Hollow MIL-125 Nanoparticles Loading Doxorubicin Prodrug and 3-Methyladenine for Reversal of Tumor Multidrug Resistance
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Cell Cultures and Animal Models
2.3. Preparation of HA-MIL-125@DVMA
2.4. Characterization of the Nanoparticles
2.5. Determination of Drug Loading Content
2.6. In Vitro Drug Release
2.7. In Vitro Cytotoxicity Tests
2.8. In Vitro Cellular Uptake Assays
2.8.1. Qualitative Observation
2.8.2. Quantitative Analysis by Flow Cytometry
2.9. Drug Uptake and Efflux Experiments
2.10. In Vivo Antitumor Activity Studies
2.11. Pathological Examination
2.12. Statistical Analysis
3. Results and Discussion
3.1. Characterization of the Nanoparticles
3.2. In Vitro Drug Release
3.3. In Vitro Cytotoxicity
3.4. In Vitro Cellular Uptake
3.4.1. CLSM Observation
3.4.2. Flow Cytometry Test
3.5. Drug Efflux Assay
3.6. In Vivo Antitumor Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ji, N.; Yang, Y.Q.; Cai, C.Y.; Lei, Z.N.; Wang, J.Q.; Gupta, P.; Shukla, S.; Ambudkar, S.V.; Kong, D.X.; Chen, Z.S. Selonsertib (GS-4997), an ASK1 inhibitor, antagonizes multidrug resistance in ABCB1- and ABCG2-overexpressing cancer cells. Cancer Lett. 2019, 440–441, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Palko Łabuz, A.; Środa Pomianek, K.; Wesołowska, O.; Kostrzewa Susłow, E.; Uryga, A.; Michalak, K. MDR reversal and pro-apoptotic effects of statins and statins combined with flavonoids in colon cancer cells. Biomed. Pharmacother. 2019, 109, 1511–1522. [Google Scholar] [CrossRef]
- Yang, Y.; Guan, D.; Lei, L.; Lu, J.; Liu, J.Q.; Yang, G.; Yan, C.; Zhai, R.; Tian, J.; Bi, Y.; et al. H6, a novel hederagenin derivative, reverses multidrug resistance in vitro and in vivo. Toxicol. Appl. Pharmacol. 2018, 341, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; Lee, G.H.; Yoo, K.H.; Khang, D. Overcoming multidrug-resistant lung cancer by mitochondrial-associated ATP inhibition using nanodrugs. J. Nanobiotechnol. 2023, 21, 12. [Google Scholar] [CrossRef] [PubMed]
- Ceballos, M.P.; Rigalli, J.P.; Ceré, L.I.; Semeniuk, M.; Catania, V.A.; Ruiz, M.L. ABC Transporters: Regulation and Association with Multidrug Resistance in Hepatocellular Carcinoma and Colorectal Carcinoma. Curr. Med. Chem. 2019, 26, 1224–1250. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhang, H.; Assaraf, Y.G.; Zhao, K.; Xu, X.; Xie, J.; Yang, D.; Chen, Z. Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies. Drug Resist. Updates 2016, 27, 14–29. [Google Scholar] [CrossRef]
- Mohammad, I.S.; He, W.; Yin, L. Understanding of human ATP binding cassette superfamily and novel multidrug resistance modulators to overcome MDR. Biomed. Pharmacother. 2018, 100, 335–348. [Google Scholar] [CrossRef]
- Binkhathlan, Z.; Lavasanifar, A. P-glycoprotein inhibition as a therapeutic approach for overcoming multidrug resistance in cancer: Current status and future perspectives. Curr. Cancer Drug Targets 2013, 13, 326–346. [Google Scholar] [CrossRef]
- Kong, W.; Ling, X.; Chen, Y.; Wu, X.; Zhao, Z.; Wang, W.; Wang, S.; Lai, G.; Yu, Z. Hesperetin reverses P-glycoprotein-mediated cisplatin resistance in DDP-resistant human lung cancer cells via modulation of the nuclear factor-κB signaling pathway. Int. J. Mol. Med. 2020, 45, 1213–1224. [Google Scholar] [CrossRef]
- Palmeira, A.; Sousa, E.; Vasconcelos, M.H.; Pinto, M.M. Three decades of P-gp inhibitors: Skimming through several generations and scaffolds. Curr. Med. Chem. 2012, 19, 1946–2025. [Google Scholar] [CrossRef]
- Mao, Q.; Unadkat, J.D. Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport—An update. AAPS J. 2015, 17, 65–82. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Chen, W.; Yuan, Z.; Liu, X.; Jiang, H. LncRNA-MALAT1 contributes to the cisplatin-resistance of lung cancer by upregulating MRP1 and MDR1 via STAT3 activation. Biomed. Pharmacother. 2018, 101, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.; VilasBoas, V.; Carmo, H.; DinisOliveira, R.J.; Carvalho, F.; de Lourdes Bastos, M.; Remião, F. Modulation of P-glycoprotein efflux pump: Induction and activation as a therapeutic strategy. Pharmacol. Ther. 2015, 149, 1–123. [Google Scholar] [CrossRef] [PubMed]
- Loo, T.W.; Clarke, D.M. P-glycoprotein ATPase activity requires lipids to activate a switch at the first transmission interface. Biochem. Biophys. Res. Commun. 2016, 472, 379–383. [Google Scholar] [CrossRef]
- Leslie, E.M.; Deeley, R.G.; Cole, S.P. Multidrug resistance proteins: Role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol. Appl. Pharmacol. 2005, 204, 216–237. [Google Scholar] [CrossRef]
- Jiang, S.; Li, M.; Hu, Y.; Zhang, Z.; Lv, H. Multifunctional self-assembled micelles of galactosamine-hyaluronic acid-vitamin E succinate for targeting delivery of norcantharidin to hepatic carcinoma. Carbohydr. Polym. 2018, 197, 194–203. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, D.; Wang, D.; Wang, Y.; Fu, Q.; Fallon, J.K.; Yang, X.; He, Z.; Liu, F. Combinational delivery of hydrophobic and hydrophilic anticancer drugs in single nanoemulsions to treat MDR in cancer. Mol. Pharm. 2014, 11, 2623–2630. [Google Scholar] [CrossRef]
- Petrikaite, V.; D’Avanzo, N.; Celia, C.; Fresta, M. Nanocarriers overcoming biological barriers induced by multidrug resistance of chemotherapeutics in 2D and 3D cancer models. Drug Resist. Updates 2023, 68, 100956. [Google Scholar] [CrossRef]
- Fulfager, A.D.; Yadav, K.S. Understanding the implications of co-delivering therapeutic agents in a nanocarrier to combat multidrug resistance (MDR) in breast cancer. J. Drug Deliv. Sci. Technol. 2021, 62, 102405. [Google Scholar] [CrossRef]
- Yu, X.; Gong, L.; Zhang, J.; Zhao, Z.; Zhang, X.; Tan, W. Nanocarrier based on the assembly of protein and antisense oligonucleotide to combat multidrug resistance in tumor cells. Sci. China Chem. 2017, 60, 1318–1323. [Google Scholar] [CrossRef]
- Tang, X.; Tan, L.; Shi, K.; Peng, J.; Xiao, Y.; Li, W.; Chen, L.; Yang, Q.; Qian, Z. Gold nanorods together with HSP inhibitor-VER-155008 micelles for colon cancer mild-temperature photothermal therapy. Acta Pharm. Sin. B 2018, 8, 587–601. [Google Scholar] [CrossRef] [PubMed]
- Bo, B.; Zhang, T.; Jiang, Y.; Cui, H.; Miao, P. Triple Signal Amplification Strategy for Ultrasensitive Determination of miRNA Based on Duplex Specific Nuclease and Bridge DNA-Gold Nanoparticles. Anal. Chem. 2018, 90, 2395–2400. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Yan, Y.; Wang, H.; Sun, Z.; Chen, W.; Kang, H.; Han, Y.; Zahng, W.; Sun, X.; Li, Z. Monodisperse Cu/Cu2O@C core–shell nanocomposite supported on rGO layers as an efficient catalyst derived from a Cu-based MOF/GO structure. Nanoscale 2018, 10, 17647–17655. [Google Scholar] [CrossRef]
- Thierfelder, C.; Witte, M.; Blankenburg, S.; Rauls, E.; Schmidt, W.G. Methane adsorption on graphene from first principles including dispersion interaction. Surf. Sci. 2011, 605, 746–749. [Google Scholar] [CrossRef]
- Chouhan, R.K.; Ulman, K.; Narasimhan, S. Graphene oxide as an optimal candidate material for methane storage. J. Chem. Phys. 2015, 143, 044704. [Google Scholar] [CrossRef] [PubMed]
- Al Naddaf, Q.; Al Mansour, M.; Thakkar, H.; Rezaei, F. MOF-GO Hybrid Nanocomposite Adsorbents for Methane Storage. Ind. Eng. Chem. Res. 2018, 57, 17470–17479. [Google Scholar] [CrossRef]
- Petit, C.; Bandosz, T.J. MOF–Graphite Oxide Composites: Combining the Uniqueness of Graphene Layers and Metal–Organic Frameworks. Adv. Mater. 2009, 21, 4753–4757. [Google Scholar] [CrossRef]
- Petit, C.; Mendoza, B.; Bandosz, T.J. Reactive Adsorption of Ammonia on Cu-Based MOF/Graphene Composites. Langmuir 2010, 26, 15302–15309. [Google Scholar] [CrossRef]
- Petit, C.; Bandosz, T.J. Enhanced Adsorption of Ammonia on Metal-Organic Framework/Graphite Oxide Composites: Analysis of Surface Interactions. Adv. Funct. Mater. 2010, 20, 111–118. [Google Scholar] [CrossRef]
- Wang, X.; Chi, C.; Tao, J.; Peng, Y.; Ying, S.; Qian, Y.; Dong, J.; Hu, Z.; Gu, Y.; Zhao, D. Improving the hydrogen selectivity of graphene oxide membranes by reducing non-selective pores with intergrown ZIF-8 crystals. Chem. Commun. 2016, 52, 8087–8090. [Google Scholar] [CrossRef]
- Hu, Y.; Wu, Y.; Devendran, C.; Wei, J.; Liang, Y.; Matsukata, M.; Shen, W.; Neild, A.; Huang, H.; Wang, H. Preparation of nanoporous graphene oxide by nanocrystal-masked etching: Toward a nacre-mimetic metal–organic framework molecular sieving membrane. J. Mater. Chem. A 2017, 5, 16255–16262. [Google Scholar] [CrossRef]
- Li, J.; Fu, Z.; Liu, Y. Encapsulation of liquid metal nanoparticles inside metal–organic frameworks for hydrogel-integrated dual functional biotherapy. Chem. Eng. J. 2023, 457, 141302. [Google Scholar] [CrossRef]
- Malihe, P.; Hassan, N.; Roya, S. Simple method for fabrication of metal-organic framework within a carboxymethylcellulose/graphene quantum dots matrix as a carrier for anticancer drug. Int. J. Biol. Macromol. 2020, 164, 2301–2311. [Google Scholar] [CrossRef]
- Dariush, T.S.; Janet, S.; Aliakbar, T. Application of Metal-Organic Framework Nano-MIL-100(Fe) for Sustainable Release of Doxycycline and Tetracycline. Nanomaterials 2017, 7, 215. [Google Scholar] [CrossRef]
- Diptiman, D.; Prithidipa, S. The impact of MOFs in pH-dependent drug delivery systems: Progress in the last decade. Dalton Trans. 2022, 51, 9950–9965. [Google Scholar] [CrossRef]
- Kim, D.; Park, K.W.; Choi, I.; Park, J.T. Photoactive MOF-Derived Bimetallic Silver and Cobalt Nanocomposite with Enhanced Antibacterial Activity. ACS Appl. Mater. Interfaces 2023, 15, 22903–22914. [Google Scholar] [CrossRef]
- Deng, H.; Zhang, J.; Yang, Y.; Yang, J.; Wei, Y.; Ma, S.; Shen, Q. Chemodynamic and Photothermal Combination Therapy Based on Dual-Modified Metal-Organic Framework for Inducing Tumor Ferroptosis/Pyroptosis. ACS Appl. Mater. Interfaces 2022, 14, 24089–24101. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Q.; Luo, G.; Han, Z.; Song, W.; Yang, J.; Chen, W.; Zhang, X. A Self-Driven Bioreactor Based on Bacterium-Metal-Organic Framework Biohybrids for Boosting Chemotherapy via Lactate Catabolism. ACS Nano 2021, 15, 17870–17884. [Google Scholar] [CrossRef]
- Lin, Y.; Lin, K.; Mdlovu, N.; Weng, M.; Tsai, W.; Jeng, U. De novo synthesis of a MIL-125(Ti) carrier for thermal- and pH-responsive drug release. Biotechnol. Adv. 2022, 140, 213070. [Google Scholar] [CrossRef]
- Kush, P.; Kaur, M.; Sharma, M.; Madan, J.; Kumar, P.; Deep, A.; Kim, K. Investigations of potent biocompatible metal-organic framework for efficient encapsulation and delivery of Gemcitabine: Biodistribution, pharmacokinetic and cytotoxicity study. Biomed. Phys. Eng. Express 2020, 6, 025014. [Google Scholar] [CrossRef]
- Yao, L.; Tang, Y.; Cao, W.; Cui, Y.; Qian, G. Highly Efficient Encapsulation of Doxorubicin Hydrochloride in Metal-Organic Frameworks for Synergistic Chemotherapy and Chemodynamic Therapy. ACS Biomater. Sci. Eng. 2021, 7, 4999–5006. [Google Scholar] [CrossRef] [PubMed]
- Bagherzadeh, M.; Safarkhani, M.; Kiani, M.; Radmanesh, F.; Daneshgar, H.; Ghadiri, A.; Taghavimandi, F.; Fatahi, Y.; Safari-Alighiarloo, N.; Ahmadi, S.; et al. MIL-125-based nanocarrier decorated with Palladium complex for targeted drug delivery. Sci. Rep. 2022, 12, 12105. [Google Scholar] [CrossRef] [PubMed]
- Adrià, B.C.; Cristina, T.T.; Fabrice, S.; Sara, R.; Edurne, I.; Hugo, L.; José, B.P.M.; Patricia, H. Improving the genistein oral bioavailability via its formulation into the metal-organic framework MIL-100(Fe). J. Mater. Chem. A 2021, 9, 2233–2239. [Google Scholar] [CrossRef]
- Leng, X.; Dong, X.; Wang, W.; Sai, N.; Yang, C.; You, L.; Huang, H.; Yin, X.; Ni, J. Biocompatible Fe-Based Micropore Metal-Organic Frameworks as Sustained-Release Anticancer Drug Carriers. Molecules 2018, 23, 2490. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Jahangiri, A.; DeLay, M.; Aghi, M.K. Tumor Cell Autophagy as an Adaptive Response Mediating Resistance to Treatments Such as Antiangiogenic Therapy. Cancer Res. 2012, 72, 4294–4299. [Google Scholar] [CrossRef]
- Lin, C.; Tsao, Y.; Shu, C. Autophagy modulation as a potential targeted cancer therapy: From drug repurposing to new drug development. Kaohsiung J. Med. Sci. 2021, 37, 166–171. [Google Scholar] [CrossRef]
- Hu, X.; Wen, L.; Li, X.; Zhu, C. Relationship between Autophagy and Drug Resistance in Tumors. Mini Rev. Med. Chem. 2022, 23, 1072–1078. [Google Scholar] [CrossRef]
- Li, Y.; Lei, Y.; Yao, N.; Wang, C.; Hu, N.; Ye, W.; Zhang, D.; Chen, Z. Autophagy and multidrug resistance in cancer. Cancer Commun. 2017, 36, 52. [Google Scholar] [CrossRef]
- Zou, Z.; Zhang, J.; Zhang, H.; Liu, H.; Li, Z.; Cheng, D.; Chen, J.; Liu, L.; Ni, M.; Zhang, Y.; et al. 3-Methyladenine can depress drug efflux transporters via blocking the PI3K-AKT-mTOR pathway thus sensitizing MDR cancer to chemotherapy. J. Drug Target. 2014, 22, 839–848. [Google Scholar] [CrossRef]
- Chicote, J.; Yuste, V.J.; Boix, J.; Ribas, J. Cell Death Triggered by the Autophagy Inhibitory Drug 3-Methyladenine in Growing Conditions Proceeds With DNA Damage. Front. Pharmacol. 2020, 11, 580343. [Google Scholar] [CrossRef]
- Song, J.; Huang, Z.; Mao, J.; Chen, W.; Wang, B.; Yang, F.; Liu, S.; Zhang, H.; Qiu, L.; Chen, J. A facile synthesis of uniform hollow MIL-125 titanium-based nanoplatform for endosomal esacpe and intracellular drug delivery. Chem. Eng. J. 2020, 396, 125246. [Google Scholar] [CrossRef]
- Qiu, L.; Xu, J.; Ahmed, K.S.; Zhu, M.; Zhang, Y.; Long, M.; Chen, W.; Fang, W.; Zhang, H.; Chen, J. Stimuli-responsive, dual-function prodrug encapsulated in hyaluronic acid micelles to overcome doxorubicin resistance. Acta Biomater. 2022, 140, 686–699. [Google Scholar] [CrossRef] [PubMed]
DC/% | Size/nm | PDI | Zeta Potential/mV | |
---|---|---|---|---|
HA-MIL-125@DVMA | 31.2 ± 2.1 | 209.4 ± 3.5 | 0.231 ± 0.027 | −9.31 ± 0.62 |
HA-MIL-125@DV | 30.7 ± 1.3 | 217.3 ± 2.8 | 0.326 ± 0.062 | −8.73 ± 0.43 |
HA-MIL-125@DOX | 32.1 ± 1.6 | 212.7 ± 1.9 | 0.247 ± 0.052 | −8.45 ± 0.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Q.; Li, J.; Mao, J.; Chen, W.; Yang, M.; Yang, Y.; Hua, Y.; Qiu, L. Hollow MIL-125 Nanoparticles Loading Doxorubicin Prodrug and 3-Methyladenine for Reversal of Tumor Multidrug Resistance. J. Funct. Biomater. 2023, 14, 546. https://doi.org/10.3390/jfb14110546
Guo Q, Li J, Mao J, Chen W, Yang M, Yang Y, Hua Y, Qiu L. Hollow MIL-125 Nanoparticles Loading Doxorubicin Prodrug and 3-Methyladenine for Reversal of Tumor Multidrug Resistance. Journal of Functional Biomaterials. 2023; 14(11):546. https://doi.org/10.3390/jfb14110546
Chicago/Turabian StyleGuo, Qingfeng, Jie Li, Jing Mao, Weijun Chen, Meiyang Yang, Yang Yang, Yuming Hua, and Lipeng Qiu. 2023. "Hollow MIL-125 Nanoparticles Loading Doxorubicin Prodrug and 3-Methyladenine for Reversal of Tumor Multidrug Resistance" Journal of Functional Biomaterials 14, no. 11: 546. https://doi.org/10.3390/jfb14110546
APA StyleGuo, Q., Li, J., Mao, J., Chen, W., Yang, M., Yang, Y., Hua, Y., & Qiu, L. (2023). Hollow MIL-125 Nanoparticles Loading Doxorubicin Prodrug and 3-Methyladenine for Reversal of Tumor Multidrug Resistance. Journal of Functional Biomaterials, 14(11), 546. https://doi.org/10.3390/jfb14110546