Predicting School Grades: Can Conscientiousness Compensate for Intelligence?
Abstract
:1. Introduction
1.1. The Interplay of Intelligence and Conscientiousness in Predicting Performance
1.2. The Role of School Subjects
1.3. The Role of Gender
1.4. The Role of SES
1.5. Present Study
2. Methods
2.1. Design and Sample
2.2. Measures
2.3. Statistical Analyses
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
M1 | M2 | M3 | ||||
β | 95% CI | β | 95% CI | β | 95% CI | |
German | ||||||
Intercept | 8.48 *** | [8.30, 8.65] | 8.48 *** | [8.30, 8.66] | 8.59 *** | [8.21, 8.96] |
Intelligence | 0.47 *** | [0.38, 0.56] | 0.47 *** | [0.38, 0.56] | 0.37 *** | [0.26, 0.48] |
Conscientiousness | 0.73 *** | [0.53, 0.93] | 0.79 *** | [0.61, 0.97] | 0.25 ** | [0.12, 0.38] |
IQ × C | 0.42 *** | [0.27, 0.57] | 0.34 *** | [0.19, 0.50] | ||
Female | 0.48 *** | [0.28, 0.67] | ||||
Age | −0.05 | [−0.19, 0.10] | ||||
Migration background | −0.52 *** | [−0.71, −0.32] | ||||
Academic track school | −0.33 | [−0.79, 0.13] | ||||
Study intention | 0.46 *** | [0.37, 0.55] | ||||
Self-concept | 0.73 *** | [0.52, 0.94] | ||||
Motivation | 1.01 *** | [0.90, 1.13] | ||||
M1 | M2 | M3 | ||||
β | 95% CI | β | 95% CI | β | 95% CI | |
Mathematics | ||||||
Intercept | 8.05 *** | [7.89, 8.22] | 8.05 *** | [7.89, 8.22] | 8.00 *** | [7.64, 8.37] |
Intelligence | 1.04 *** | [0.91, 1.16] | 1.02 *** | [0.90, 1.14] | 0.53 *** | [0.39, 0.67] |
Conscientiousness | 1.27 *** | [1.05, 1.49] | 1.28 *** | [1.07, 1.49] | 0.44 *** | [0.28, 0.60] |
IQ × C | 0.42 *** | [0.22, 0.63] | 0.23 * | [0.06, 0.41] | ||
Female | 0.59 *** | [0.34, 0.85] | ||||
Age | −0.38 *** | [−0.55, −0.21] | ||||
Migration background | −0.36 | [−0.66, −0.05] | ||||
Academic track school | −0.19 | [−0.60, 0.22] | ||||
Study intention | 0.32 *** | [0.19, 0.45] | ||||
Self-concept | 0.74 *** | [0.53, 0.94] | ||||
Motivation | 1.64 *** | [1.50, 1.77] | ||||
M1 | M2 | M3 | ||||
β | 95% CI | β | 95% CI | β | 95% CI | |
English | ||||||
Intercept | 8.65 *** | [8.47, 8.83] | 8.65 *** | [8.47, 8.84] | 8.54 *** | [8.18, 8.89] |
Intelligence | 0.61 *** | [0.52, 0.70] | 0.61 *** | [0.52, 0.70] | 0.45 *** | [0.34, 0.56] |
Conscientiousness | 0.65 *** | [0.43, 0.87] | 0.66 *** | [0.45, 0.86] | 0.03 | [−0.17, 0.24] |
IQ × C | 0.25 | [0.03, 0.46] | 0.22 * | [0.05, 0.40] | ||
Female | 0.51 *** | [0.31, 0.70] | ||||
Age | −0.17 | [−0.32, −0.02] | ||||
Migration background | −0.12 | [−0.40, 0.16] | ||||
Academic track school | −0.17 | [−0.59, 0.25] | ||||
Study intention | 0.29 *** | [0.20, 0.39] | ||||
Self-concept | 0.82 *** | [0.63, 1.02] | ||||
Motivation | 1.59 *** | [1.46, 1.73] | ||||
M1 | M2 | M3 | ||||
β | 95% CI | β | 95% CI | β | 95% CI | |
Biology | ||||||
Intercept | 9.12 *** | [8.90, 9.34] | 9.13 *** | [8.90, 9.35] | 8.33 *** | [7.93, 8.73] |
Intelligence | 0.51 *** | [0.36, 0.67] | 0.50 *** | [0.35, 0.65] | 0.46 *** | [0.28, 0.63] |
Conscientiousness | 1.13 *** | [0.87, 1.38] | 1.10 *** | [0.85, 1.34] | 0.53 *** | [0.30, 0.75] |
IQ × C | 0.41 * | [0.13, 0.69] | 0.33 * | [0.09, 0.57] | ||
Female | 0.64 ** | [0.31, 0.98] | ||||
Age | −0.26 * | [−0.45, −0.07] | ||||
Migration background | −0.13 | [−0.49, 0.22] | ||||
Academic track school | 0.62 * | [0.12, 1.12] | ||||
Study intention | 0.42 *** | [0.30, 0.55] | ||||
Self-concept | 0.58 *** | [0.34, 0.81] | ||||
Motivation | 0.95 *** | [0.81, 1.09] |
M1 | M2 | M3 | ||||
β | 95% CI | β | 95% CI | β | 95% CI | |
German | ||||||
Intercept | 8.59 *** | [8.31, 8.82] | 8.59 *** | [8.36, 8.82] | 8.59 *** | [8.23, 8.95] |
Intelligence | 0.44 *** | [0.31, 0.57] | 0.47 *** | [0.38, 0.56] | 0.35 *** | [0.23, 0.47] |
Conscientiousness | 0.72 *** | [0.53, 0.91] | 0.74 *** | [0.57, 0.91] | 0.25 ** | [0.12, 0.38] |
IQ × C | 0.32 ** | [0.14, 0.50] | 0.35 *** | [0.19, 0.51] | ||
Female | 0.49 *** | [0.27, 0.71] | ||||
Age | −0.04 | [−0.18, 0.10] | ||||
Migration background | −0.51 *** | [−0.73, −0.28] | ||||
Academic track school | −0.32 | [−0.78, 0.13] | ||||
Study intention | 0.45 *** | [0.35, 0.55] | ||||
Self-concept | 0.74 *** | [0.52, 0.96] | ||||
Motivation | 1.01 *** | [0.87, 1.15] | ||||
M1 | M2 | M3 | ||||
β | 95% CI | β | 95% CI | β | 95% CI | |
Mathematics | ||||||
Intercept | 8.15 *** | [7.93, 8.37] | 8.15 *** | [7.93, 8.37] | 7.96 *** | [7.57, 8.35] |
Intelligence | 1.11 *** | [0.94, 1.28] | 1.11 *** | [0.94, 1.28] | 0.53 *** | [0.38, 0.68] |
Conscientiousness | 1.28 *** | [1.06, 1.50] | 1.30 *** | [1.09, 1.51] | 0.45 *** | [0.29, 0.61] |
IQ × C | 0.39 ** | [0.18, 0.60] | 0.23 * | [0.05, 0.41] | ||
Female | 0.57 *** | [0.30, 0.84] | ||||
Age | −0.40 *** | [−0.58, −0.22] | ||||
Migration background | −0.37* | [−0.66, −0.07] | ||||
Academic track school | −0.16 | [−0.58, 0.26] | ||||
Study intention | 0.31 *** | [0.17, 0.45] | ||||
Self-concept | 0.79 *** | [0.57, 1.01] | ||||
Motivation | 1.61 *** | [1.48, 1.75] | ||||
M1 | M2 | M3 | ||||
β | 95% CI | β | 95% CI | β | 95% CI | |
English | ||||||
Intercept | 8.73 *** | [8.51, 8.94] | 8.73 *** | [8.51, 8.95] | 8.52 *** | [8.17, 8.87] |
Intelligence | 0.68 *** | [0.57, 0.78] | 0.68 *** | [0.57, 0.78] | 0.44 *** | [0.32, 0.57] |
Conscientiousness | 0.62 *** | [0.41, 0.83] | 0.64 *** | [0.43, 0.84] | 0.03 | [−0.18, 0.23] |
IQ × C | 0.21 * | [0.04, 0.38] | 0.22 * | [0.05, 0.40] | ||
Female | 0.55 *** | [0.35, 0.75] | ||||
Age | −0.17 | [−0.32, −0.02] | ||||
Migration background | −0.11 | [−0.39, 0.17] | ||||
Academic track school | −0.18 | [−0.59, 0.23] | ||||
Study intention | 0.29 *** | [0.18, 0.39] | ||||
Self-concept | 0.86 *** | [0.65, 1.07] | ||||
Motivation | 1.58 *** | [1.43, 1.73] | ||||
M1 | M2 | M3 | ||||
β | 95% CI | β | 95% CI | β | 95% CI | |
Biology | ||||||
Intercept | 9.16 *** | [8.89, 9.43] | 9.17 *** | [8.90, 9.44] | 8.31 *** | [7.90, 8.72] |
Intelligence | 0.56 *** | [0.38, 0.74] | 0.55 *** | [0.38, 0.73] | 0.47 *** | [0.29, 0.65] |
Conscientiousness | 1.16 *** | [0.90, 1.42] | 1.15 *** | [0.89, 1.41] | 0.54 *** | [0.32, 0.77] |
IQ × C | 0.39 * | [0.10, 0.68] | 0.34 * | [0.08, 0.60] | ||
Female | 0.66 ** | [0.31, 1.01] | ||||
Age | −0.26 | [−0.49, −0.04] | ||||
Migration background | −0.19 | [−0.55, 0.18] | ||||
Academic track school | 0.64 * | [0.13, 1.16] | ||||
Study intention | 0.42 *** | [0.29, 0.55] | ||||
Self-concept | 0.56 *** | [0.32, 0.80] | ||||
Motivation | 0.87 *** | [0.70, 1.03] |
M1 | M2 | |||
β | 95% CI | β | 95% CI | |
German | ||||
Intercept | 8.59 *** | [8.50, 8.68] | 8.59 *** | [8.50, 8.68] |
Conscientiousness | 0.46 *** | [0.36, 0.55] | 0.45 *** | [0.36, 0.54] |
Intelligence | 0.45 *** | [0.35, 0.55] | 0.45 *** | [0.36, 0.55] |
IQ × C | 0.17 ** | [0.06, 0.27] | ||
M1 | M2 | |||
β | 95% CI | β | 95% CI | |
Mathematics | ||||
Intercept | 8.15 *** | [8.04, 8.36] | 8.16 *** | [8.04, 8.27] |
Conscientiousness | 0.74 *** | [0.63, 0.86] | 0.74 *** | [0.63, 0.86] |
Intelligence | 1.12 *** | [1.00, 1.24] | 1.13 *** | [1.01, 1.25] |
IQ × C | 0.19 * | [0.07, 0.32] | ||
M1 | M2 | |||
β | 95% CI | β | 95% CI | |
English | ||||
Intercept | 8.73 *** | [8.63, 8.82] | 8.73 *** | [8.63, 8.83] |
Conscientiousness | 0.37 *** | [0.29, 0.49] | 0.39 *** | [0.29, 0.49] |
Intelligence | 0.68 *** | [0.58, 0.78] | 0.68 *** | [0.58, 0.79] |
IQ × C | 0.10 | [−0.02, 0.21] | ||
M1 | M2 | |||
β | 95% CI | β | 95% CI | |
Biology | ||||
Intercept | 9.18 *** | [9.06, 9.31] | 9.19 *** | [9.07, 9.32] |
Conscientiousness | 0.67 *** | [0.54, 0.79] | 0.66 *** | [0.53, 0.78] |
Intelligence | 0.58 *** | [0.44, 0.71] | 0.57 *** | [0.43, 0.71] |
IQ × C | 0.25 * | [0.09, 0.41] |
1 | We added hypothesis 4b after preregistration. The hypotheses at preregistration were based solely on theory. As the state of research suggested different outcomes than theory, we added an additional hypothesis. |
2 | The academic upper secondary schools in the sample already participated in previous waves of the LISA survey. The sample was drawn as a multistage stratified cluster sample prior to the first survey. In wave six, the sample comprises 18.6% of all students at academic upper secondary schools in Schleswig-Holstein (Leucht and Köller 2016). |
3 | We ran robustness checks with the 1714 students who completed the conscientiousness items. We found no major differences as compared with the results in the full sample. See Table A2 for the results. |
4 | As the individuals with below-average and above-average SES did not differ in their interaction terms, we did not analyse differences between combined gender and SES groups, in deviation from the preregistered analyses. |
5 | For both gender and SES, the factor loading for one item was freed (“I am comfortable; tend to be lazy”). |
References
- Ackerman, Phillip L., and Eric D. Heggestad. 1997. Intelligence, Personality, and Interests: Evidence for Overlapping Traits. Psychological Bulletin 121: 219–45. [Google Scholar] [CrossRef] [PubMed]
- Aiken, Leona S., Stephen G. West, and Raymond R. Reno. 1991. Multiple Regression: Testing and Interpreting Interactions. Newbury Park: SAGE. [Google Scholar]
- Anglim, Jeromy, Patrick D. Dunlop, Serena Wee, Sharon Horwood, Joshua K. Wood, and Andrew Marty. 2022. Personality and Intelligence: A Meta-Analysis. Psychological Bulletin 148: 301–36. [Google Scholar] [CrossRef]
- Baumert, Jürgen, Sabine Gruehn, Susanne Heyn, Olaf Köller, Kai U. Schnabel, Ingo Leven, Nike Plaßmeier, Rolf Schleußer, Nicola Tauscher, and Frauke Thebis. 1997. Bildungsverläufe und psychosoziale Entwicklung im Jugendalter (BIJU). Dokumentation—Band 1 [Educational Trajectories and Psychosocial Development in Adolescence (BIJU). Documentation—Volume 1]. Berlin: Max-Planck-Institut für Bildungsforschung. Available online: https://pure.mpg.de/rest/items/item_2293704/component/file_2293710/content (accessed on 1 February 2023).
- Beaujean, A. Alexander, Michael W. Firmin, Shanna Attai, Courtney B. Johnson, Ruth L. Firmin, and Kena E. Mena. 2011. Using Personality and Cognitive Ability to Predict Academic Achievement in a Young Adult Sample. Personality and Individual Differences 51: 709–14. [Google Scholar] [CrossRef]
- Behr, Andreas, Marco Giese, Herve D. Teguim K., and Katja Theune. 2020. Early Prediction of University Dropouts—A Random Forest Approach. Jahrbücher für Nationalökonomie und Statistik 240: 743–89. [Google Scholar] [CrossRef]
- Bergold, Sebastian, and Ricarda Steinmayr. 2018. Personality and Intelligence Interact in the Prediction of Academic Achievement. Journal of Intelligence 6: 27. [Google Scholar] [CrossRef] [Green Version]
- Brandt, Naemi D., and Clemens M. Lechner. 2022. Fluid Intelligence and Competence Development in Secondary Schooling: No Evidence for a Moderating Role of Conscientiousness. Journal of Intelligence 10: 27. [Google Scholar] [CrossRef]
- Brandt, Naemi D., Clemens M. Lechner, Julia Tetzner, and Beatrice Rammstedt. 2020. Personality, Cognitive Ability, and Academic Performance: Differential Associations across School Subjects and School Tracks. Journal of Personality 88: 249–65. [Google Scholar] [CrossRef]
- Bucciol, Alessandro, Barbara Cavasso, and Luca Zarri. 2015. Social Status and Personality Traits. Journal of Economic Psychology 51: 245–60. [Google Scholar] [CrossRef] [Green Version]
- Chamorro-Premuzic, Tomas, and Adrian Furnham. 2004. A Possible Model for Understanding the Personality-Intelligence Interface. British Journal of Psychology 95: 249–64. [Google Scholar] [CrossRef]
- Christ, Oliver, and Elmar Schlüter. 2012. Strukturgleichungsmodelle mit Mplus: Eine praktische Einführung [Structural Equation Modelling with Mplus: A Practical Introduction]. München: Oldenbourg. [Google Scholar]
- Di Domenico, Stefano I., and Marc A. Fournier. 2015. Able, Ready, and Willing: Examining the Additive and Interactive Effects of Intelligence, Conscientiousness, and Autonomous Motivation on Undergraduate Academic Performance. Learning and Individual Differences 40: 156–62. [Google Scholar] [CrossRef]
- Donnellan, M. Brent, and Richard E. Lucas. 2008. Age Differences in the Big Five across the Life Span: Evidence from Two National Samples. Psychology and Aging 23: 558–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duckworth, Angela Lee, and Martin E. P. Seligman. 2006. Self-Discipline Gives Girls the Edge: Gender in Self-Discipline, Grades, and Achievement Test Scores. Journal of Educational Psychology 98: 198–208. [Google Scholar] [CrossRef] [Green Version]
- Dumfart, Barbara, and Aljoscha C. Neubauer. 2016. Conscientiousness Is the Most Powerful Noncognitive Predictor of School Achievement in Adolescents. Journal of Individual Differences 37: 8–15. [Google Scholar] [CrossRef] [Green Version]
- Ganzeboom, Harry B. G., Paul M. De Graaf, and Donald J. Treiman. 1992. A Standard International Socio-Economic Index of Occupational Status. Social Science Research 21: 1–56. [Google Scholar] [CrossRef] [Green Version]
- Heller, Kurt A., and Christoph Perleth. 2000. KFT 4-12+ R. Kognitiver Fähigkeitstest Für 4. Bis 12. Klassen, Revision [KFT 4-12+ R. Cognitive Ability Test for 4th to 12th Grades, Revision]. Göttingen: Beltz. [Google Scholar]
- Huang, Chiungjung. 2011. Self-Concept and Academic Achievement: A Meta-Analysis of Longitudinal Relations. Journal of School Psychology 49: 505–28. [Google Scholar] [CrossRef]
- Kampa, Nele, Florian Enke, Fabian Schmidt, Johanna Fleckenstein, Jenny Meyer, and Olaf Köller, eds. 2020a. Skalendokumentation zur Studie Lernergebnisse an beruflichen und allgemeinbildenden Gymnasien in Schleswig-Holstein LISA 6. 6. Messzeitpunkt [Scale Documentation for the Study Educational Outcomes of Students from Vocational and Academic Upper Secondary Schools. 6th Measurement Point]. Available online: https://www.iqb.hu-berlin.de/fdz/studies/LISA_6/#Dokumentation (accessed on 1 October 2020).
- Kampa, Nele, Johanna Fleckenstein, Fabian T. C. Schmidt, Jennifer Meyer, Florian Enke, and Olaf Köller. 2020b. Lernergebnisse an beruflichen und allgemeinbildenden Gymnasien in Schleswig-Holstein (LISA 6) [Educational Outcomes of Students from Vocational and Academic Upper Secondary Schools (LISA6)] (Version 1) [Data Set]. Berlin: IQB. [Google Scholar] [CrossRef]
- Klein, Andreas, and Helfried Moosbrugger. 2000. Maximum Likelihood Estimation of Latent Interaction Effects with the LMS Method. Psychometrika 65: 457–74. [Google Scholar] [CrossRef]
- Klein, Andreas, and Karin Schermelleh-Engel. 2010. Introduction of a New Measure for Detecting Poor Fit Due to Omitted Nonlinear Terms in SEM. AStA Advances in Statistical Analysis 94: 157–66. [Google Scholar] [CrossRef]
- Kling, Kristen C., Erik E. Noftle, and Richard W. Robins. 2013. Why Do Standardized Tests Underpredict Women’s Academic Performance? The Role of Conscientiousness. Social Psychological and Personality Science 4: 600–6. [Google Scholar] [CrossRef]
- Kunter, Mareike, Gundel Schümer, Cordula Artelt, Jürgen Baumert, Eckhard Klieme, Michael Neubrand, Manfred Prenzel, Ulrich Schiefele, Wolfgang Schneidr, Petra Stanat, and et al. 2002. PISA 2000: Dokumetation der Erhebungsinstrumente [PISA 2000: Documentation of the Instruments]. Materialien aus der Bildungsforschung. Berlin: Max-Planck-Institut für Bildungsforschung, vol. 72, Available online: https://dlc.mpg.de/image/mpib_escidoc_33618/1/ (accessed on 1 February 2023).
- Lam, Kelly Ka Lai, and Mingming Zhou. 2021. Grit and Academic Achievement: A Comparative Cross-Cultural Meta-Analysis. Journal of Educational Psychology 114: 597–621. [Google Scholar] [CrossRef]
- Lechner, Clemens, Daniel Danner, and Beatrice Rammstedt. 2017. How Is Personality Related to Intelligence and Achievement? A Replication and Extension of Borghans et al. and Salkever. Personality and Individual Differences 111: 86–91. [Google Scholar] [CrossRef]
- Leucht, Michael, and Olaf Köller. 2016. Anlage und Durchführung der Studie [Design and Implementation of the Study]. In Fachleistungen beim Abitur. Vergleich allgemeinbildender und beruflicher Gymnasien in Schleswig-Holstein [Achievement in the Abitur: Comparison of Vocational and Academic Upper Secondary Schools in Schleswig-Holstein]. Edited by Michael Leucht, Nele Kampa and Olaf Köller. Münster: Waxmann, pp. 79–98. [Google Scholar]
- Little, Todd D., James A. Bovaird, and Keith F. Widaman. 2006. On the Merits of Orthogonalizing Powered and Product Terms: Implications for Modeling Interactions among Latent Variables. Structural Equation Modeling: A Multidisciplinary Journal 13: 497–519. [Google Scholar] [CrossRef]
- Maslowsky, Julie, Justin Jager, and Douglas Hemken. 2015. Estimating and Interpreting Latent Variable Interactions: A Tutorial for Applying the Latent Moderated Structural Equations Method. International Journal of Behavioral Development 39: 87–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, Jennifer, Johanna Fleckenstein, Jan Retelsdorf, and Olaf Köller. 2019. The Relationship of Personality Traits and Different Measures of Domain-Specific Achievement in Upper Secondary Education. Learning and Individual Differences 69: 45–59. [Google Scholar] [CrossRef]
- Meyer, Jennifer, Oliver Lüdtke, Fabian T. C. Schmidt, Johanna Fleckenstein, Ulrich Trautwein, and Olaf Köller. 2022. Conscientiousness and Cognitive Ability as Predictors of Academic Achievement: Evidence of Synergistic Effects from Integrative Data Analysis. European Journal of Personality. [Google Scholar] [CrossRef]
- Moutafi, Joanna, Adrian Furnham, and John Crump. 2003. Demographic and Personality Predictors of Intelligence: A Study Using the Neo Personality Inventory and the Myers–Briggs Type Indicator. European Journal of Personality 17: 79–94. [Google Scholar] [CrossRef]
- Moutafi, Joanna, Adrian Furnham, and Laurence Paltiel. 2004. Why Is Conscientiousness Negatively Correlated with Intelligence? Personality and Individual Differences 37: 1013–22. [Google Scholar] [CrossRef]
- Multon, Karen D., Steven D Brown, and Robert W Lent. 1991. Relation of Self-Efficacy Beliefs to Academic Outcomes: A Meta-Analytic Investigation. Journal of Counseling Psychology 38: 30–38. [Google Scholar] [CrossRef]
- Muthén, Linda K., and Bengt O. Muthén. 1998. Mplus User’s Guide, 8th ed. Los Angeles: Muthén & Muthén. [Google Scholar]
- Ng, Zi Jia, Scott E. Huebner, and Kimberly J. Hills. 2015. Life Satisfaction and Academic Performance in Early Adolescents: Evidence for Reciprocal Association. Journal of School Psychology 53: 479–91. [Google Scholar] [CrossRef]
- Poropat, Arthur E. 2009. A Meta-Analysis of the Five-Factor Model of Personality and Academic Performance. Psychological Bulletin 135: 322–38. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. 2020. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 1 February 2023).
- Rammstedt, Beatrice, and Oliver P. John. 2005. Kurzversion des Big Five Inventory (BFI-K) [Short version of the Big Five Inventory (BFI-K)]. Diagnostica 51: 195–206. [Google Scholar] [CrossRef]
- Rammstedt, Beatrice, Daniel Danner, and Silke Martin. 2016. The Association between Personality and Cognitive Ability: Going beyond Simple Effects. Journal of Research in Personality 62: 39–44. [Google Scholar] [CrossRef] [Green Version]
- Rohde, Treena Eileen, and Lee Anne Thompson. 2007. Predicting Academic Achievement with Cognitive Ability. Intelligence 35: 83–92. [Google Scholar] [CrossRef]
- Roth, Bettina, Nicolas Becker, Sara Romeyke, Sarah Schäfer, Florian Domnick, and Frank M. Spinath. 2015. Intelligence and School Grades: A Meta-Analysis. Intelligence 53: 118–37. [Google Scholar] [CrossRef]
- Roth, Philip L., and Richard L. Clarke. 1998. Meta-Analyzing the Relation between Grades and Salary. Journal of Vocational Behavior 53: 386–400. [Google Scholar] [CrossRef]
- Roth, Philip L., Craig A. BeVier, Fred S. Switzer III, and Jeffery S. Schippmann. 1996. Meta-Analyzing the Relationship between Grades and Job Performance. Journal of Applied Psychology 81: 548–56. [Google Scholar] [CrossRef]
- Schiefele, Ulrich, Andreas Krapp, and Inge Schreyer. 1993. Metaanalyse des Zusammenhangs von Interesse und Schulischer Leistung [Meta-Analysis of the Relationship between Interest and Academic Performance]. Zeitschrift für Entwicklungspsychologie und pädagogische Psychologie 10: 120–48. [Google Scholar]
- Schmitt, David P., Anu Realo, Martin Voracek, and Jüri Allik. 2008. Why Can’t a Man Be More like a Woman? Sex Differences in Big Five Personality Traits across 55 Cultures. Journal of Personality and Social Psychology 94: 168–82. [Google Scholar] [CrossRef] [Green Version]
- Schwanzer, Andrea D., Ulrich Trautwein, Oliver Lüdtke, and Hubert Sydow. 2005. Entwicklung eines Instruments zur Erfassung des Selbstkonzepts junger Erwachsener [Development of an instrument to assess the self-concept of young adults]. Diagnostica 51: 183–94. [Google Scholar] [CrossRef]
- Spinath, Birgit, H. Harald Freudenthaler, and Aljoscha C. Neubauer. 2010. Domain-Specific School Achievement in Boys and Girls as Predicted by Intelligence, Personality and Motivation. Personality and Individual Differences 48: 481–86. [Google Scholar] [CrossRef]
- Trautwein, Ulrich, Kathrin Jonkmann, Cornelia Gresch, Oliver Lüdtke, Marco Neumann, Uta Klusmann, Nicole Husemann, Kai Maaz, Gabriel Nagy, Michael Becker, and et al. 2007. Transformation des Sekundarschulsystems und akademische Karrieren (Tosca-Repeat). Dokumentation der eingesetzten Items und Skalen, Welle 1 [Trasformation of the Secondary School System and Acdemic Careers (Tosca-Repeat). Scale and Item Documentation, Wave 1], 1st ed. Vol. Unpublished Scale Documentation. Berlin: Max-Planck-Institut für Bildungsforschung. [Google Scholar]
- von Stumm, Sophie. 2017. Socioeconomic Status Amplifies the Achievement Gap throughout Compulsory Education Independent of Intelligence. Intelligence 60: 57–62. [Google Scholar] [CrossRef]
- Voyer, Daniel, and Susan D. Voyer. 2014. Gender Differences in Scholastic Achievement: A Meta-Analysis. Psychological Bulletin 140: 1174–204. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Jing, and Matthias Ziegler. 2015. Interaction Effects between Openness and Fluid Intelligence Predicting Scholastic Performance. Journal of Intelligence 3: 91–110. [Google Scholar] [CrossRef] [Green Version]
- Ziegler, Matthias, Maximilian Knogler, and Markus Bühner. 2009. Conscientiousness, Achievement Striving, and Intelligence as Performance Predictors in a Sample of German Psychology Students: Always a Linear Relationship? Learning and Individual Differences 19: 288–92. [Google Scholar] [CrossRef]
M | SD | Min | Max | Skew | N | |
---|---|---|---|---|---|---|
Intelligence | 0 | 0.67 | −3.02 | 2.22 | −0.27 | 3775 |
Conscientiousness | 3.65 | 0.69 | 1 | 5 | −0.37 | 1714 |
German grade | 8.47 | 2.35 | 2 | 15 | 0.24 | 3771 |
Mathematics grade | 8.05 | 3.08 | 1 | 15 | 0.09 | 3771 |
English grade | 8.65 | 2.64 | 1 | 15 | 0.1 | 3765 |
Biology grade | 9.13 | 9.13 | 2 | 15 | −0.04 | 2369 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. Intelligence | |||||||||||||||||||
2. Conscientiousness | −0.04 | ||||||||||||||||||
3. German grade | 0.20 | 0.20 | |||||||||||||||||
4. Mathematics grade | 0.33 | 0.26 | 0.42 | ||||||||||||||||
5. English grade | 0.23 | 0.14 | 0.61 | 0.40 | |||||||||||||||
6. Biology grade | 0.21 | 0.27 | 0.53 | 0.54 | 0.47 | ||||||||||||||
7. Age | −0.14 | −0.05 | −0.12 | −0.19 | −0.14 | −0.13 | |||||||||||||
8. Female | −0.15 | 0.27 | 0.11 | 0.01 | 0.06 | 0.07 | −0.11 | ||||||||||||
9. Migration background | −0.16 | −0.02 | −0.13 | −0.10 | −0.06 | −0.08 | 0.16 | −0.03 | |||||||||||
10. Academic track school | −0.37 | 0.09 | −0.15 | −0.13 | −0.16 | −0.02 | 0.27 | 0.06 | 0.10 | ||||||||||
11. Study intention | 0.13 | 0.12 | 0.26 | 0.21 | 0.23 | 0.23 | −0.02 | −0.06 | 0.07 | −0.13 | |||||||||
12. Self-concept | 0.21 | 0.21 | 0.23 | 0.25 | 0.24 | 0.22 | −0.04 | −0.21 | −0.09 | −0.02 | 0.18 | ||||||||
13. Motivation German | −0.12 | 0.18 | 0.36 | −0.14 | 0.10 | 0.05 | 0.01 | 0.21 | 0.00 | 0.04 | 0.05 | −0.03 | |||||||
14. Motivation mathematics | 0.24 | 0.26 | 0.07 | 0.54 | −0.06 | 0.25 | −0.02 | −0.15 | 0.00 | 0.02 | 0.16 | 0.15 | −0.10 | ||||||
15. Motivation English | 0.03 | 0.16 | 0.25 | 0.01 | 0.57 | 0.12 | −0.05 | 0.05 | 0.03 | −0.06 | 0.15 | 0.06 | 0.30 | −0.17 | |||||
16. Motivation science | 0.14 | 0.19 | 0.12 | 0.15 | −0.00 | 0.38 | 0.06 | −0.09 | 0.01 | −0.03 | 0.17 | 0.08 | 0.04 | 0.39 | −0.03 | ||||
17. Openness | 0.01 | 0.11 | 0.15 | −0.09 | 0.11 | 0.04 | 0.07 | 0.21 | 0.09 | −0.02 | 0.10 | −0.01 | 0.31 | −0.10 | 0.21 | 0.05 | |||
18. Extraversion | −0.10 | 0.17 | 0.17 | −0.01 | 0.13 | 0.07 | −0.03 | 0.04 | 0.01 | −0.01 | 0.09 | 0.24 | 0.15 | −0.09 | 0.13 | −0.08 | 0.11 | ||
19. Agreeableness | −0.07 | 0.06 | 0.04 | 0.06 | −0.01 | 0.04 | −0.11 | 0.20 | −0.05 | 0.01 | −0.02 | 0.02 | 0.07 | 0.07 | 0.01 | 0.04 | 0.06 | 0.08 | |
20. Neuroticisms | −0.07 | −0.01 | 0.06 | −0.04 | 0.04 | 0.00 | 0.00 | 0.29 | 0.06 | 0.04 | −0.04 | −0.43 | 0.13 | −0.08 | 0.05 | 0.05 | 0.19 | −0.36 | −0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Friedrich, T.S.; Schütz, A. Predicting School Grades: Can Conscientiousness Compensate for Intelligence? J. Intell. 2023, 11, 146. https://doi.org/10.3390/jintelligence11070146
Friedrich TS, Schütz A. Predicting School Grades: Can Conscientiousness Compensate for Intelligence? Journal of Intelligence. 2023; 11(7):146. https://doi.org/10.3390/jintelligence11070146
Chicago/Turabian StyleFriedrich, Teresa Sophie, and Astrid Schütz. 2023. "Predicting School Grades: Can Conscientiousness Compensate for Intelligence?" Journal of Intelligence 11, no. 7: 146. https://doi.org/10.3390/jintelligence11070146
APA StyleFriedrich, T. S., & Schütz, A. (2023). Predicting School Grades: Can Conscientiousness Compensate for Intelligence? Journal of Intelligence, 11(7), 146. https://doi.org/10.3390/jintelligence11070146