Resorbable Patient-Specific Implants of Molybdenum for Pediatric Craniofacial Surgery—Proof of Concept in an In Vivo Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Animal Model
2.1.2. Implants
2.2. Methods
2.2.1. Study Design
2.2.2. Pre-Operative Management and Premedication
2.2.3. Surgical Implantation of the Molybdenum Implants
2.2.4. Post-Operative Management
2.2.5. Euthanasia, Computer Tomography, and removal of Implants and Organs
2.2.6. Histopathological Processing and Examination
2.2.7. Analysis of the Metallographic Cross Sections
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nagaraja, S.; Anslow, P.; Winter, B. Craniosynostosis. Clin. Radiol. 2013, 68, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Kajdic, N.; Spazzapan, P.; Velnar, T. Craniosynostosis—Recognition, clinical characteristics, and treatment. Bosn. J. Basic Med. Sci. 2018, 18, 110–116. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stanton, E.; Urata, M.; Chen, J.F.; Chai, Y. The clinical manifestations, molecular mechanisms and treatment of craniosynostosis. Dis. Model. Mech. 2022, 15, dmm049390. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Blessing, M.; Gallagher, E.R. Epidemiology, Genetics, and Pathophysiology of Craniosynostosis. Oral Maxillofac. Surg. Clin. N. Am. 2022, 34, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.K. Craniosynostosis. Indian J. Plast. Surg. 2013, 46, 18–27. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yan, H.; Abel, T.J.; Alotaibi, N.M.; Anderson, M.; Niazi, T.N.; Weil, A.G.; Fallah, A.; Phillips, J.H.; Forrest, C.R.; Kulkarni, A.V.; et al. A systematic review and meta-analysis of endoscopic versus open treatment of craniosynostosis. Part 1: The sagittal suture. J. Neurosurg. Pediatr. 2018, 22, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Abel, T.J.; Alotaibi, N.M.; Anderson, M.; Niazi, T.N.; Weil, A.G.; Fallah, A.; Phillips, J.H.; Forrest, C.R.; Kulkarni, A.V.; et al. A systematic review of endoscopic versus open treatment of craniosynostosis. Part 2: The nonsagittal single sutures. J. Neurosurg. Pediatr. 2018, 22, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Proctor, M.R. Endoscopic craniosynostosis repair. Transl. Pediatr. 2014, 3, 247–258. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Governale, L.S. Craniosynostosis. Pediatr. Neurol. 2015, 53, 394–401. [Google Scholar] [CrossRef] [PubMed]
- García-Mato, D.; Ochandiano, S.; García-Sevilla, M.; Navarro-Cuéllar, C.; Darriba-Allés, J.V.; García-Leal, R.; Calvo-Haro, J.A.; Pérez-Mañanes, R.; Salmerón, J.I.; Pascau, J. Craniosynostosis surgery: Workflow based on virtual surgical planning, intraoperative navigation and 3D printed patient-specific guides and templates. Sci. Rep. 2019, 9, 17691. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Soldozy, S.; Yağmurlu, K.; Akyeampong, D.K.; Burke, R.; Morgenstern, P.F.; Keating, R.F.; Black, J.S.; Jane, J.A., Jr.; Syed, H.R. Three-dimensional printing and craniosynostosis surgery. Childs Nerv. Syst. 2021, 37, 2487–2495. [Google Scholar] [CrossRef] [PubMed]
- Laure, B.; Louisy, A.; Joly, A.; Travers, N.; Listrat, A.; Pare, A. Virtual 3D planning of osteotomies for craniosynostoses and complex craniofacial malformations. Neurochirurgie 2019, 65, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Gareb, B.; Roossien, C.C.; van Bakelen, N.B.; Verkerke, G.J.; Vissink, A.; Bos, R.R.M.; van Minnen, B. Comparison of the mechanical properties of biodegradable and titanium osteosynthesis systems used in oral and maxillofacial surgery. Sci. Rep. 2020, 10, 18143. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Buijs, G.J.; Stegenga, B.; Bos, R. Efficacy and safety of biodegradable osteofixation devices in oral and maxillofacial surgery: A systematic review. J. Dent. Res. 2006, 85, 980–989. [Google Scholar] [CrossRef] [PubMed]
- Gareb, B.; Van Bakelen, N.; Buijs, G.; Jansma, J.; De Visscher, J.; Hoppenreijs, T.J.; Bergsma, J.; van Minnen, B.; Stegenga, B.; Bos, R. Comparison of the long-term clinical performance of a biodegradable and a titanium fixation system in maxillofacial surgery: A multicenter randomized controlled trial. PLoS ONE 2017, 12, e0177152. [Google Scholar] [CrossRef] [PubMed]
- Grün, N.G.; Holweg, P.L.; Donohue, N.; Klestil, T.; Weinberg, A.M. Resorbable implants in pediatric fracture treatment. Innov. Surg. Sci. 2018, 3, 119–125. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Heye, P.; Matissek, C.; Seidl, C.; Varga, M.; Kassai, T.; Jozsa, G.; Krebs, T. Making Hardware Removal Unnecessary by Using Resorbable Implants for Osteosynthesis in Children. Children 2022, 9, 471. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gareb, B.; Van Bakelen, N.B.; Vissink, A.; Bos, R.R.M.; Van Minnen, B. Titanium or Biodegradable Osteosynthesis in Maxillofacial Surgery? In Vitro and In Vivo Performances. Polymers 2022, 14, 2782. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Naujokat, H.; Ruff, C.B.; Klüter, T.; Seitz, J.-M.; Açil, Y.; Wiltfang, J. Influence of surface modifications on the degradation of standard-sized magnesium plates and healing of mandibular osteotomies in miniature pigs. Int. J. Oral Maxillofac. Surg. 2020, 49, 272–283. [Google Scholar] [CrossRef] [PubMed]
- Kanno, T.; Sukegawa, S.; Furuki, Y.; Nariai, Y.; Sekine, J. Overview of innovative advances in bioresorbable plate systems for oral and maxillofacial surgery. Jpn. Dent. Sci. Rev. 2018, 54, 127–138. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Biber, R.; Pauser, J.; Brem, M.; Bail, H.J. Bioabsorbable metal screws in traumatology: A promising innovation. Trauma Case Rep. 2017, 8, 11–15. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kraus, T.; Fischerauer, S.F.; Hänzi, A.C.; Uggowitzer, P.J.; Löffler, J.F.; Weinberg, A.M. Magnesium alloys for temporary implants in osteosynthesis: In vivo studies of their degradation and interaction with bone. Acta Biomater. 2012, 8, 1230–1238. [Google Scholar] [CrossRef] [PubMed]
- Willbold, E.; Kalla, K.; Bartsch, I.; Bobe, K.; Brauneis, M.; Remennik, S.; Shechtman, D.; Nellesen, J.; Tillmann, W.; Vogt, C.; et al. Biocompatibility of rapidly solidified magnesium alloy RS66 as a temporary biodegradable metal. Acta Biomater. 2013, 9, 8509–8517. [Google Scholar] [CrossRef] [PubMed]
- Byun, S.-H.; Lim, H.-K.; Cheon, K.-H.; Lee, S.-M.; Kim, H.-E.; Lee, J.-H. Biodegradable magnesium alloy (WE43) in bone-fixation plate and screw. J. Biomed. Mater. Res. Part B Appl. Biomater. 2020, 108, 2505–2512. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.F.; Gu, X.N.; Witte, F. Biodegradable metals. Mater. Sci. Eng. R Rep. 2014, 77, 1–34. [Google Scholar] [CrossRef]
- Matsuda, Y.; Karino, M.; Okui, T.; Kanno, T. Complications of Poly-l-Lactic Acid and Polyglycolic Acid (PLLA/PGA) Osteosynthesis Systems for Maxillofacial Surgery: A Retrospective Clinical Investigation. Polymers 2021, 13, 889. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sukegawa, S.; Kanno, T.; Matsumoto, K.; Sukegawa-Takahashi, Y.; Masui, M.; Furuki, Y. Complications of a poly-L-lactic acid and polyglycolic acid osteosynthesis device for internal fixation in maxillofacial surgery. Odontology 2018, 106, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Redlich, C.; Quadbeck, P.; Thieme, M.; Kieback, B. Molybdenum—A biodegradable implant material for structural applications? Acta Biomater. 2020, 104, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, G.; Mendel, R.R.; Ribbe, M.W. Molybdenum cofactors, enzymes and pathways. Nature 2009, 460, 839–847. [Google Scholar] [CrossRef] [PubMed]
- Schauer, A.; Redlich, C.; Scheibler, J.; Poehle, G.; Barthel, P.; Maennel, A.; Adams, V.; Weissgaerber, T.; Linke, A.; Quadbeck, P. Biocompatibility and Degradation Behavior of Molybdenum in an In Vivo Rat Model. Materials 2021, 14, 7776. [Google Scholar] [CrossRef] [PubMed]
- Sikora-Jasinska, M.; Morath, L.M.; Kwesiga, M.P.; Plank, M.E.; Nelson, A.L.; Oliver, A.A.; Bocks, M.L.; Guillory, R.J.; Goldman, J. In-vivo evaluation of molybdenum as bioabsorbable stent candidate. Bioact. Mater. 2022, 14, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Toschka, A.; Möllmann, H.; Hoppe, D.; Poehle, G.; van Meenen, L.; Seidl, M.; Karnatz, N.; Rana, M. How Does the Biocompatibility of Molybdenum Compare to the Gold Standard Titanium?—An In Vivo Rat Model. Appl. Sci. 2023, 13, 6312. [Google Scholar] [CrossRef]
- Kovrlija, I.; Menshikh, K.; Abreu, H.; Cochis, A.; Rimondini, L.; Marsan, O.; Rey, C.; Combes, C.; Locs, J.; Loca, D. Challenging applicability of ISO 10993-5 for calcium phosphate biomaterials evaluation: Towards more accurate in vitro cytotoxicity assessment. Biomater. Adv. 2024, 160, 213866. [Google Scholar] [CrossRef] [PubMed]
- Toschka, A.; Pöhle, G.; Quadbeck, P.; Suschek, C.V.; Strauß, A.; Redlich, C.; Rana, M. Molybdenum as a Potential Biocompatible and Resorbable Material for Osteosynthesis in Craniomaxillofacial Surgery—An In Vitro Study. Int. J. Mol. Sci. 2022, 23, 15710. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vullo, C.; Barbieri, S.; Catone, G.; Graïc, J.M.; Magaletti, M.; Di Rosa, A.; Motta, A.; Tremolada, C.; Canali, E.; Dalla Costa, E. Is the Piglet Grimace Scale (PGS) a Useful. Welfare Indicator to Assess Pain after Cryptorchidectomy in Growing Pigs? Animals 2020, 10, 412. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bompart, G.; Pécher, C.; Prévot, D.; Girolami, J.P. Mild renal failure induced by subchronic exposure to molybdenum: Urinary kallikrein excretion as a marker of distal tubular effect. Toxicol. Lett. 1990, 52, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Murray, F.J.; Sullivan, F.M.; Tiwary, A.K.; Carey, S. 90-Day subchronic toxicity study of sodium molybdate dihydrate in rats. Regul. Toxicol. Pharmacol. 2014, 70, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Turnlund, J.R.; Weaver, C.M.; Kim, S.K.; Keyes, W.R.; Gizaw, Y.; Thompson, K.H.; Peiffer, G.L. Molybdenum absorption and utilization in humans from soy and kale intrinsically labeled with stable isotopes of molybdenum. Am. J. Clin. Nutr. 1999, 69, 1217–1223. [Google Scholar] [CrossRef] [PubMed]
- Braun, J.; Kaserer, L.; Stajkovic, J.; Leitz, K.H.; Tabernig, B.; Singer, P.; Leibenguth, P.; Gspan, C.; Kestler, H.; Leichtfried, G. Molybdenum and tungsten manufactured by selective laser melting: Analysis of defect structure and solidification mechanisms. Int. J. Refract. Met. Hard Mater. 2019, 84, 104999. [Google Scholar] [CrossRef]
- Petrova, M.; Bojinov, M.; Zanna, S.; Marcus, P. Mechanism of anodic oxidation of molybdenum in nearly-neutral electrolytes studied by electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy. Electrochim. Acta 2011, 56, 7899–7906. [Google Scholar] [CrossRef]
- Jin, Z.; Hu, J.; Ma, D. Postoperative delirium: Perioperative assessment, risk reduction, and management. Br. J. Anaesth. 2020, 125, 492–504. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.W.; Chi, C.H.; Chen, C.K.; James, W.J. The Anodic Dissolution of Molybdenum. Corrosion 2013, 26, 338–342. [Google Scholar] [CrossRef]
- Eppley, B.L. Use of resorbable plates and screws in pediatric facial fractures. J. Oral Maxillofac. Surg. 2005, 63, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Wiltfang, J.; Merten, H.A.; Schultze-Mosgau, S.; Schrell, U.; Wénzel, D.; Kessler, P. Biodegradable miniplates (LactoSorb): Long-term results in infant minipigs and clinical results. J. Craniofac. Surg. 2000, 11, 239–243; discussion 244–245. [Google Scholar] [CrossRef] [PubMed]
Animal Identification | Leucocytes (10–22 G/l) | Erythrocytes (5.8–8.2 T/l) | Haemoglobin (108–148 g/l) | Haematocrit (0.33–0.45 I/l) | MCV (50–65 fl) | MCH (17–21 pg) | MCHC (300–350 g/l) | Thrombocytes (180–600 G/l) |
---|---|---|---|---|---|---|---|---|
11/23 ♀ | (+) 22.70 | 7.05 | 124.00 | 0.36 | 51.10 | 17.60 | 344.00 | 162.00 |
12/23 ♂ | 12.60 | 5.12 | (−) 88.00 | (−) 0.26 | 50.80 | 17.20 | 338.00 | 78.00 |
13/23 ♀ | (−) 8.60 | 5.42 | (−) 90.00 | (−) 0.27 | 49.80 | 16.60 | 333.00 | 79.00 |
14/23 ♂ | 12.60 | 6.63 | 114.00 | 0.33 | 49.80 | 17.20 | 345.00 | 232.00 |
Animal Identification | Leucocytes (10–22 G/l) | Erythrocytes (5.8–8.2 T/l) | Haemoglobin (108–148 g/l) | Haematocrit (0.33–0.45 I/l | MCV (50–65 fl) | MCH (17–21 pg) | MCHC (300–350 g/l) | Thrombocytes (180–600 G/l) |
---|---|---|---|---|---|---|---|---|
11/23 ♀ | 14.90 | 5.99 | (−) 104.00 | 0.31 | 51.80 | 17.40 | 335.00 | 249.00 |
12/23 ♂ | 12.70 | 6.12 | 111.00 | 0.32 | 52.30 | 18.10 | 347.00 | 238.00 |
13/23 ♀ | 10.30 | 5.5 | (−) 97.00 | (−) 0.29 | 52.70 | 17.60 | 334.00 | 434.00 |
14/23 ♂ | (−) 9.90 | 6.25 | (−) 107.00 | 0.32 | 51.20 | 17.10 | 334.00 | 413.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoppe, D.T.; Toschka, A.; Karnatz, N.; Moellmann, H.L.; Seidl, M.; van Meenen, L.; Poehle, G.; Redlich, C.; Rana, M. Resorbable Patient-Specific Implants of Molybdenum for Pediatric Craniofacial Surgery—Proof of Concept in an In Vivo Pilot Study. J. Funct. Biomater. 2024, 15, 118. https://doi.org/10.3390/jfb15050118
Hoppe DT, Toschka A, Karnatz N, Moellmann HL, Seidl M, van Meenen L, Poehle G, Redlich C, Rana M. Resorbable Patient-Specific Implants of Molybdenum for Pediatric Craniofacial Surgery—Proof of Concept in an In Vivo Pilot Study. Journal of Functional Biomaterials. 2024; 15(5):118. https://doi.org/10.3390/jfb15050118
Chicago/Turabian StyleHoppe, Dominik Thomas, André Toschka, Nadia Karnatz, Henriette Louise Moellmann, Maximilian Seidl, Lutz van Meenen, Georg Poehle, Christian Redlich, and Majeed Rana. 2024. "Resorbable Patient-Specific Implants of Molybdenum for Pediatric Craniofacial Surgery—Proof of Concept in an In Vivo Pilot Study" Journal of Functional Biomaterials 15, no. 5: 118. https://doi.org/10.3390/jfb15050118
APA StyleHoppe, D. T., Toschka, A., Karnatz, N., Moellmann, H. L., Seidl, M., van Meenen, L., Poehle, G., Redlich, C., & Rana, M. (2024). Resorbable Patient-Specific Implants of Molybdenum for Pediatric Craniofacial Surgery—Proof of Concept in an In Vivo Pilot Study. Journal of Functional Biomaterials, 15(5), 118. https://doi.org/10.3390/jfb15050118