The Microemulsion with Solubilization of the Ethanolic Extract of the Leaves of Melão-de-São-Caetano (Momordica charantia) and Antibacterial Action
Abstract
:1. Introduction
2. Materials and Methods
2.1. Obtaining the Ethanol Extract
2.2. Obtaining the Phase Diagram
2.3. Choice of Constituents and Preparation of the Microemulsified System
- Point 1 (Concentration 0.005 g/mL): 50 g of base microemulsion and 0.25 g of SME;
- Point 2 (Concentration 0.01 g/mL): 50g of base microemulsion and 0.5 g of SME;
- Point 3 (Concentration 0.05 g/mL): 50g of base microemulsion and 2.5 g of SME.
2.4. Particle Size and Zeta Potential
2.5. Thermal Stress
2.6. Hydrogenionic Potential (pH)
2.7. Electric Conductivity
2.8. Dynamic Viscosity
2.9. Fourier Transform Infrared Spectroscopy (FTIR)
2.10. Transmission Electron Microscopy (TEM)
2.11. Antibacterial Analysis
3. Results and Discussion
3.1. Fourier Transform Infrared Spectroscopy
3.2. Phase Diagram and Microemulsions
3.3. Particle Size, Zeta Potential, Thermal Stress, and Dynamic Viscosity
3.4. Hydrogenionic Potential (pH), Electrical Conductivity
3.5. Transmission Electron Microscopy
3.6. Antibacterial Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sivieri, K.; de Crespo, C.C.; Novak, J.; Tobara, J.C.; Martins, W.K. Obtenção de Sistemas Macroemulsionados a Partir de Óleos Vegetais, Para Incorporar Extrato Seco de Punica Granatum. Master’s Thesis, Universidade Federal do Rio Grande do Norte, Natal, Brasil, 2021. [Google Scholar]
- Yetisen, A.K.; Qu, H.; Manbachi, A.; Butt, H.; Dokmeci, M.R.; Hinestroza, J.P.; Skorobogatiy, M.; Khademhosseini, A.; Yun, S.H. Nanotechnology in Textiles. ACS Nano 2016, 10, 3042–3068. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, M.S.; Da Costa, W.A.; Wariss, F.; Bezerra, F.; Araújo, M.E.; Ferreira, G.C.; De Carvalho Junior, R.N. Phytochemical profile and biological activities of Momordica charantia L. (Cucurbitaceae): A review. Afr. J. Biotechnol. 2018, 17, 829–846. [Google Scholar] [CrossRef]
- da Silva, M.G.; da Barros, M.A.S.D.; de Almeida, R.T.R.; Pilau, E.J.; Pinto, E.; Soares, G.; Santos, J.G. Cleaner production of antimicrobial and anti-UV cotton materials through dyeing with eucalyptus leaves extract. J. Clean. Prod. 2018, 199, 807–816. [Google Scholar] [CrossRef]
- Yeni, M.J.; Oyeyemi, S.D.; Kayode, J.; Peter, G.P. Phytochemical, Proximate and Mineral Analyses of the Leaves of Gossypium hirsutum L. and Momordica charantia L. J. Nat. Sci. Res. 2015, 5, 99–107. [Google Scholar]
- Christy, A.O.; Mojisola, C.-O.C.; Taiwo, O.E.; Ola, O.O. The antimalaria effect of Momordica charantia L. and Mirabilis jalapa leaf extracts using animal model. J. Med. Plants Res. 2016, 10, 344–350. [Google Scholar] [CrossRef]
- Mada, S.B.; Garba, A.; Mohammed, H.A.; Muhammad, A.; Olagunju, A.; Muhammad, A.B. Antimicrobial activity and phytochemical screening of aqueous and ethanol extracts of Momordica charantia L. leaves. J. Med. Plants Res. 2013, 7, 579–586. [Google Scholar] [CrossRef]
- Karale, P.; Dhawale, S.C.; Karale, M.A. Quantitative Phytochemical Profile, Antioxidant and Lipase Inhibitory Potential of Leaves of Momordica charantia L. and Psoralea corylifolia L. Indian J. Pharm. Sci. 2022, 84, 189–196. [Google Scholar] [CrossRef]
- Huang, W.C.; Tsai, T.H.; Huang, C.J.; Li, Y.Y.; Chyuan, J.H.; Chuang, L.T.; Tsai, P.J. Inhibitory effects of wild bitter melon leaf extract on Propionibacterium acnes-induced skin inflammation in mice and cytokine production in vitro. Food Funct. 2015, 6, 2550–2560. [Google Scholar] [CrossRef]
- Undap, T.; Simandjuntak, S.; Wurarah, D.M. Potensi antibakteri ekstrak etanol daun pare (Momordica charantia) terhadap bakteri Staphylococcus aureus. JSME 2018, 5, 132–136. [Google Scholar]
- Pereira, M.L.; Santos, D.C.P.; Soares Júnior, C.A.M.; Bazan, T.A.X.N.; Bezerra Filho, C.M.; da Silva, M.V.; Correia, M.T.d.S.; Cardenas, A.F.M.; de Siqueira, F.S.F.; Carvalho, E.M.; et al. Development and Physicochemical Characterization of Eugenia brejoensis Essential Oil-Doped Dental Adhesives with Antimicrobial Action towards Streptococcus mutans. J. Funct. Biomater. 2022, 13, 149. [Google Scholar] [CrossRef]
- do Nascimento, T.H.D.; da Silva, A.A.R.; Bertão, A.M.S.; Maiola, M.R.A. Avaliação da atividade antimicrobiana de Momordica charantia L, contra Staphylococcus aureus. Rev. Terra Cult. Cad. Ensino Pesqui. 2019, 34, 31–42. [Google Scholar]
- Deore, S.L.; Kale, S.N. Emulsion Micro Emulsion and Nano Emulsion: A Review. Syst. Rev. Pharm. 2017, 8, 39–47. [Google Scholar] [CrossRef]
- Zhu, Z.; Wen, Y.; Yi, J.; Cao, Y.; Liu, F.; McClements, D.J. Comparison of natural and synthetic surfactants at forming and stabilizing nanoemulsions: Tea saponin, Quillaja saponin, and Tween 80. J. Colloid Interface Sci. 2019, 536, 80–87. [Google Scholar] [CrossRef]
- Grampurohit, N.; Ravikumar, P.; Mallya, R. Microemulsions for topical use AReview an overview of dandruff and novel formulations as a treatment strategy View project teeth whitening view project Padmini Ravikumar. Indian J. Pharm. Educ. Res. Assoc. Pharm. 2010, 45, 100–107. [Google Scholar]
- Thakur, S.; Thakur, N.; Ghosh, N.S. Formulation and In-vitro evaluation of controlled polyherbal microemulsion for the treatment of diabetes mellitus. Int. J. Pharm. Life Sci. 2019, 10, 6236–6251. [Google Scholar]
- Nagarani, G.; Abirami, A.; Siddhuraju, P. A comparative study on antioxidant potentials, inhibitory activities against key enzymes related to metabolic syndrome, and anti-inflammatory activity of leaf extract from different Momordica species. Food Sci. Hum. Wellness 2014, 3, 36–46. [Google Scholar] [CrossRef]
- Vazifehasl, Z.; Dizaj, S.M. The importance of phase diagrams for drug delivery systems. J. Adv. Chem. Pharm. Mater. 2018, 1, 16–19. [Google Scholar]
- Tiburtino, G.d.L.; Oliveira, M.A.B.; Menezes, A.L.R.; Silva, G.C.d. Obtenção de um diagrama pseudoternário utilizando tween 80 como tensoativo. Blucher Chem. Proc. 2015, 3, 915–924. [Google Scholar] [CrossRef]
- Ma, Q.; Zhong, Q. Incorporation of soybean oil improves the dilutability of essential oil microemulsions. Food Res. Int. 2015, 71, 118–125. [Google Scholar] [CrossRef]
- Varenne, F.; Botton, J.; Merlet, C.; Vachon, J.J.; Geiger, S.; Infante, I.C.; Chehimi, M.M.; Vauthier, C. Standardization and validation of a protocol of zeta potential measurements by electrophoretic light scattering for nanomaterial characterization. Colloids Surfaces A Physicochem. Eng. Asp. 2015, 486, 218–231. [Google Scholar] [CrossRef]
- Gupta, A.; Eral, H.B.; Hatton, T.A.; Doyle, P.S. Nanoemulsions: Formation, properties and applications. Soft Matter 2016, 12, 2826–2841. [Google Scholar] [CrossRef] [PubMed]
- David, S.A.; Rajadurai, S.I.; Kumar, S.V. Biosynthesis of copper oxide nanoparticles using Momordica charantia leaf extract and their characterization. Int. J. Adv. Res. Sci. Eng. 2017, 6, 313–320. [Google Scholar]
- Chen, C.-R.; Liao, Y.-W.; Kuo, Y.-H.; Hsu, J.-L.; Chang, C.-I. Cucurbitane-Type Triterpenoids from Momordica charantia. NPC Nat. Prod. Commun. 2017, 12, 1934578X1701200614. [Google Scholar] [CrossRef]
- Gandhi, P.R.; Jayaseelan, C.; Mary, R.R.; Mathivanan, D.; Suseem, S.R. Acaricidal, pediculicidal and larvicidal activity of synthesized ZnO nanoparticles using Momordica charantia leaf extract against blood feeding parasites. Exp. Parasitol. 2017, 181, 47–56. [Google Scholar] [CrossRef]
- Krithiga, J.; Briget Mary, M. Pharmaceutica Synthesis of Agnps of Momordica charantia Leaf Extract. Charact. Antimicrob. Act. 2015, 6, 1–7. [Google Scholar]
- Li, H.J.; Zhang, A.Q.; Hu, Y.; Sui, L.; Qian, D.J.; Chen, M. Large-scale synthesis and self-organization of silver nanoparticles with Tween 80 as a reductant and stabilizer. Nanoscale Res. Lett. 2012, 7, 1–13. [Google Scholar] [CrossRef]
- Burch, G.E.; Winsor, T. The phlebomanometer: A new apparatus for direct measurement of vanous pressure in large and small veins. J. Am. Med. Assoc. 1943, 123, 91–92. [Google Scholar] [CrossRef]
- Pavoni, L.; Perinelli, D.R.; Bonacucina, G.; Cespi, M.; Palmieri, G.F. An Overview of Micro- and Nanoemulsions as Vehicles for Essential Oils: Formulation, Preparation and Stability. Nanomaterials 2020, 10, 135. [Google Scholar] [CrossRef]
- Sliwa, K.; Sliwa, P. The Accumulated Effect of the Number of Ethylene Oxide Units and/or Carbon Chain Length in Surfactants Structure on the Nano-Micellar Extraction of Flavonoids. J. Funct. Biomater. 2020, 11, 57. [Google Scholar] [CrossRef]
- Shah, V.; Medina-Cruz, D.; Vernet-Crua, A.; Truong, L.B.; Sotelo, E.; Mostafavi, E.; González, M.U.; García-Martín, J.M.; Cholula-Díaz, J.L.; Webster, T.J. Pepper-Mediated Green Synthesis of Selenium and Tellurium Nanoparticles with Antibacterial and Anticancer Potential. J. Funct. Biomater. 2023, 14, 24. [Google Scholar] [CrossRef]
- Amin, J.; Djajadisastra, J.; Syafhan, N.F.; Lamria, E.; Simamora, P.; Wulandari, K. Green tea [Camellia sinensis (L.) Kuntze] leaves extract and hibiscus (Hibiscus tilliaceus L.) leaves extract as topical hair growth promoter in microemulsion. Agric. Nat. Resour. 2019, 53, 139–147. [Google Scholar] [CrossRef]
- Leister, N.; Karbstein, H.P. Evaluating the Stability of Double Emulsions—A Review of the Measurement Techniques for the Systematic Investigation of Instability Mechanisms. Colloids Interfaces 2020, 4, 8. [Google Scholar] [CrossRef]
- Lamba, H.; Sathish, K.; Sabikhi, L. Double Emulsions: Emerging Delivery System for Plant Bioactives. Food Bioprocess Technol. 2015, 8, 709–728. [Google Scholar] [CrossRef]
- Porto, A.S.; de Almeida, I.V.; Vicentini, V.E.P. Nanoemulsões formuladas para uso tópico: Estudo de síntese e toxicidade. Rev. Fitos 2020, 14, 513–527. [Google Scholar] [CrossRef]
- Coutinho, H.D.M.; Costa, J.G.M.; Falcão-Silva, V.S.; Siqueira-Júnior, J.P.; Lima, E.O. Effect of Momordica charantia L. in the resistance to aminoglycosides in methicilin-resistant Staphylococcus aureus. Comp. Immunol. Microbiol. Infect. Dis. 2010, 33, 467–471. [Google Scholar] [CrossRef]
- Nicholson, J.W.; Damian-Buda, A.-I.; Ghit, C.-D.; Cucuruz, A.; Voicu, G.; Culita, D.; Fruth-Opris, V.; Toma Ciocan, L. Mesoporous Bioactive Glass Nanoparticles in the SiO2-P2O5-CaO-MO (M=Mg, Zn) System: Synthesis and Properties. J. Funct. Biomater. 2022, 13, 180. [Google Scholar] [CrossRef]
Samples | Main Groups Functional | Wave Number (cm−1) |
---|---|---|
SME | O-H | 3325 |
CH3 | 2104 | |
C = C | 1630 | |
C-N | 1125 | |
C-H | 615 | |
M | O-H | 3335 |
CH3 | 2125 | |
C = O | 1645 | |
C-O-C | 1080 | |
P1 P2 P3 | O-H | 3325–3335 |
CH3 | 2110–2125 | |
C = O | 1635–1645 | |
C-O-C | 1080–1095 |
Samples | Particle Size (nm) | Zeta Potential (mV) | Temperature Resistance (°C) |
---|---|---|---|
M | 8.86 ± 1.21 | −7.36 ± 0.91 | 61.30 ± 0.99 |
P1 | 9.94 ± 1.59 | −9.00 ± 0.43 | 48.60 ± 1.74 |
P2 | 10.39 ± 1.83 | −7.21 ± 0.87 | 43.30 ± 1.56 |
P3 | 10.90 ± 1.44 | −6.80 ± 0.95 | 41.90 ± 1.65 |
Samples | pH | Electric Conductivity (µs.cm−1) | Dynamic Viscosity (mPa.s) |
---|---|---|---|
M | 6.37 ± 0.34 | 124.7 ± 0.70 | 38.50 ± 1.51 |
P1 | 6.11 ± 0.15 | 199.7 ± 0.58 | 10.90 ± 0.02 |
P2 | 5.98 ± 0.28 | 219.7 ± 0.94 | 7.20 ± 0.05 |
P3 | 5.45 ± 0.42 | 348.0 ± 047 | 6.90 ± 0.06 |
Samples | Halo of Inhibition against S. aureus (mm) |
---|---|
EMC | 13.0 |
SME | 9.5 |
M | 0.0 |
P1 | 0.0 |
P2 | 9.5 |
P3 | 12.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Brito, A.M.Q.; da Silva Camboim, W.; Rossi, C.G.F.T.; de Souza, I.A.; Silva, K.K.O.S. The Microemulsion with Solubilization of the Ethanolic Extract of the Leaves of Melão-de-São-Caetano (Momordica charantia) and Antibacterial Action. J. Funct. Biomater. 2023, 14, 359. https://doi.org/10.3390/jfb14070359
de Brito AMQ, da Silva Camboim W, Rossi CGFT, de Souza IA, Silva KKOS. The Microemulsion with Solubilization of the Ethanolic Extract of the Leaves of Melão-de-São-Caetano (Momordica charantia) and Antibacterial Action. Journal of Functional Biomaterials. 2023; 14(7):359. https://doi.org/10.3390/jfb14070359
Chicago/Turabian Stylede Brito, Aline M. Q., Wilka da Silva Camboim, Cátia Guaraciara F. T. Rossi, Ivan A. de Souza, and Késia K. O. S. Silva. 2023. "The Microemulsion with Solubilization of the Ethanolic Extract of the Leaves of Melão-de-São-Caetano (Momordica charantia) and Antibacterial Action" Journal of Functional Biomaterials 14, no. 7: 359. https://doi.org/10.3390/jfb14070359
APA Stylede Brito, A. M. Q., da Silva Camboim, W., Rossi, C. G. F. T., de Souza, I. A., & Silva, K. K. O. S. (2023). The Microemulsion with Solubilization of the Ethanolic Extract of the Leaves of Melão-de-São-Caetano (Momordica charantia) and Antibacterial Action. Journal of Functional Biomaterials, 14(7), 359. https://doi.org/10.3390/jfb14070359