Effect of Cooling and Annealing Conditions on the Microstructure, Mechanical and Superelastic Behavior of a Rotary Forged Ti–18Zr–15Nb (at. %) Bar Stock for Spinal Implants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Production and Treatment
2.2. Experimental Procedure
3. Results
3.1. Influence of TMT on the Microstructure, Phase Composition and Texture
3.2. Influence of TMT on the Mechanical and Superelastic Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, Y.S.; Zhang, H.Y.; Moon, B.J.; Park, K.W.; Ji, K.Y.; Lee, W.C.; Oh, K.S.; Ryu, G.U.; Kim, D.H. Nitinol Spring Rod Dynamic Stabilization System and Nitinol Memory Loops in Surgical Treatment for Lumbar Disc Disorders: Short-Term Follow Up. Neurosurg. Focus 2007, 22, 1–9. [Google Scholar] [CrossRef]
- Lukina, E.; Kollerov, M.; Meswania, J.; Wertheim, D.; Mason, P.; Wagstaff, P.; Laka, A.; Noordeen, H.; Yoon, W.W.; Blunn, G. Analysis of Retrieved Growth Guidance Sliding Lsz-4d Devices for Early Onset Scoliosis and Investigation of the Use of Nitinol Rods for This System. Spine 2015, 40, 17–24. [Google Scholar] [CrossRef]
- Kolesov, S.V.; Kolbovsky, D.A.; Kazmin, A.I.; Morozova, N.S. The Use of Nitinol Rods for Lumbosacral Fixation in Surgical Treatment of Degenerative Spine Disease. Hir. Pozvonochnika 2016, 13, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Kolesov, S.V.; Pereverzev, V.S.; Panteleyev, A.A.; Shvets, V.V.; Gorbatyuk, D.S. The First Experience of Anterior Dynamic Correction of Scoliosis in Adolescents with Complete Growth and Adults: Surgical Technique and Immediate Results. Hir. Pozvonochnika 2021, 18, 19–29. [Google Scholar] [CrossRef]
- Warburton, A.; Girdler, S.J.; Mikhail, C.M.; Ahn, A.; Cho, S.K. Biomaterials in Spinal Implants: A Review. Neurospine 2020, 17, 101. [Google Scholar] [CrossRef]
- Sheremet’ev, V.A.; Kudryashova, A.A.; Dinh, X.T.; Galkin, S.P.; Prokoshkin, S.D.; Brailovskii, V. Advanced Technology for Preparing Bar from Medical Grade Ti-Zr-Nb Superelastic Alloy Based on Combination of Radial-Shear Rolling and Rotary Forging. Metallurgist 2019, 63, 51–61. [Google Scholar] [CrossRef]
- Muslov, S.A.; Andreev, V.A.; Bondarev, A.B.; Sukhochev, P.Y. Superelastic Alloys with Shape Memory Effect in Science, Technology and Medicine; Folium: Moscow, Russia, 2010. [Google Scholar]
- Prasad, K.; Bazaka, O.; Chua, M.; Rochford, M.; Fedrick, L.; Spoor, J.; Symes, R.; Tieppo, M.; Collins, C.; Cao, A.; et al. Metallic Biomaterials: Current Challenges and Opportunities. Materials 2017, 10, 884. [Google Scholar] [CrossRef]
- Chen, Q.; Thouas, G.A. Metallic Implant Biomaterials. Mater. Sci. Eng. R Rep. 2015, 87, 1–57. [Google Scholar] [CrossRef]
- Niinomi, M.; Nakai, M.; Hieda, J. Development of New Metallic Alloys for Biomedical Applications. Acta Biomater. 2012, 8, 3888–3903. [Google Scholar] [CrossRef]
- Escalas, F.; Galante, J.; Rostoker, W.; Coogan, P. Biocompatibility of Materials for Total Joint Replacement. J. Biomed. Mater. Res. 1976, 10, 175–195. [Google Scholar] [CrossRef] [PubMed]
- Kolli, R.P.; Devaraj, A. A Review of Metastable Beta Titanium Alloys. Metals 2018, 8, 506. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Yang, C.; Zhao, H.; Qu, S.; Li, X.; Li, Y. New Developments of Ti-Based Alloys for Biomedical Applications. Materials 2014, 7, 1709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants—A Review. Prog. Mater. Sci. 2009, 54, 397–425. [Google Scholar] [CrossRef]
- Biesiekierski, A.; Wang, J.; Abdel-Hady Gepreel, M.; Wen, C. A New Look at Biomedical Ti-Based Shape Memory Alloys. Acta Biomater. 2012, 8, 1661–1669. [Google Scholar] [CrossRef]
- Elias, C.N.; Lima, J.H.C.; Valiev, R.; Meyers, M.A. Biomedical Applications of Titanium and Its Alloys. JOM 2008, 60, 46–49. [Google Scholar] [CrossRef]
- Bruneel, N.; Helsen, J.A. In Vitro Simulation of Biocompatibility of Ti-Al-V. J. Biomed. Mater. Res. 1988, 22, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Ries, M.W.; Kampmann, C.; Rupprecht, H.J.; Hintereder, G.; Hafner, G.; Meyer, J. Nickel Release after Implantation of the Amplatzer Occluder. Am. Heart J. 2003, 145, 737–741. [Google Scholar] [CrossRef]
- Matusiewicz, H. Potential Release of in Vivo Trace Metals from Metallic Medical Implants in the Human Body: From Ions to Nanoparticles—A Systematic Analytical Review. Acta Biomater. 2014, 10, 2379–2403. [Google Scholar] [CrossRef]
- Noyama, Y.; Miura, T.; Ishimoto, T.; Itaya, T.; Niinomi, M.; Nakano, T. Bone Loss and Reduced Bone Quality of the Human Femur after Total Hip Arthroplasty under Stress-Shielding Effects by Titanium-Based Implant. Mater. Trans. 2012, 53, 565–570. [Google Scholar] [CrossRef] [Green Version]
- Paul, J.P. Strength Requirements for Internal and External Prostheses. J. Biomech. 1999, 32, 381–393. [Google Scholar] [CrossRef]
- Chen, L.Y.; Cui, Y.W.; Zhang, L.C. Recent Development in Beta Titanium Alloys for Biomedical Applications. Metals 2020, 10, 1139. [Google Scholar] [CrossRef]
- Ijaz, M.F.; Kim, H.Y.; Hosoda, H.; Miyazaki, S. Superelastic Properties of Biomedical (Ti-Zr)-Mo-Sn Alloys. Mater. Sci. Eng. C 2015, 48, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Miyazaki, S. Several Issues in the Development of Ti–Nb-Based Shape Memory Alloys. Shape Mem. Superelasticity 2016, 2, 380–390. [Google Scholar] [CrossRef] [Green Version]
- Miyazaki, S.; Kim, H.Y.; Hosoda, H. Development and Characterization of Ni-Free Ti-Base Shape Memory and Superelastic Alloys. Mater. Sci. Eng. A 2006, 438–440, 18–24. [Google Scholar] [CrossRef]
- Ankem, S.; Greene, C.A. Recent Developments in Microstructure/Property Relationships of Beta Titanium Alloys. Mater. Sci. Eng. A 1999, 263, 127–131. [Google Scholar] [CrossRef]
- Gao, J.J.; Thibon, I.; Castany, P.; Gloriant, T. Effect of Grain Size on the Recovery Strain in a New Ti–20Zr–12Nb–2Sn Superelastic Alloy. Mater. Sci. Eng. A 2020, 793, 139878. [Google Scholar] [CrossRef]
- Li, S.; Kim, Y.W.; Choi, M.S.; Nam, T.H. Microstructure, Mechanical and Superelastic Behaviors in Ni-Free Ti-Zr-Nb-Sn Shape Memory Alloy Fibers Prepared by Rapid Solidification Processing. Mater. Sci. Eng. A 2020, 782, 139283. [Google Scholar] [CrossRef]
- Li, S.; Choi, M.S.; Nam, T. hyun Role of Fine Nano-Scaled Isothermal Omega Phase on the Mechanical and Superelastic Properties of a High Zr-Containing Ti–Zr–Nb–Sn Shape Memory Alloy. Mater. Sci. Eng. A 2020, 782, 139278. [Google Scholar] [CrossRef]
- Li, S.; Rehman, I.U.; Lim, J.H.; Lee, W.T.; Seol, J.B.; Kim, J.G.; Nam, T.H. Effect of Sn Content on Microstructure, Texture Evolution, Transformation Behavior and Superelastic Properties of Ti–20Zr–9Nb‒(2–5)Sn (at. %) Shape Memory Alloys. Mater. Sci. Eng. A 2021, 827, 141994. [Google Scholar] [CrossRef]
- Fu, J.; Yamamoto, A.; Kim, H.Y.; Hosoda, H.; Miyazaki, S. Novel Ti-Base Superelastic Alloys with Large Recovery Strain and Excellent Biocompatibility. Acta Biomater. 2015, 17, 56–67. [Google Scholar] [CrossRef]
- Li, Q.; Ma, X.; Xiong, C.; Qu, W.; Li, Y. Effects of Annealing Temperature on Microstructures and Shape Memory Effect of Ti-19Zr-11Nb-2Ta Alloy Sheets. J. Alloys Compd. 2022, 897, 162728. [Google Scholar] [CrossRef]
- Xiong, C.; Xue, P.; Sun, B.; Li, Y. Effect of Annealing Temperature on the Microstructure and Superelasticity of Ti-19Zr-10Nb-1Fe Alloy. Mater. Sci. Eng. A 2017, 688, 464–469. [Google Scholar] [CrossRef]
- Li, S.; Nam, T. hyun Superelasticity and Tensile Strength of Ti-Zr-Nb-Sn Alloys with High Zr Content for Biomedical Applications. Intermetallics 2019, 112, 106545. [Google Scholar] [CrossRef]
- Niinomi, M.; Akahori, T.; Katsura, S.; Yamauchi, K.; Ogawa, M. Mechanical Characteristics and Microstructure of Drawn Wire of Ti-29Nb-13Ta-4.6Zr for Biomedical Applications. Mater. Sci. Eng. C 2007, 27, 154–161. [Google Scholar] [CrossRef]
- Niinomi, M.; Nakai, M. Titanium-Based Biomaterials for Preventing Stress Shielding between Implant Devices and Bone. Int. J. Biomater. 2011, 836587. [Google Scholar] [CrossRef] [Green Version]
- Sumitomo, N.; Noritake, K.; Hattori, T.; Morikawa, K.; Niwa, S.; Sato, K.; Niinomi, M. Experiment Study on Fracture Fixation with Low Rigidity Titanium Alloy: Plate Fixation of Tibia Fracture Model in Rabbit. J. Mater. Sci. Mater. Med. 2008, 19, 1581–1586. [Google Scholar] [CrossRef]
- Qu, Y.; Zheng, S.; Dong, R.; Kang, M.; Zhou, H.; Zhao, D.; Zhao, J. Ti-24Nb-4Zr-8Sn Alloy Pedicle Screw Improves Internal Vertebral Fixation by Reducing Stress-Shielding Effects in a Porcine Model. Biomed. Res. Int. 2018, 8639648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyazaki, S. My Experience with Ti–Ni-Based and Ti-Based Shape Memory Alloys. Shape Mem. Superelasticity 2017, 3, 279–314. [Google Scholar] [CrossRef]
- Kim, H.Y.; Fu, J.; Tobe, H.; Kim, J.I.; Miyazaki, S. Crystal Structure, Transformation Strain, and Superelastic Property of Ti–Nb–Zr and Ti–Nb–Ta Alloys. Shape Mem. Superelasticity 2015, 1, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Konopatsky, A.S.; Dubinskiy, S.M.; Zhukova, Y.S.; Sheremetyev, V.; Brailovski, V.; Prokoshkin, S.D.; Filonov, M.R. Ternary Ti-Zr-Nb and Quaternary Ti-Zr-Nb-Ta Shape Memory Alloys for Biomedical Applications: Structural Features and Cyclic Mechanical Properties. Mater. Sci. Eng. A 2017, 702, 301–311. [Google Scholar] [CrossRef]
- Barilyuk, D.; Bazlov, A.; Arkharova, N.; Teplyakova, T.; Konopatsky, A.; Prokoshkin, S. Novel Zr-Rich Alloys of Ternary Ti-Zr-Nb System with Large Superelastic Recovery Strain. Metals 2022, 12, 185. [Google Scholar] [CrossRef]
- Sheremetyev, V.; Dubinskiy, S.; Kudryashova, A.; Prokoshkin, S.; Brailovski, V. In Situ XRD Study of Stress- and Cooling-Induced Martensitic Transformations in Ultrafine- and Nano-Grained Superelastic Ti-18Zr-14Nb Alloy. J. Alloys Compd. 2022, 902, 163704. [Google Scholar] [CrossRef]
- Kudryashova, A.; Sheremetyev, V.; Lukashevich, K.; Cheverikin, V.; Inaekyan, K.; Galkin, S.; Prokoshkin, S.; Brailovski, V. Effect of a Combined Thermomechanical Treatment on the Microstructure, Texture and Superelastic Properties of Ti-18Zr-14Nb Alloy for Orthopedic Implants. J. Alloys Compd. 2020, 843, 156066. [Google Scholar] [CrossRef]
- Sheremetyev, V.; Kudryashova, A.; Derkach, M.; Lukashevich, K.; Andreev, V.; Galkin, S.; Prokoshkin, S.; Brailovski, V. The Effect of Combined Thermomechanical Treatment on the Structure, Phases and Hardness of a Superelastic Ti-Zr-Nb Bar Stock. IOP Conf. Ser. Mater. Sci. Eng. 2019, 672, 012059. [Google Scholar] [CrossRef]
- Sheremetyev, V.; Kudryashova, A.; Cheverikin, V.; Korotitskiy, A.; Galkin, S.; Prokoshkin, S.; Brailovski, V. Hot Radial Shear Rolling and Rotary Forging of Metastable Beta Ti-18Zr-14Nb (at. %) Alloy for Bone Implants: Microstructure, Texture and Functional Properties. J. Alloys Compd. 2019, 800, 320–326. [Google Scholar] [CrossRef]
- Lukashevich, K.; Sheremetyev, V.; Kudryashova, A.; Derkach, M.; Andreev, V.; Galkin, S.; Prokoshkin, S.; Brailovski, V. Effect of Forging Temperature on the Structure, Mechanical and Functional Properties of Superelastic Ti-Zr-Nb Bar Stock for Biomedical Applications. Lett. Mater. 2022, 12, 54–58. [Google Scholar] [CrossRef]
- DiDomizio, R.; Gigliotti, M.F.X.; Marte, J.S.; Subramanian, P.R.; Valitov, V. Evaluation of a Ni-20Cr Alloy Processed by Multi-Axis Forging. Mater. Sci. Forum 2006, 503–504, 793–798. [Google Scholar] [CrossRef]
- Sheremetyev, V.; Lukashevich, K.; Kreitcberg, A.; Kudryashova, A.; Tsaturyants, M.; Galkin, S.; Andreev, V.; Prokoshkin, S.; Brailovski, V. Optimization of a Thermomechanical Treatment of Superelastic Ti-Zr-Nb Alloys for the Production of Bar Stock for Orthopedic Implants. J. Alloys Compd. 2022, 928, 167143. [Google Scholar] [CrossRef]
- Moffat, D.L.; Larbalestier, D.C. The Competition between Martensite and Omega in Quenched Ti-Nb Alloys. Metall. Trans. A 1988, 19, 1677–1686. [Google Scholar] [CrossRef]
- Church, N.L.; Talbot, C.E.; Jones, N.G. On the Influence of Thermal History on the Martensitic Transformation in Ti-24Nb-4Zr-8Sn (Wt%). Shape Mem. Superelasticity 2021, 7, 166–178. [Google Scholar] [CrossRef]
- Church, N.L.; Jones, N.G. The Influence of Stress on Subsequent Superelastic Behaviour in Ti2448 (Ti–24Nb–4Zr–8Sn, Wt%). Mater. Sci. Eng. A 2022, 833, 142530. [Google Scholar] [CrossRef]
- Mohammed, M.T.; Khan, Z.A.; Manivasagam, G.; Siddiquee, A.N. Influence of Thermomechanical Processing on Biomechanical Compatibility and Electrochemical Behavior of New near Beta Alloy, Ti-20.6Nb-13.6Zr-0.5V. Int. J. Nanomed. 2015, 10 (Suppl. S1), 223–235. [Google Scholar] [CrossRef] [Green Version]
- Afonso, C.R.M.; Aleixo, G.T.; Ramirez, A.J.; Caram, R. Influence of Cooling Rate on Microstructure of Ti–Nb Alloy for Orthopedic Implants. Mater. Sci. Eng. C 2007, 27, 908–913. [Google Scholar] [CrossRef]
- ASTM Standard Test Methods for Determining Average Grain Size. Available online: https://www.astm.org/e0112-13.html (accessed on 17 March 2022).
- Zhukova, Y.S.; Petrzhik, M.I.; Prokoshkin, S.D. Estimation of the Crystallographic Strain Limit during the Reversible β ⇄ A″ Martensitic Transformation in Titanium Shape Memory Alloys. Russ. Metall. 2011, 11, 1056–1062. [Google Scholar] [CrossRef]
- Doherty, R.D.; Szpunar, J.A. Kinetics of Sub-Grain Coalescence—A Reconsideration of the Theory. Acta Metall. 1984, 32, 1789–1798. [Google Scholar] [CrossRef]
- Jabir, H.; Fillon, A.; Castany, P.; Gloriant, T. Crystallographic Orientation Dependence of Mechanical Properties in the Superelastic Ti-24Nb-4Zr-8Sn Alloy. Phys. Rev. Mater. 2019, 3, 063608. [Google Scholar] [CrossRef]
- Zhou, Y.; Fillon, A.; Laillé, D.; Gloriant, T. Crystallographic Anisotropy of the Superelastic and Mechanical Properties of the Ti–20Zr–3Mo–3Sn Alloy Evidenced by Nanoindentation at the Grain Scale. J. Alloys Compd. 2022, 892, 162112. [Google Scholar] [CrossRef]
- Kim, K.M.; Kim, H.Y.; Miyazaki, S. Effect of Zr Content on Phase Stability, Deformation Behavior, and Young’s Modulus in Ti–Nb–Zr Alloys. Materials 2020, 13, 476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, L.; Wang, B.; Sun, S.; Hang, X.; Meng, X.; Zheng, Y.; Gao, Z. Microstructure, Superelasticity and Elastocaloric Behavior of Ti-18Zr-11 Nb-3Sn Strain Glass Alloys by Thermomechanical Treatment. J. Alloys Compd. 2022, 905, 164237. [Google Scholar] [CrossRef]
- Konopatsky, A.; Sheremetyev, V.; Dubinskiy, S.; Zhukova, Y.; Firestein, K.; Golberg, D.; Filonov, M.; Prokoshkin, S.; Brailovski, V. Structure and Superelasticity of Novel Zr-Rich Ti-Zr-Nb Shape Memory Alloys. Shape Mem. Superelasticity 2021, 7, 304–313. [Google Scholar] [CrossRef]
Ti | Zr | Nb | C | O | H | N |
---|---|---|---|---|---|---|
Main | 17.8 | 15.1 | 0.098 | 0.403 | 0.516 | 0.001 |
TRF, °C | TPDA, °C | Cooling/CRF | σtr, MPa | UTS, Mpa | δ, % | εrsemax, % | εrtot, % | εβ↔αmax, % | εrsemax/εβ↔αmax, % |
---|---|---|---|---|---|---|---|---|---|
600 | – | WQ | 460 ± 9 | 762 ± 12 | 11.6 ± 3.9 | 2.7 | 6.2 | 4.8 ± 0.8 | 56 |
AC | 560 ± 36 | 747 ± 31 | 13.2 ± 1.5 | 2.8 | 6.4 | 58 | |||
525 | WQ | 370 ± 41 | 635 ± 33 | 13.8 ± 1.8 | 2.6 | 6.4 | 54 | ||
AC | 420 ± 28 | 683 ± 26 | 16.0 ± 1.8 | 2.8 | 6 | 58 | |||
CRF | 530 ± 31 | 685 ± 25 | 11.1 ± 1.0 | 2.7 | 6.3 | 56 | |||
700 | - | WQ | 315 ± 49 | 635 ± 30 | 14.5 ± 1.1 | 3.2 | 6.7 | 67 | |
AC | 427 ± 27 | 632 ± 20 | 14.3 ± 3.7 | 3.1 | 6.6 | 65 | |||
525 | WQ | 315 ± 15 | 598 ± 32 | 15.6 ± 0.6 | 3.4 | 6.4 | 71 | ||
AC | 277 ± 15 | 579 ± 23 | 12.9 ± 6.2 | 3.2 | 6.2 | 67 | |||
CRF | 330 ± 18 | 639 ± 17 | 14.3 ± 2.4 | 2.8 | 6 | 58 | |||
Alloy | Final TMT | ||||||||
Ti–18Zr–15Nb [40,60] | Cold rolling (CR) (e = 4.2; 3.0 *) + PDA 900 °C (30; 5 * min) | 253 * | 527 * | 39 * | 3.0 | 4.1 | 5.1 | 59 | |
Ti–18Zr–15Nb [62] | CR (e = 0.3) + PDA 550 °C (30 min) | 275 | 534 | 10.3 | 2.8 | 4,8 | 5.2 | 54 | |
Ti–18Zr–11Nb–3Sn [31,61] | CR (e = 4.2) + PDA 800 °C (10 min) | 295 | 670 | 12 | 1.8 | 2,7 | ~5.3 | 34 | |
Ti–19Zr–10Nb–1Fe [33] | CR (e = 1.4) + PDA 600 °C (30 min) | 414 | 703 | 24.8 | 2.7 | 3.7 | ~4.5 | 60 | |
Ti–43Zr–10Nb [42] | CR (e = 0.3) + PDA 550 °C (30 min) | 171 | 458 | 14.4 | 3.2 | 5 | 7.5 | 43 | |
Ti–40Zr–8Nb–2Sn [34] | CR (e = 3.9) + PDA 900 °C (30 min) | 374 | 835 | 28.0 | 4.2 | 5.5 | 7.9 | 53 | |
Ti–40Zr–8Nb–2Sn [29] | CR (e = 3.9) + PDA 900 °C (30 min) + Aging 300 °C (60 min) | 578 | 850 | 11.6 | 4.9 | 7.0 | 7.9 | 62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lukashevich, K.; Sheremetyev, V.; Komissarov, A.; Cheverikin, V.; Andreev, V.; Prokoshkin, S.; Brailovski, V. Effect of Cooling and Annealing Conditions on the Microstructure, Mechanical and Superelastic Behavior of a Rotary Forged Ti–18Zr–15Nb (at. %) Bar Stock for Spinal Implants. J. Funct. Biomater. 2022, 13, 259. https://doi.org/10.3390/jfb13040259
Lukashevich K, Sheremetyev V, Komissarov A, Cheverikin V, Andreev V, Prokoshkin S, Brailovski V. Effect of Cooling and Annealing Conditions on the Microstructure, Mechanical and Superelastic Behavior of a Rotary Forged Ti–18Zr–15Nb (at. %) Bar Stock for Spinal Implants. Journal of Functional Biomaterials. 2022; 13(4):259. https://doi.org/10.3390/jfb13040259
Chicago/Turabian StyleLukashevich, Konstantin, Vadim Sheremetyev, Alexander Komissarov, Vladimir Cheverikin, Vladimir Andreev, Sergey Prokoshkin, and Vladimir Brailovski. 2022. "Effect of Cooling and Annealing Conditions on the Microstructure, Mechanical and Superelastic Behavior of a Rotary Forged Ti–18Zr–15Nb (at. %) Bar Stock for Spinal Implants" Journal of Functional Biomaterials 13, no. 4: 259. https://doi.org/10.3390/jfb13040259
APA StyleLukashevich, K., Sheremetyev, V., Komissarov, A., Cheverikin, V., Andreev, V., Prokoshkin, S., & Brailovski, V. (2022). Effect of Cooling and Annealing Conditions on the Microstructure, Mechanical and Superelastic Behavior of a Rotary Forged Ti–18Zr–15Nb (at. %) Bar Stock for Spinal Implants. Journal of Functional Biomaterials, 13(4), 259. https://doi.org/10.3390/jfb13040259