Propolis in Dental Implantology: A Systematic Review of Its Effects and Benefits
Abstract
:1. Introduction
2. Material and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Data Extraction
2.4. Quality Assessment
3. Results
Quality Assessment
4. Discussion
Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bouchelaghem, S. Propolis characterization and antimicrobial activities against Staphylococcus aureus and Candida albicans: A review. Saudi J. Biol. Sci. 2022, 29, 1936–1946. [Google Scholar] [CrossRef] [PubMed]
- Woźniak, M.; Sip, A.; Mrówczyńska, L.; Broniarczyk, J.; Waśkiewicz, A.; Ratajczak, I. Biological Activity and Chemical Composition of Propolis from Various Regions of Poland. Molecules 2022, 28, 141. [Google Scholar] [CrossRef] [PubMed]
- Hwang, G. In it together: Candida–bacterial oral biofilms and therapeutic strategies. Environ. Microbiol. Rep. 2022, 14, 183–196. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Pérez, M.L.; Vadillo-Rodríguez, V.; Fernández-Babiano, I.; Pérez-Giraldo, C.; Fernández-Calderón, M.C. Antimicrobial activity of a novel Spanish propolis against planktonic and sessile oral Streptococcus spp. Sci. Rep. 2021, 11, 23860. [Google Scholar] [CrossRef]
- Morawiec, T.; Dziedzic, A.; Niedzielska, I.; Mertas, A.; Tanasiewicz, M.; Skaba, D.; Kasperski, J.; Machorowska-Pienikazek, A.; Kucharzewski, M.; Szaniawska, K.; et al. The Biological Activity of Propolis-Containing Toothpaste on Oral Health Environment in Patients Who Underwent Implant-Supported Prosthodontic Rehabilitation. Evid. Based Complement. Altern. Med. 2013, 2013, 704947. [Google Scholar] [CrossRef]
- Roh, J.; Kim, K.R. Antimicrobial Activity of Korean Propolis Extracts on Oral Pathogenic Microorganisms. J. Dent. Hyg. Sci. 2018, 18, 18–23. [Google Scholar] [CrossRef]
- Coluccia, A.; Matti, F.; Zhu, X.; Lussi, A.; Stähli, A.; Sculean, A.; Eick, S. In Vitro Study on Green Propolis as a Potential Ingredient of Oral Health Care Products. Antibiotics 2022, 11, 1764. [Google Scholar] [CrossRef]
- González-Serrano, J.; López-Pintor, R.M.; Serrano, J.; Torres, J.; Hernández, G.; Sanz, M. Short-term efficacy of a gel containing propolis extract, nanovitamin C and nanovitamin E on peri-implant mucositis: A double-blind, randomized, clinical trial. J. Periodontal. Res. 2021, 56, 897–906. [Google Scholar] [CrossRef]
- Martorano-Fernandes, L.; Cavalcanti, Y.W.; De Almeida, L.D.F.D. Inhibitory effect of Brazilian red propolis on Candida biofilms developed on titanium surfaces. BMC Complement. Med. Ther. 2020, 20, 104. [Google Scholar] [CrossRef]
- Khurshid, Z.; Naseem, M.; Zafar, M.S.; Najeeb, S.; Zohaib, S. Propolis: A natural biomaterial for dental and oral healthcare. J. Dent. Res. Dent. Clin. Dent. Prospect. 2017, 11, 265–274. [Google Scholar]
- Ekeuku, S.O.; Chin, K.Y. Application of Propolis in Protecting Skeletal and Periodontal Health—A Systematic Review. Molecules 2021, 26, 3156. [Google Scholar] [CrossRef] [PubMed]
- Oryan, A.; Alemzadeh, E.; Moshiri, A. Potential role of propolis in wound healing: Biological properties and therapeutic activities. Biomed. Pharmacother. 2018, 98, 469–483. [Google Scholar] [CrossRef] [PubMed]
- Son, J.S.; Hwang, E.J.; Kwon, L.S.; Ahn, Y.G.; Moon, B.K.; Kim, J.; Kim, D.H.; Kim, S.G.; Lee, S.-Y. Antibacterial Activity of Propolis-Embedded Zeolite Nanocomposites for Implant Application. Materials 2021, 14, 1193. [Google Scholar] [CrossRef] [PubMed]
- Aydın, E. Evaluation of the Effect of Propolis on Implant Stability by Resonance Frequency Analysis and Removal Torque Test. Biomed. J. Sci. Tech. Res. 2017, 1. [Google Scholar] [CrossRef]
- Aydın, E.; Hepokur, C.; Mısır, S.; Yeler, H. Effects of Propolis on Oxidative Stress in Rabbits Undergoing Implant Surgery. Cumhur. Dent. J. 2018, 21, 136–144. [Google Scholar] [CrossRef]
- Abdulla, M.A.; Hasan, R.H.; Al-Hyani, O.H. Effects of restraint stress and surface treatments on the stability of titanium dental implant osseointegration in dogs: An in vivo comparative study. J. Taibah Univ. Med. Sci. 2024, 19, 461–472. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Cochrane Library About PICO. 2023. Available online: https://www.cochranelibrary.com/about-pico (accessed on 5 May 2024).
- Cochrane Handbook for Systematic Reviews of Interventions. Available online: https://training.cochrane.org/handbook/current (accessed on 7 May 2024).
- Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Abdulla, M.A.; Hasan, R.H.; Al-Hyani, O.H. Radiographic and histologic assessment of osseointegration for surface-treated titanium dental implants: An experimental study in dogs. J. Dent. Res. Dent. Clin. Dent. Prospect. 2024, 18, 44–54. [Google Scholar] [CrossRef]
- Al-Molla, B.H.; Al-Ghaban, N.; Taher, A. Immunohistochemical evaluation: The effects of propolis on osseointegration of dental implants in rabbit’s tibia. J. Dent. Res. Rev. 2014, 1, 123–131. [Google Scholar]
- Kehribar, L.; Coşkun, H.S.; Surucu, S.; Aydın, M.; Mahiroğulları, M. The Antibacterial Effectiveness of Propolis on Medical Screws. Cureus 2021, 13, e16278. [Google Scholar] [CrossRef] [PubMed]
- Krasnikov, A.; Krasnikova, E.; Morozova, D.; Spirkina, N. Study of osseointegration properties of multilayer coatings with a biodegradable film of flavonoid nanoaggregates. J. Phys. Conf. Ser. 2022, 2373, 032026. [Google Scholar] [CrossRef]
- Somsanith, N.; Kim, Y.K.; Jang, Y.S.; Lee, Y.H.; Yi, H.K.; Jang, J.H.; Kim, K.-A.; Bae, T.-S.; Lee, M.-H. Enhancing of Osseointegration with Propolis-Loaded TiO2 Nanotubes in Rat Mandible for Dental Implants. Materials 2018, 11, 61. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, S.; Ravi, M.; Ram, K.; Homberhalli, H.J.; Nagaraja, M.; Gowrav, M.; Ramesh, K.S.V. Antibacterial efficacy of hubballi propolis against aggregatibacter actinomycetemcomitans one of the major causative organisms of perimplantitis: An In vitro study. J. Pharm. Bioallied Sci. 2022, 14, 595. [Google Scholar] [CrossRef]
- Mirzoeva, O.K.; Grishanin, R.N.; Calder, P.C. Antimicrobial action of propolis and some of its components: The effects on growth, membrane potential and motility of bacteria. Microbiol. Res. 1997, 152, 239–246. [Google Scholar] [CrossRef]
- Kujumgiev, A.; Tsvetkova, I.; Serkedjieva, Y.; Bankova, V.; Christov, R.; Popov, S. Antibacterial, antifungal and antiviral activity of propolis of different geographic origin. J. Ethnopharmacol. 1999, 64, 235–240. [Google Scholar] [CrossRef]
- Park, Y.K.; Koo, M.H.; Abreu, J.A.S.; Ikegaki, M.; Cury, J.A.; Rosalen, P.L. Antimicrobial Activity of Propolis on Oral Microorganisms. Curr. Microbiol. 1998, 36, 24–28. [Google Scholar] [CrossRef]
- Koo, H.; Rosalen, P.L.; Cury, J.A.; Park, Y.K.; Bowen, W.H. Effects of compounds found in propolis on Streptococcus mutans growth and on glucosyltransferase activity. Antimicrob. Agents Chemother. 2002, 46, 1302–1309. [Google Scholar] [CrossRef]
- Castro, S.L. Propolis: Biological and Pharmacological Activities. Therapeutic Uses of This Bee-product. Annu. Rev. Biomed. Sci. 2006, 3, 49–83. [Google Scholar] [CrossRef]
- Zulhendri, F.; Felitti, R.; Fearnley, J.; Ravalia, M. The use of propolis in dentistry, oral health, and medicine: A review. J. Oral Biosci. 2021, 63, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Bhatti, N.; Hajam, Y.A.; Mushtaq, S.; Kaur, L.; Kumar, R.; Rai, S. A review on dynamic pharmacological potency and multifaceted biological activities of propolis. Discov. Sustain. 2024, 5, 185. [Google Scholar] [CrossRef]
- Jin, Q.; Teng, F.; Cheng, Z. Association between common polymorphisms in IL-1 and TNFα and risk of peri-implant disease: A meta-analysis. PLoS ONE 2021, 16, e0258138. [Google Scholar] [CrossRef] [PubMed]
- Werny, J.G.; Sagheb, K.; Diaz, L.; Kämmerer, P.W.; Al-Nawas, B.; Schiegnitz, E. Does vitamin D have an effect on osseointegration of dental implants? A systematic review. Int. J. Implant. Dent. 2022, 8, 16. [Google Scholar] [CrossRef] [PubMed]
- Bapat, S.; Asawa, K.; Tak, M.; Chaturvedi, P.; Gupta, V.; George, P.; Bhat, N. The antiplaque efficacy of propolis-based herbal toothpaste: A crossover clinical study. J. Nat. Sci. Biol. Med. 2015, 6, 364. [Google Scholar] [CrossRef]
- Bapat, S.; Nagarajappa, R.; Ramesh, G.; Bapat, K. Effect of propolis mouth rinse on oral microorganisms—A randomized controlled trial. Clin. Oral Investig. 2021, 25, 6139–6146. [Google Scholar] [CrossRef]
- Dehghani, M.; Abtahi, M.; Hasanzadeh, N.; Farahzad, Z.; Noori, M.; Noori, M. Effect of Propolis mouthwash on plaque and gingival indices over fixed orthodontic patients. J. Clin. Exp. Dent. 2019, 11, e244–e249. [Google Scholar] [CrossRef]
- Sycińska-Dziarnowska, M.; Szyszka-Sommerfeld, L.; Ziąbka, M.; Spagnuolo, G.; Woźniak, K. Use of Antimicrobial Silver Coatings on Fixed Orthodontic Appliances, Including Archwires, Brackets, and Microimplants: A Systematic Review. Med. Sci. Monit. 2024, 30, e944255. [Google Scholar] [CrossRef]
- Salatino, A. Perspectives for Uses of Propolis in Therapy against Infectious Diseases. Molecules 2022, 27, 4594. [Google Scholar] [CrossRef]
- Touzani, S.; Imtara, H.; Katekhaye, S.; Mechchate, H.; Ouassou, H.; Alqahtani, A.S. Determination of Phenolic Compounds in Various Propolis Samples Collected from an African and an Asian Region and Their Impact on Antioxidant and Antibacterial Activities. Molecules 2021, 26, 4589. [Google Scholar] [CrossRef]
- Grassi, G.; Capasso, G.; Gambacorta, E.; Perna, A.M. Chemical and Functional Characterization of Propolis Collected from Different Areas of South Italy. Foods 2023, 12, 3481. [Google Scholar] [CrossRef] [PubMed]
- Aboukhalaf, A.; Abdessadek, J.; Lahlou, Y.; Ikhiar, N.; Essaih, S.; Elbiyad, J.; Kalili, A.; El-Amraoui, B.; Belahsen, R. Assessment of phenolic and flavonoid contents, antioxidant and antimicrobial activities of Moroccan propolis. Rocz. Panstw. Zakl. Hig. 2024, 75, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Miłek, M.; Bonikowski, R.; Dżugan, M. The effect of extraction conditions on the chemical profile of obtained raw poplar propolis extract. Chem. Pap. 2024, 78, 6709–6720. [Google Scholar] [CrossRef]
- Mello, B.C.B.S.; Petrus, J.C.C.; Hubinger, M.D. Concentration of flavonoids and phenolic compounds in aqueous and ethanolic propolis extracts through nanofiltration. J. Food Eng. 2010, 96, 533–539. [Google Scholar] [CrossRef]
Authors, Year | Material Evaluated with Propolis and Control Group. Type of Study | Procedure | Time Points Tested | Material Tested |
---|---|---|---|---|
Abdulla et al., 2024 [16] | Four groups: sandblasting with acid etching, sandblasting with Al2O3, Er-Cr: YSGG laser and propolis coating In vivo animal model | Implant stability quotient | Baseline, after 14 days and after 90 days | Dental titanium implants (Dentium Co., Ltd., Seoul, Republic of Korea) |
Abdulla et al., 2024 [22] | Four groups based on surface modifications: sandblasting plus acid etching, sandblasting with Al2O3, laser and propolis coating In vivo animal model | Osseointegration | Evaluated at 14, 90 and 180 days with radiographs and histological analysis | Dental titanium implants (Dentium Co., Ltd., Seoul, Republic of Korea) |
Al-Molla BH et al., 2014 [23] | Propolis-coated implants and control group; implants without propolis In vivo animal model | Osseointegration -osteocalcin and type I collagen markers—immunohistochemical tests | Baseline and at 2, 4, and 6 weeks | Pure titanium implants |
Aydin et al., 2017 [14] | Three groups: control, local application of propolis, and systemic application of propolis In vivo animal model | Resonance frequency analysis (RFA) to test stability of implants | Baseline and after 28 days | Dental implants from ADIN Dental Implant Systems (SLA Surface, Toureg-NP, Afula, Israel) |
Aydin et al., 2018 [15] | Three groups: local group with propolis solution applied to slots before implant placement; systemic group received daily propolis solution post-implantation; control group implants fixed without propolis In vivo animal model | Blood tests for Vitamin D, phosphor, calcium, and antioxidant enzyme values | Evaluated at 28 days | Dental implants (SLA Surface, Toureg-NP, Afula, Israel) |
González-Serrano et al., 2021 [8] | One group of patients treated with a gel containing 2% propolis extract and a control group receiving placebo gel Randomized Controlled Trial | Clinical evaluation (bleeding on probing) and microbiological parameters (CFU counts): Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, Tannerella forsythia, Parvimonas micra, Fusobacterium nucleatum, Campylobacter rectus, Eikenella corrodens, Capnocytophaga sp. and Actinomyces odontolyticus | 1-month follow-up | Dental implants |
Kehribar et al., 2021 [24] | Screws coated with crosslinked polyacrylic acid polymer -Carbopol polymer (10 mg/mL in ethanol) and varying propolis concentrations (2.5%, 5.0%, and 7.5%). Control groups included polymer-only and propolis-only In vitro study | Agar diffusion test S. aureus (ATCC 25923) | 48 h | Implants (Ti6Al4V ELI) Sandvik Coromant (Sandviken, Sweden) |
Krasnikov et al., 2022 [25] | Implants with polymer film (polyazolidine ammonium modified with halogen hydrate ions) and propolis; control group without polymer layer In vivo animal model | Osseointegration | Baseline and after 30 days | Implants (diameter 3.5 mm, length 10 mm) |
Martorano-Fernandes et al., 2020 [9] | 3% hydroalcoholic extract of Brazilian red propolis. Positive control was chlorhexidine (CHX) at 0.12% and sterile saline solution was the growth control In vitro study | Metabolic activity assay, cell viability (CFU counts) C. albicans (ATCC 90028) and C. glabrata (ATCC 2001) | 96 h after initial adhesion | Pure titanium discs (1.3 cm × 0.2 cm) |
Morawiec et al., 2013 [5] | Two groups with either propolis-containing toothpaste or control toothpaste Randomized Controlled Trial | Microbiological tests and evaluation of approximal plaque index, oral hygiene index and sulcus bleeding index | Baseline, after 7 days, and after 8 weeks. Microbiological examination was done at baseline and after 8 weeks | Dental implants supporting prosthetic restorations |
Somsanith et al., 2018 [26] | One group was assigned to receive TiO2 nanotubes on Ti plate (TNT), the other group was assigned to receive TNT with propolis (PL-TNT-Ti) on Ti plate or/and rod (mini-implant) In vivo animal model | Osseointegration and bone bonding | Evaluated after 1 and 4 weeks | TNT and PL-TNT-Ti implants |
Son et al., 2021 [13] | Propolis-embedded zeolite nanocomposites; control group with chlorohexidine (CHX) In vitro study | Agar diffusion test, biofilm inhibition test C. albicans, S. mutans and S. sobrinus | 24-h incubation periods | Dental implants were fabricated using a composite material composed of poly(L-lactide) (PLA)/poly(ε-caprolactone) (PCL) polymer and propolis-embedded zeolite nanocomposites |
Srinivas et al., 2022 [27] | The study utilized two solvents for propolis: water and 70% aqueous ethanol In vitro study | Minimum inhibitory concentration, Aggregatibacter Actinomycetemcomitans (ATCC 43718) total phenolic contents, and total flavonoid content | 24-h incubation periods | Implants |
Authors, Year | Conclusion |
---|---|
Abdulla et al., 2024 [16] | Implant stability quotient was related to surface processing and was higher for sandblasting than for other types of treatment. |
Abdulla et al., 2024 [22] | After 180 days, osseointegration with notable bone remodeling was particularly evident in the propolis coating group. |
Al-Molla BH et al., 2014 [23] | Implants coated with propolis significantly increased osseointegration. |
Aydin et al., 2017 [14] | Propolis application resulted in a significant increase in implant stability in both the local and systemic groups compared to the control group (p < 0.05). |
Aydin et al., 2018 [15] | Propolis reduced oxidative stress. Significant increase in vitamin D level in both propolis groups (p < 0.05). |
González-Serrano et al., 2021 [8] | After use of propolis gel, 26.1% of patients in the test group achieved complete healing of peri-implant mucositis, compared to no improvement in the control group. The gel with propolis showed antimicrobial effects compared to the control group. |
Kehribar et al., 2021 [24] | Adding propolis to the gel coating enhanced the antibacterial properties of the medical screws, while the antibacterial effects were limited for both control groups. |
Krasnikov et al., 2022 [25] | Propolis implant coatings have no toxic effects on experimental animals. |
Martorano-Fernandes et al., 2020 [9] | Both red propolis and chlorhexidine extract inhibited the proliferation of C. albicans, showing statistically significant differences from the control group (p < 0.05). |
Morawiec et al., 2013 [5] | The study revealed the positive biological activity of toothpaste with propolis on the spectrum of oral microflora. |
Somsanith et al., 2018 [26] | Bone formation and bone density were significantly greater with the propolis-loaded TNT implants compared to the drug-free TNT implants. Propolis reduced the expression of inflammatory cytokines like IL-1β and TNF-α and enhanced the expression of collagen fibers and osteogenic differentiation proteins. |
Son et al., 2021 [13] | Dental implants made from poly (L-lactide) (PLA)/poly(ε-caprolactone) (PCL) polymer with propolis-embedded zeolite nanocomposites exhibit antibacterial efficacy and negligible toxicity to normal cells. |
Srinivas et al., 2022 [27] | Propolis extracted using water as the solvent demonstrated a superior minimum inhibitory concentration and exhibited higher total phenolic content and total flavonoid content compared to propolis extracted with alcohol as the solvent. Propolis was effective against Aggregatibacter actinomycetemcomitans, suggesting that it may be used in the treatment of peri-implantitis. |
Authors and Year | Selection | Comparability | Outcome | Total Score |
---|---|---|---|---|
Abdulla et al., 2024 [16] | *** | ** | ** | 7 |
Abdulla et al., 2024 [22] | *** | ** | ** | 7 |
Al-Molla BH et al., 2014 [23] | *** | ** | ** | 7 |
Aydin et al., 2017 [14] | *** | ** | ** | 7 |
Aydin et al., 2018 [15] | *** | ** | *** | 8 |
Kehribar et al., 2021 [24] | ** | ** | ** | 6 |
Krasnikov et al., 2022 [25] | ** | ** | ** | 6 |
Martorano-Fernandes et al., 2020 [9] | *** | ** | ** | 7 |
Somsanith et al., 2018 [26] | *** | ** | ** | 7 |
Son et al., 2021 [13] | *** | ** | ** | 7 |
Srinivas et al., 2022 [27] | *** | ** | ** | 7 |
Author, Year | Randomization Process | Deviations from the Intended Interventions | Missing Outcome Data | Measurement of the Outcome | Selection of the Reported Results | Overall |
---|---|---|---|---|---|---|
González-Serrano et al., 2021 [8] | Low risk | Low risk | Some concerns | Low risk | Low risk | Low risk |
Morawiec et al., 2013 [5] | Low risk | Low risk | Some concerns | Low risk | Low risk | Low risk |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sycińska-Dziarnowska, M.; Szyszka-Sommerfeld, L.; Ziąbka, M.; Woźniak, K.; Spagnuolo, G. Propolis in Dental Implantology: A Systematic Review of Its Effects and Benefits. J. Funct. Biomater. 2024, 15, 339. https://doi.org/10.3390/jfb15110339
Sycińska-Dziarnowska M, Szyszka-Sommerfeld L, Ziąbka M, Woźniak K, Spagnuolo G. Propolis in Dental Implantology: A Systematic Review of Its Effects and Benefits. Journal of Functional Biomaterials. 2024; 15(11):339. https://doi.org/10.3390/jfb15110339
Chicago/Turabian StyleSycińska-Dziarnowska, Magdalena, Liliana Szyszka-Sommerfeld, Magdalena Ziąbka, Krzysztof Woźniak, and Gianrico Spagnuolo. 2024. "Propolis in Dental Implantology: A Systematic Review of Its Effects and Benefits" Journal of Functional Biomaterials 15, no. 11: 339. https://doi.org/10.3390/jfb15110339
APA StyleSycińska-Dziarnowska, M., Szyszka-Sommerfeld, L., Ziąbka, M., Woźniak, K., & Spagnuolo, G. (2024). Propolis in Dental Implantology: A Systematic Review of Its Effects and Benefits. Journal of Functional Biomaterials, 15(11), 339. https://doi.org/10.3390/jfb15110339