parker, C.; Lobley, M.; Winter, M.; Morris, C.; Twining, S.; Ffoulkes, C.; Amano, T.; Dicks, L.V. Decision support tools for agriculture: Towards effective design and delivery. Agric. Syst. 2016, 149, 165–174. [Google Scholar] [CrossRef]
- Britz, W.; Witzke, P. CAPRI modelling system documentation. In Common Agricultural Policy Regional Impact Analysis; University of Bonn: Bonn, Germany, 2004. [Google Scholar]
- IPCC. Climate Change and Land. 2019. Available online: https://www.ipcc.ch/srccl/ (accessed on 22 August 2025).
- Klerkx, L.; Van Mierlo, B.; Leeuwis, C. Evolution of systems approaches to agricultural innovation: Concepts, analysis and interventions. In Farming Systems Research into the 21st Century: The New Dynamic; Springer: Dordrecht, The Netherlands, 2012; pp. 457–483. [Google Scholar]
Cluster-Oriented Principal Component Regression | ||||||||
---|---|---|---|---|---|---|---|---|
Cluster 0 | Cluster 1 | Cluster 2 | Cluster 3 | |||||
PCs | RMSE | nRMSE | RMSE | nRMSE | RMSE | nRMSE | RMSE | nRMSE |
Top 1 | 6.043 | 0.068 | 4.072 | 0.078 | 13.952 | 0.058 | 3.224 | 0.202 |
Top 2 | 6.332 | 0.071 | 4.053 | 0.077 | 9.773 | 0.040 | 3.140 | 0.197 |
Top 3 | 1.112 | 0.012 | 2.829 | 0.054 | 5.859 | 0.024 | 1.209 | 0.076 |
Top 4 | 1.088 | 0.012 | 0.991 | 0.019 | 2.459 | 0.010 | 1.140 | 0.071 |
Top 5 | 0.622 | 0.007 | 0.936 | 0.018 | 1.965 | 0.008 | 1.080 | 0.068 |
Generalized PCR | Cluster-Oriented PCR | Accuracy Improvement | |||
---|---|---|---|---|---|
Cluster | RMSE | nRMSE | RMSE | nRMSE | |
C0—“CH4-Heavy Cropping” | 1.282 | 0.014 | 0.622 | 0.007 | 0.515 |
C1—“Low-Input Traditional” | 1.104 | 0.021 | 0.936 | 0.018 | 0.152 |
C2—“High-Emission Livestock” | 2.354 | 0.010 | 1.965 | 0.008 | 0.165 |
C3—“Intensive Cropping and Manure” | 2.438 | 0.153 | 1.080 | 0.068 | 0.557 |
Country | Cluster ID | Emissions (Mt) | Optimized Emissions (Mt) | Emission Reduction (Mt) | Cost Reduction (%) |
---|---|---|---|---|---|
France | 2 | 97 | 97 | 0 | 0.00 |
Russia | 2 | 74 | 42 | 32 | 43.55 |
Germany | 0 | 62 | 62 | 0 | 0.00 |
United Kingdom | 1 | 62 | 53 | 9 | 13.43 |
Spain | 3 | 54 | 41 | 13 | 23.42 |
Italy | 3 | 44 | 26 | 18 | 41.33 |
Poland | 1 | 33 | 33 | 0 | 0.00 |
Netherlands | 1 | 31 | 21 | 10 | 31.56 |
Ireland | 1 | 27 | 24 | 3 | 10.58 |
Belarus | 1 | 20 | 20 | 0 | 0.00 |
Romania | 1 | 19 | 16 | 3 | 15.94 |
Belgium | 1 | 12 | 10 | 2 | 18.69 |
Country | Emission Reduction (Mt) | Low-Price Savings (Eur) | Baseline Savings (Eur) | High-Price Savings (Eur) |
---|---|---|---|---|
Russia | 32 | 1.6 M | 2.7 M | 3.9 M |
Italy | 18 | 0.9 M | 1.6 M | 2.2 M |
Spain | 13 | 0.6 M | 1.1 M | 1.5 M |
Netherlands | 10 | 0.5 M | 0.8 M | 1.2 M |
United Kingdom | 8 | 0.4 M | 0.7 M | 1.0 M |
Andorra | 4 | 0.2 M | 0.3 M | 0.5 M |
Cyprus | 4 | 0.2 M | 0.3 M | 0.5 M |
Luxembourg | 4 | 0.2 M | 0.3 M | 0.5 M |
Armenia | 4 | 0.2 M | 0.3 M | 0.4 M |
Slovenia | 4 | 0.2 M | 0.3 M | 0.4 M |
Country | Emission Profile | Abatement Cost | Abatement Strategy |
---|---|---|---|
France | High-Emission Livestock | 0.0289 | Improve Feed Efficiency |
Russia | High-Emission Livestock | 0.0166 | Improve Feed Efficiency |
United Kingdom | Low-Input Traditional | 0.0118 | Optimize Land Use |
Spain | Intensive Cropping and Manure | 0.0096 | Enhance Fertilizer Use Efficiency |
Germany | CH4-Heavy Cropping | 0.0087 | Re-Balance Agricultural Practices |
Italy | Intensive Cropping and Manure | 0.0066 | Enhance Fertilizer Use Efficiency |
Poland | Low-Input Traditional | 0.0034 | Promote Energy Efficiency |
Netherlands | Low-Input Traditional | 0.0030 | Promote Energy Efficiency |
Ireland | Low-Input Traditional | 0.0022 | Promote Energy Efficiency |
Belarus | Low-Input Traditional | 0.0012 | Promote Energy Efficiency |
Romania | Low-Input Traditional | 0.0011 | Promote Energy Efficiency |
Belgium | Low-Input Traditional | 0.0004 | Promote Energy Efficiency |
Country | Emission Reduction (Mt) | Cost Reduction (%) | ||||
---|---|---|---|---|---|---|
±10% | ±20% | ±30% | ±10% | ±20% | ±30% | |
Russia | 0.00 | 32.12 | 0.00 | 0.00 | 43.55 | 0.00 |
Italy | 9.14 | 18.28 | 27.41 | 20.67 | 41.33 | 62.00 |
Spain | 6.27 | 12.55 | 18.82 | 11.71 | 23.42 | 35.13 |
Netherlands | 4.94 | 9.88 | 14.82 | 15.78 | 31.56 | 47.34 |
United Kingdom | 0.00 | 8.26 | 12.39 | 0.00 | 13.43 | 20.15 |
Andorra | 2.03 | 4.07 | 0.00 | 1152.75 | 2305.50 | 0.00 |
Cyprus | 1.98 | 3.96 | 0.00 | 252.11 | 504.23 | 0.00 |
Luxembourg | 1.97 | 3.93 | 0.00 | 217.18 | 434.36 | 0.00 |
Armenia | 1.86 | 3.72 | 0.00 | 92.68 | 185.35 | 0.00 |
Slovenia | 1.86 | 3.71 | 0.00 | 92.97 | 185.94 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polymeni, S.; Skoutas, D.N.; Kormentzas, G.; Skianis, C. A FinTech-Aligned Optimization Framework for IoT-Enabled Smart Agriculture to Mitigate Greenhouse Gas Emissions. Information 2025, 16, 797. https://doi.org/10.3390/info16090797
Polymeni S, Skoutas DN, Kormentzas G, Skianis C. A FinTech-Aligned Optimization Framework for IoT-Enabled Smart Agriculture to Mitigate Greenhouse Gas Emissions. Information. 2025; 16(9):797. https://doi.org/10.3390/info16090797
Chicago/Turabian StylePolymeni, Sofia, Dimitrios N. Skoutas, Georgios Kormentzas, and Charalabos Skianis. 2025. "A FinTech-Aligned Optimization Framework for IoT-Enabled Smart Agriculture to Mitigate Greenhouse Gas Emissions" Information 16, no. 9: 797. https://doi.org/10.3390/info16090797
APA StylePolymeni, S., Skoutas, D. N., Kormentzas, G., & Skianis, C. (2025). A FinTech-Aligned Optimization Framework for IoT-Enabled Smart Agriculture to Mitigate Greenhouse Gas Emissions. Information, 16(9), 797. https://doi.org/10.3390/info16090797