Green-Synthesized Silver Nanoparticles: Antifungal and Cytotoxic Potential for Further Dental Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extraction and Purification of the Natural Extracts
2.2. Biosynthesis of Silver Nanoparticles
2.3. UV-Visible Spectroscopic Analysis
2.4. HRTEM Analysis
2.5. Dynamic Light Scattering Analysis
2.6. Antifungal Activity/Assay
2.7. Cytotoxicity Testing
2.8. Statistical Analyses
3. Results and Discussion
3.1. UV-Vis Spectroscopy Analysis
3.2. Stability Testing of the Synthesized AgNPs
3.3. Dynamic Light Scattering (DLS)
3.4. HRTEM Analysis
3.5. Antimicrobial Testing Results
3.5.1. Modified Kirby–Bauer Assay on C. albicans
3.5.2. XTT: Minimum Inhibitory Concentration for AgNPs
3.6. Cytotoxicity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsakos, G.; Sabbah, W.; Chandola, T.; Newton, T.; Kawachi, I.; Aida, J.; Sheiham, A.; Marmot, M.G.; Watt, R.G. Social relationships and oral health among adults aged 60 years or older. Psychosom. Med. 2013, 75, 178–186. [Google Scholar] [CrossRef]
- Nitschke, I.; Wendland, A.; Weber, S.; Jockusch, J.; Lethaus, B.; Hahnel, S. Considerations for the Prosthetic Dental Treatment of Geriatric Patients in Germany. J. Clin. Med. 2021, 10, 304. [Google Scholar] [CrossRef]
- Bianchi, C.M.P.D.C.; Bianchi, H.A.; Tadano, T.; Depaula, C.R.; Hoffmann-Santos, H.D.; Leite, D.P.; Hahn, R.C. Factors related to oral candidiasis in elderly users and non-users of removable dental prostheses. Rev. Inst. Med. Trop. Sao Paulo 2016, 58, 6–10. [Google Scholar] [CrossRef] [Green Version]
- Santos, G.C.D.O.; Vasconcelos, C.C.; Lopes, A.J.O.; Cartágenes, M.D.S.D.S.; Filho, A.K.D.B.; Nascimento, F.R.F.D.; Ramos, R.; Pires, E.R.R.B.; Andrade, M.; Rocha, F.M.G.; et al. Candida infections and therapeutic strategies: Mechanisms of action for traditional and alternative agents. Front. Microbiol. 2018, 9, 1–23. [Google Scholar] [CrossRef]
- Cavalheiro, M.; Teixeira, M.C. Candida Biofilms: Threats, challenges, and promising strategies. Front. Med. 2018, 5, 28. [Google Scholar] [CrossRef] [Green Version]
- Hasan, S.; Kuldeep. Denture Stomatitis: A Literature Review. J. Orofac. Health Sci. 2015, 6, 65. [Google Scholar] [CrossRef]
- Marquez, L.; Quave, C.L. Prevalence and therapeutic challenges of fungal drug resistance: Role for plants in drug discovery. Antibiotics 2020, 9, 150. [Google Scholar] [CrossRef] [Green Version]
- Corrêa, J.M.; Mori, M.; Sanches, H.L.; Da Cruz, A.D.; Poiate, E.; Poiate, I.A.V.P. Silver nanoparticles in dental biomaterials. Int. J. Biomater. 2015, 2015, 485275. [Google Scholar] [CrossRef] [Green Version]
- Badeggi, U.M.; Badmus, J.A.; Botha, S.S.; Ismail, E.; Marnewick, J.L.; Africa, C.W.J.; Hussein, A.A. Biosynthesis, characterization, and biological activities of procyanidin capped silver nanoparticles. J. Funct. Biomater. 2020, 11, 66. [Google Scholar] [CrossRef]
- Badeggi, U.M.; Omoruyi, S.I.; Ismail, E.; Africa, C.; Botha, S.; Hussein, A.A. Characterization and Toxicity of Hypoxoside Capped Silver Nanoparticles. Plants 2022, 11, 1037. [Google Scholar] [CrossRef]
- Naveed, M.; Bukhari, B.; Aziz, T.; Zaib, S.; Mansoor, M.A.; Khan, A.A.; Shahzad, M.; Dablool, A.S.; Alruways, M.W.; Almalki, A.A.; et al. Green Synthesis of Silver Nanoparticles Using the Plant Extract of Acer oblongifolium and Study of Its Antibacterial and Antiproliferative Activity via Mathematical Approaches. Molecules 2022, 27, 4226. [Google Scholar] [CrossRef]
- Corciovă, A.; Mircea, C.; Burlec, A.F.; Fifere, A.; Moleavin, I.T.; Sarghi, A.; Tuchiluș, C.; Ivănescu, B.; Macovei, I. Green Synthesis and Characterization of Silver Nanoparticles Using a Lythrum salicaria Extract and In Vitro Exploration of Their Biological Activities. Life 2022, 12, 1643. [Google Scholar] [CrossRef]
- Sohal, J.K.; Saraf, A.; Shukla, K.K. Green Synthesis of Silver Nanoparticles (Ag-NPs) Using Plant Extract For Antimicrobial and Antioxidant Applications: A Review. Int. J. Adv. Res. Sci. Eng. 2017, 6, 766–777. [Google Scholar]
- Perveen, R.; Shujaat, S.; Naz, M.; Qureshi, M.Z.; Nawaz, S.; Shahzad, K.; Ikram, M. Green synthesis of antimicrobial silver nanoparticles with Brassicaceae seeds. Mater. Res. Express 2021, 8, 055007. [Google Scholar] [CrossRef]
- Maroyi, A. Helicrysum Cymosum (L.) D.Don (Asteraceae): Medicinal uses, chemistry, and Biological Activities. Asian J. Pharm. Clin. Res. 2019, 12, 19–26. [Google Scholar] [CrossRef]
- Reinten, E.Y.; Coetzee, J.H.; Van Wyk, B. The potential of South African indigenous plants for the international cut fl ower trade. S. Afr. J. Bot. 2011, 77, 934–946. [Google Scholar] [CrossRef]
- Elbagory, A.M.; Cupido, C.N.; Meyer, M.; Hussein, A.A. Large scale screening of southern African plant extracts for the green synthesis of gold nanoparticles using microtitre-plate method. Molecules 2016, 21, 1498. [Google Scholar] [CrossRef] [Green Version]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Van Wyk, C.W.; Olivier, A.; de Miranda, C.M.; van der Bijl, P.; Grobler-Rabie, A.F. Observations on the effect of areca nut extracts on oral fibroblast proliferation. J. Oral Pathol. Med. 1994, 23, 145–148. [Google Scholar] [CrossRef]
- El-Brolossy, T.A.; Abdallah, T.; Mohamed, M.B.; Abdallah, S.; Easawi, K.; Negm, S.; Talaat, H. Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by Photoacoustic technique. Eur. Phys. J. Spec. Top. 2008, 153, 361–364. [Google Scholar] [CrossRef]
- Gopinath, V.; Priyadarshini, S.; Loke, M.F.; Arunkumar, J.; Marsili, E.; MubarakAli, D.; Velusamy, P.; Vadivelu, J. Biogenic synthesis, characterization of antibacterial silver nanoparticles and its cell cytotoxicity. Arab. J. Chem. 2017, 10, 1107–1117. [Google Scholar] [CrossRef] [Green Version]
- Chand, K.; Cao, D.; Fouad, D.E.; Shah, A.H.; Dayo, A.Q.; Zhu, K.; Lakhan, M.N.; Mehdi, G.; Dong, S. Green synthesis, characterization and photocatalytic application of silver nanoparticles synthesized by various plant extracts. Arab. J. Chem. 2020, 13, 8248–8261. [Google Scholar] [CrossRef]
- De Aragão, A.P.; de Oliveira, T.M.; Quelemes, P.V.; Perfeito, M.L.G.; Araújo, M.C.; de Santiago, J.A.S.; Cardoso, V.S.; Quaresma, P.; de Souza de Almeida Leite, J.R.; da Silva, D.A. Green synthesis of silver nanoparticles using the seaweed Gracilaria birdiae and their antibacterial activity. Arab. J. Chem. 2019, 12, 4182–4188. [Google Scholar] [CrossRef] [Green Version]
- Simon, S.; Sibuyi, N.R.S.; Fadaka, A.O.; Meyer, M.; Madiehe, A.M.; du Preez, M.G. The antimicrobial activity of biogenic silver nanoparticles synthesized from extracts of Red and Green European pear cultivars. Artif. Cells Nanomed. Biotechnol. 2021, 49, 614–625. [Google Scholar] [CrossRef]
- Badeggi, U.M.; Ismail, E.; Adeloye, A.O.; Botha, S.; Badmus, J.A.; Marnewick, J.L.; Cupido, C.N.; Hussein, A.A. Green synthesis of gold nanoparticles capped with procyanidins from leucosidea sericea as potential antidiabetic and antioxidant agents. Biomolecules 2020, 10, 452. [Google Scholar] [CrossRef] [Green Version]
- Von White, G.; Kerscher, P.; Brown, R.M.; Morella, J.D.; McAllister, W.; Dean, D.; Kitchens, C.L. Green synthesis of robust, biocompatible silver nanoparticles using garlic extract. J. Nanomater. 2012, 2012, 730746. [Google Scholar] [CrossRef] [Green Version]
- Mudalige, T.; Qu, H.; Van Haute, D.; Ansar, S.M.; Paredes, A.; Ingle, T. Characterization of Nanomaterials: Tools and Challenges. In Nanomaterials for Food Applicationsu; Springer: Berlin/Heidelberg, Germany, 2019; pp. 313–353. [Google Scholar] [CrossRef]
- Bedlovičová, Z. Green synthesis of silver nanoparticles using actinomycetes. In Green Synthesis of Silver Nanomaterials; Springer: Berlin/Heidelberg, Germany, 2022; pp. 547–569. [Google Scholar] [CrossRef]
- Gemishev, O.; Panayotova, M.; Gicheva, G.; Mintcheva, N. Green Synthesis of Stable Spherical Monodisperse Silver Nanoparticles Using a Cell-Free Extract of Trichoderma reesei. Materials 2022, 15, 481. [Google Scholar] [CrossRef]
- Huq, A.; Ashrafudoulla, M.; Rahman, M.M.; Balusamy, S.R.; Akter, S. Green Synthesis and Potential Antibacterial Applications of Bioactive Silver Nanoparticles: A Review. Polymers 2022, 14, 742. [Google Scholar] [CrossRef]
- Kumar, H.A.K.; Mandal, B.K.; Kumar, K.M.; Maddinedi, S.B.; Kumar, T.S.; Madhiyazhagan, P.; Ghosh, A.R. Antimicrobial and antioxidant activities of Mimusops elengi seed extract mediated isotropic silver nanoparticles. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2014, 130, 13–18. [Google Scholar] [CrossRef]
- Rauwel, P.; Küünal, S.; Ferdov, S.; Rauwel, E. A Review on Green Synthesis of Silver. Adv. Mater. Sci. Eng. 2015, 2015, 682749. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Tang, J.; Liu, X.; Ren, X.; Zhen, M.; Wang, L. Green Biosynthesis of Silver Nanoparticles Using Eriobotrya japonica (Thunb.) Leaf Extract for Reductive Catalysis. Materials 2019, 12, 189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, A.; Sattar, M.; Hussain, F.; Tareen, M.H.K.; Militky, J.; Noman, M.T. Single-Step Green Synthesis of Highly Concentrated and Stable Colloidal Dispersion of Core-Shell Silver Nanoparticles and Their Antimicrobial and Ultra-High Catalytic Properties. Nanomaterials 2021, 11, 1007. [Google Scholar] [CrossRef] [PubMed]
- Lall, N.; Henley-Smith, C.J.; De Canha, M.N.; Oosthuizen, C.B.; Berrington, D. Viability Reagent, PrestoBlue, in Comparison with Other Available Reagents, Utilized in Cytotoxicity and Antimicrobial Assays. Int. J. Microbiol. 2013, 2013, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akter, M.; Sikder, M.T.; Rahman, M.M.; Ullah, A.K.M.A.; Hossain, K.F.B.; Banik, S.; Hosokawa, T.; Saito, T.; Kurasaki, M. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. J. Adv. Res. 2018, 9, 1–16. [Google Scholar] [CrossRef]
- Liu, W.; Wu, Y.; Wang, C.; Li, H.C.; Wang, T.; Liao, C.Y.; Cui, L.; Zhou, Q.F.; Yan, B.; Jiang, G.B. Impact of silver nanoparticles on human cells: Effect of particle size. Nanotoxicology 2010, 4, 319–330. [Google Scholar] [CrossRef]
- Park, E.-J.; Yi, J.; Kim, Y.; Choi, K.; Park, K. Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol. Vitr. 2010, 24, 872–878. [Google Scholar] [CrossRef]
- Greulich, C.; Kittler, S.; Epple, M.; Muhr, G.; Köller, M. Studies on the biocompatibility and the interaction of silver nanoparticles with human mesenchymal stem cells (hMSCs). Langenbeck’s Arch. Surg. 2009, 394, 495–502. [Google Scholar] [CrossRef]
- Paknejadi, M.; Bayat, M.; Salimi, M.; Razavilar, V. Concentration- and Time-Dependent Cytotoxicity of Silver Nanoparticles on Normal Human Skin Fibroblast Cell Line. Iran. Red Crescent Med. J. 2018, 20, e79183. [Google Scholar] [CrossRef] [Green Version]
- You, C.; Han, C.; Wang, X.; Zheng, Y.; Li, Q.; Hu, X.; Sun, H. The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Mol. Biol. Rep. 2012, 39, 9193–9201. [Google Scholar] [CrossRef]
Sample Code | Bl.AgNPs | Hc.AgNPs | Sc.AgNPs |
---|---|---|---|
Zeta potential (mV) | −23.4 | −18.8 | −31.3 |
Hydrodynamic size (nm) | 83.54 | 98.91 | 108.1 |
OD Average for 4 h | ||||
---|---|---|---|---|
Concentration (mg/mL) | Bl.AgNPs | Hc.AgNPs | Sc.AgNPs | Untreated |
B (0.125) | 0.037 | 0.033 | 0.040 | 0.229 |
C (0.062) | 0.031 | 0.033 | 0.081 | |
D (0.031) | 0.183 | 0.169 | 0.181 | |
E (0.015) | 0.214 | 0.190 | 0.194 | |
F (0.007) | 0.198 | 0.181 | 0.198 | |
G (0.003) | 0.209 | 0.191 | 0.203 | |
H (0.0015) | 0.237 | 0.224 | 0.215 |
Calculated AgNP Concentrations | |||
---|---|---|---|
Treatment | 4 h | 6 h | 24 h |
Sc.AgNPs | 6.49 | 10.32 | 8.05 |
Bl.AgNPs | 6.21 | 6.22 | 10.20 |
Hc.AgNPs | 6.58 | 6.32 | 9.77 |
Average Percentage Cell Survival | ||||||
---|---|---|---|---|---|---|
Conc. mg/mL | Bl.AgNPs | Hc.AgNPs | Sc.AgNPs | B. lanuginose ext. | H. cymosum ext. | S. crenata ext. |
0.007 | 97.78 | 109.55 | 93.78 | 120.81 | 138.02 | 117.11 |
0.012 | 88.38 | 107.27 | 90.65 | 120.45 | 140.52 | 121.87 |
0.025 | 74.14 | 99.92 | 39.4 | 114.18 | 102.28 | 91.67 |
0.037 | 42.47 | 53.98 | 28.17 | 115.32 | 111.9 | 95.43 |
0.062 | 40.32 | 30.48 | 25.27 | 143.96 | 149.96 | 116.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klein, W.; Ismail, E.; Maboza, E.; Hussein, A.A.; Adam, R.Z. Green-Synthesized Silver Nanoparticles: Antifungal and Cytotoxic Potential for Further Dental Applications. J. Funct. Biomater. 2023, 14, 379. https://doi.org/10.3390/jfb14070379
Klein W, Ismail E, Maboza E, Hussein AA, Adam RZ. Green-Synthesized Silver Nanoparticles: Antifungal and Cytotoxic Potential for Further Dental Applications. Journal of Functional Biomaterials. 2023; 14(7):379. https://doi.org/10.3390/jfb14070379
Chicago/Turabian StyleKlein, Widadh, Enas Ismail, Ernest Maboza, Ahmed A. Hussein, and Razia Z. Adam. 2023. "Green-Synthesized Silver Nanoparticles: Antifungal and Cytotoxic Potential for Further Dental Applications" Journal of Functional Biomaterials 14, no. 7: 379. https://doi.org/10.3390/jfb14070379
APA StyleKlein, W., Ismail, E., Maboza, E., Hussein, A. A., & Adam, R. Z. (2023). Green-Synthesized Silver Nanoparticles: Antifungal and Cytotoxic Potential for Further Dental Applications. Journal of Functional Biomaterials, 14(7), 379. https://doi.org/10.3390/jfb14070379