Effect of Silicon Carbide Fiber Length on the Flexural Strength and Flexural Modulus of Short Silicon Carbide Fiber-Reinforced Resin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Short SiC Fibers and the Matrix Resin
2.2. Preparation of Specimens
2.3. Three-Point Bending Test
2.4. Statistical Analysis
2.5. Fracture Surface Observation
3. Results
3.1. Flexural Properties of the Specimens
3.2. Fracture Surface Observation
4. Discussion
5. Future Research Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hirata-Tsuchiya, S.; Yoshii, S.; Ichimaru-Suematsu, M.; Washio, A.; Saito, N.; Urata, M.; Hanada, K.; Morotomi, T.; Kitamura, C. Two-year clinical comparison of a flowable-type nano-hybrid composite and a paste-type composite in posterior restoration. J. Investig. Clin. Dent. 2017, 8, e12227. [Google Scholar] [CrossRef]
- Kaida, K.; Kubo, S.; Egoshi, T.; Taira, Y. Correction to: Eight-year clinical evaluation of two types of resin composite in non-carious cervical lesions. Clin. Oral. Investig. 2022, 26, 6339. [Google Scholar] [CrossRef] [PubMed]
- Korkut, B.; Özcan, M. Longevity of Direct Resin Composite Restorations in Maxillary Anterior Crown Fractures: A 4-year Clinical Evaluation. Oper. Dent. 2022, 47, 138–148. [Google Scholar] [CrossRef] [PubMed]
- Kubo, S.; Yokota, H.; Hayashi, Y. Three-year clinical evaluation of a flowable and a hybrid resin composite in non-carious cervical lesions. J. Dent. 2010, 38, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Nihei, T.; Ohkubo, C.; Nishiyama, Y.; Tsubota, Y.; Koizumi, H.; Maseki, T.; Miyazaki, M. A report on the clinical use of bonding systems for coronal restorations produced from CAD/CAM resin blocks. Dent. Mater. J. 2020, 39, 531–533. [Google Scholar] [CrossRef]
- Kabetani, T.; Ban, S.; Mine, A.; Ishihara, T.; Nakatani, H.; Yumitate, M.; Yamanaka, A.; Ishida, M.; Matsumoto, M.; Meerbeek, B.V.; et al. Four-year clinical evaluation of CAD/CAM indirect resin composite premolar crowns using 3D digital data: Discovering the causes of debonding. J. Prosthodont. Res. 2022, 66, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Tezvergil, A.; Lassila, L.V.; Vallittu, P.K. The effect of fiber orientation on the thermal expansion coefficients of fiber-reinforced composites. Dent. Mater. 2003, 19, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Naito, T.; Yokota, M.; Kohno, M. Finite element analysis of the possible mechanism of cervical lesion formation by occlusal force. J. Oral Rehabil. 2003, 30, 60–67. [Google Scholar] [CrossRef]
- Hammouda, I.M. Reinforcement of conventional glass-ionomer restorative material with short glass fibers. J. Mech. Behav. Biomed. Mater. 2009, 2, 73–81. [Google Scholar] [CrossRef]
- Nakamura, M.; Takahashi, H.; Hayakawa, I. Reinforcement of denture base resin with short-rod glass fiber. Dent. Mater. J. 2007, 26, 733–738. [Google Scholar] [CrossRef]
- Solanki, N.; Kishan, K.V.; Saklecha, P.; Parikh, M. Comparison of fiber-reinforced composite and nanohybrid resin impregnated with glass fibers as postendodontic restoration in molars-A clinical study. J. Conserv. Dent. 2021, 24, 514–518. [Google Scholar] [CrossRef]
- Tanner, J.; Tolvanen, M.; Garoushi, S.; Sailynoja, E. Clinical Evaluation of Fiber-Reinforced Composite Restorations in Posterior Teeth-Results of 2.5 Year Follow-up. Open Dent. J. 2018, 12, 476–485. [Google Scholar] [CrossRef]
- Alshabib, A.; Silikas, N.; Watts, D.C. Hardness and fracture toughness of resin-composite materials with and without fibers. Dent. Mater. 2019, 35, 1194–1203. [Google Scholar] [CrossRef]
- Vallittu, P.K. Effect of 180-week water storage on the flexural properties of E-glass and silica fiber acrylic resin composite. Int. J. Prosthodont. 2000, 13, 334–339. [Google Scholar]
- Kotani, M.; Yasufuku, Y.; Tamaishi, Y.; Kawada, H. Study of Strength Degradation Mechanism of Woven GFRP in Water Environment. J. Solid. Mech. Mater. Eng. 2010, 4, 1574–1584. [Google Scholar] [CrossRef]
- Kister, G.; Harris, B. Tensile properties of heat-treated Nicalon and Hi-Nicalon fibres. Compos. Part A Appl. Sci. Manuf. 2002, 33, 435–438. [Google Scholar] [CrossRef]
- Simon, G.; Bunsell, A.R. Mechanical and structural characterization of the Nicalon silicon carbide fibre. J. Mater. Sci. 1984, 19, 3649–3657. [Google Scholar] [CrossRef]
- Wonderly, C.; Grenestedt, J.; Fernlund, G.; Cěpus, E. Comparison of mechanical properties of glass fiber/vinyl ester and carbon fiber/vinyl ester composites. Compos. Part. B Eng. 2005, 36, 417–426. [Google Scholar] [CrossRef]
- Arksornnukit, M.; Takahashi, H.; Nishiyama, N. Effects of silane coupling agent amount on mechanical properties and hydrolytic durability of composite resin after hot water storage. Dent. Mater. J. 2004, 23, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Thadathil Varghese, J.; Cho, K.; Raju; Farrar, P.; Prentice, L.; Prusty, B.G. Effect of silane coupling agent and concentration on fracture toughness and water sorption behaviour of fibre-reinforced dental composites. Dent. Mater. 2023, 39, 362–371. [Google Scholar] [CrossRef] [PubMed]
- Norimasa, T.; Yujin, A.; Seigo, O.; Katsumi, U. Effects of Silanization Conditions on Flexural Properties of Sic Fiber-Reinforced Resin. Dentistry 2018, 8, 11. [Google Scholar] [CrossRef]
- Petersen, R.C. Discontinuous fiber-reinforced composites above critical length. J. Dent. Res. 2005, 84, 365–370. [Google Scholar] [CrossRef]
- Bijelic-Donova, J.; Garoushi, S.; Lassila, L.V.; Keulemans, F.; Vallittu, P.K. Mechanical and structural characterization of discontinuous fiber-reinforced dental resin composite. J. Dent. 2016, 52, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Aoyagi, Y.; Takahashi, H.; Iwasaki, N.; Honda, E.; Kurabayashi, T. Radiopacity of experimental composite resins containing radiopaque materials. Dent. Mater. J. 2005, 24, 315–320. [Google Scholar] [CrossRef]
- Norman, D.A.; Robertson, R.E. The effect of fiber orientation on the toughening of short fiber-reinforced polymers. J. Appl. Polym. Sci. 2003, 90, 2740–2751. [Google Scholar] [CrossRef]
- Garoushi, S.; Säilynoja, E.; Vallittu, P.K.; Lassila, L. Physical properties and depth of cure of a new short fiber reinforced composite. Dent. Mater. 2013, 29, 835–841. [Google Scholar] [CrossRef]
- Garoushi, S.K.; Lassila, L.V.; Vallittu, P.K. Short fiber reinforced composite: The effect of fiber length and volume fraction. J. Contemp. Dent. Pract. 2006, 7, 10–17. [Google Scholar]
- Chowdhury, K.A.; Talreja, R.; Benzerga, A.A. Effects of Manufacturing-Induced Voids on Local Failure in Polymer-Based Composites. J. Eng. Mater. Technol. 2008, 130, 021010. [Google Scholar] [CrossRef]
- Liu, H.; Cui, H.; Wen, W.; Su, X.; Kang, H.; Engler-Pinto, C. The effect of voids on the quasi-static tensile properties of carbon fiber/polymer-laminated composites. J. Compos. Mater. 2018, 52, 1997–2015. [Google Scholar] [CrossRef]
- Abdurohman, K.; Satrio, T.; Muzayadah, N.L.; Teten. A comparison process between hand lay-up, vacuum infusion and vacuum bagging method toward e-glass EW 185/lycal composites. J. Phys. Conf. Ser. 2018, 1130, 012018. [Google Scholar] [CrossRef]
- Ch, S.R.; Raja, A.; Nadig, P.; Jayaganthan, R.; Vasa, N.J. Influence of working environment and built orientation on the tensile properties of selective laser melted AlSi10Mg alloy. Mater. Sci. Eng. A 2019, 750, 141–151. [Google Scholar] [CrossRef]
- Ritchie, S.J.K.; Davis, P.; Leevers, P.S. Brittle–tough transition of rapid crack propagation in polyethylene. Polymer 1998, 39, 6657–6663. [Google Scholar] [CrossRef]
- Huang, Q.; Qin, W.; Garoushi, S.; He, J.; Lin, Z.; Liu, F.; Vallittu, P.K.; Lassila, L.V.J. Physicochemical properties of discontinuous S2-glass fiber reinforced resin composite. Dent. Mater. J. 2018, 37, 95–103. [Google Scholar] [CrossRef]
- Liu, F.; Sun, B.; Jiang, X.; Aldeyab, S.S.; Zhang, Q.; Zhu, M. Mechanical properties of dental resin/composite containing urchin-like hydroxyapatite. Dent. Mater. 2014, 30, 1358–1368. [Google Scholar] [CrossRef]
- Ilie, N.; Hickel, R. Investigations on mechanical behaviour of dental composites. Clin. Oral. Investig. 2009, 13, 427–438. [Google Scholar] [CrossRef]
- Lassila, L.; Garoushi, S.; Vallittu, P.K.; Säilynoja, E. Mechanical properties of fiber reinforced restorative composite with two distinguished fiber length distribution. J. Mech. Behav. Biomed. Mater. 2016, 60, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.H.; Schumacher, G.E.; Eichmiller, F.C.; Peterson, R.C.; Antonucci, J.M.; Mueller, H.J. Continuous-fiber preform reinforcement of dental resin composite restorations. Dent. Mater. 2003, 19, 523–530. [Google Scholar] [CrossRef]
- Velmurugan, R.; Manikandan, V. Mechanical properties of palmyra/glass fiber hybrid composites. Compos. Part. A Appl. Sci. Manuf. 2007, 38, 2216–2226. [Google Scholar] [CrossRef]
- Vidotti, H.A.; Manso, A.P.; Leung, V.; do Valle, A.L.; Ko, F.; Carvalho, R.M. Flexural properties of experimental nanofiber reinforced composite are affected by resin composition and nanofiber/resin ratio. Dent. Mater. 2015, 31, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Barszczewska-Rybarek, I.M. Structure-property relationships in dimethacrylate networks based on Bis-GMA, UDMA and TEGDMA. Dent. Mater. 2009, 25, 1082–1089. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-H.; Lin, Y.-M.; Lai, Y.-L.; Lee, S.-Y. Mechanical properties, accuracy, and cytotoxicity of UV-polymerized 3D printing resins composed of Bis-EMA, UDMA, and TEGDMA. J. Prosthet. Dent. 2020, 123, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Ferracane, J.L.; Condon, J.R. Post-cure heat treatments for composites: Properties and fractography. Dent. Mater. 1992, 8, 290–295. [Google Scholar] [CrossRef] [PubMed]
Materials/Product Name | Manufacturer | Code |
---|---|---|
Urethane dimethacrylate/ Art resin SH-500B | Negami Chemical Industrial Co., Ltd., Ishikawa, Japan | UDMA |
Triethylene glycol dimethacrylate/3G | SHIN-NAKAMURA CHEMICAL Co., Ltd., Wakayama, Japan | TEGDMA |
Camphorquinone/ Camphorquinone | Sigma-Aldrich Co. LLC, St. Louis, MO, USA | CQ |
Dimethylamino ethyl methacrylate/Dimethylamino ethyl methacrylate | Fujifilm Wako Pure Chemical Corporation, Osaka, Japan | DMAEMA |
Silicon carbide fiber/ Nicalon HL-207 | NGS Advanced Fibers Co., Ltd., Toyama, Japan | SiC fiber |
Silane coupling agent/ Ceramic Primer II | GC Corporation, Tokyo, Japan | SCA |
Groups | Short SiC Fiber | Length of Short SiC Fiber |
---|---|---|
Control | Not containing | - |
0.5 mm | Containing | 0.5 mm |
1 mm | Containing | 1 mm |
2 mm | Containing | 2 mm |
3 mm | Containing | 3 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taka, N.; Aoyagi, Y.; Miida, K.; Kanatani, M.; Ogawa, H. Effect of Silicon Carbide Fiber Length on the Flexural Strength and Flexural Modulus of Short Silicon Carbide Fiber-Reinforced Resin. J. Funct. Biomater. 2024, 15, 30. https://doi.org/10.3390/jfb15020030
Taka N, Aoyagi Y, Miida K, Kanatani M, Ogawa H. Effect of Silicon Carbide Fiber Length on the Flexural Strength and Flexural Modulus of Short Silicon Carbide Fiber-Reinforced Resin. Journal of Functional Biomaterials. 2024; 15(2):30. https://doi.org/10.3390/jfb15020030
Chicago/Turabian StyleTaka, Norimasa, Yujin Aoyagi, Keito Miida, Mitsugu Kanatani, and Hiroshi Ogawa. 2024. "Effect of Silicon Carbide Fiber Length on the Flexural Strength and Flexural Modulus of Short Silicon Carbide Fiber-Reinforced Resin" Journal of Functional Biomaterials 15, no. 2: 30. https://doi.org/10.3390/jfb15020030
APA StyleTaka, N., Aoyagi, Y., Miida, K., Kanatani, M., & Ogawa, H. (2024). Effect of Silicon Carbide Fiber Length on the Flexural Strength and Flexural Modulus of Short Silicon Carbide Fiber-Reinforced Resin. Journal of Functional Biomaterials, 15(2), 30. https://doi.org/10.3390/jfb15020030