Class-I and Class-II Restorations with the Application of a Flowable Composite as an Intermediate Layer—A Narrative Review of Clinical Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. PICO Question
2.2. Search Strategy
2.3. Study Selection
2.4. Inclusion/Exclusion Criteria
3. Results
Study | Study Design/Setting | Follow-Up [Years] | No. Patients (Restorations) at Baseline | Recall Rate | Cumulative Survival Rate | AFR | Rubber Dam Isolation | Restorative Materials | Adhesive System [Modulus] | Assessment Criteria |
---|---|---|---|---|---|---|---|---|---|---|
Boeckler et al., 2012 [36] | Split-mouth/university | 2 | 50 (100) | 88% | F: 100% C: 97.7% | F: 0% C: 1.2% | yes | FL: Tetric Flow 1 CR: Tetric Ceram 1 | AdheSE One 1 [SE] | Modified USPHS/Ryge |
Efes (1) et al., 2006 [37] | Split-mouth/university | 2 | 27 (54) | 96% | F: 100% C: 100% | F: 0% C: 0% | no | FL: Filtek Flow 2 CR: Filtek Supreme 2 | Single Bond 2 [ER] | Modified USPHS/Ryge |
Efes (2) et al., 2006 [37] | Split-mouth/university | 2 | 27 (54) | 89% | F: 100% C: 96% | F: 0% C: 2% | no | FL: Admira Flow 3 CR: Admira 3 | Admira Bond 3 [ER] | Modified USPHS/Ryge |
Ernst et al., 2003 [38] | Split-mouth/university | 2 | 50 (116) | 95% | F: 92.8% C: 94.6% | F: 3.6% C: 2.7% | 70% | FL: Revolution 4 CR: Prodigy 4 | Optibond Solo Plus 4 [ER] | USPHS/Ryge |
Nguyen et al., 2024 [40] | Split-mouth/university | 3 | 50 (100) | 92% | F: 91.3% C: 100% | F: 2.9% C: 0% | yes | FL: GrandioSO Heavy Flow 3 CR: GrandioSO 3 | Futurabond DC 3 [SE] | Modified USPHS/Ryge |
Stefanski et al., 2012 [39] | Split-mouth/university | 2 | 48 (96) | 96% | F: 97.8% C: 97.8% | F: 1.1% C: 1.1% | no | FL: Filtek Flow Supreme XT 2 CR: Filtek Supreme XT 2 | Adper Scotchbond 1 XT 2 [ER] | Modified USPHS/Ryge |
Van Dijken et al., 2011 [41] | Split-mouth/university | 7 | 48 (118) | 96% | F: 86% C: 84.2% | F: 2% C: 2.3% | no | FL: Tetric Flow 1 CR: Tetric Ceram 1 | Excite 1 [ER] | Modified USPHS/Ryge |
4. Discussion
4.1. Methodology
Parameter | Anatomical Form | Secondary Caries | Tooth Vitality | Filling Integrity | Surface Roughness | Marginal Adaption | Marginal Discoloration | Color Match | |
---|---|---|---|---|---|---|---|---|---|
Study/ Group | |||||||||
Boeckler et al. [36] | F | n.r. | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
C | n.r. | 0 | 0 | 0 | 0 | 2.3 | 0 | 0 | |
Efes (1) et al. [37] | F | n.r. | 0 | n.r. | 0 | 0 | 0 | 0 | 0 |
C | n.r. | 0 | n.r. | 0 | 0 | 0 | 0 | 0 | |
Efes (2) et al. [37] | F | n.r. | 0 | n.r. | 0 | 0 | 0 | 0 | 0 |
C | n.r. | 0 | n.r. | 4.2 | 0 | 0 | 0 | 0 | |
Ernst et al. [38] | F | 5.5 | 1.8 | 1.9 | n.r. | 5.5 | 5.5 | 0 | 0 |
C | 3.6 | 0 | 0 | n.r. | 3.6 | 3.6 | 0 | 0 | |
Nguyen et al. [40] | F | n.r. | 0 | 6.5 | 4.3 | 0 | 0 | 0 | 0 |
C | n.r. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Stefanski et al. [39] | F | 2.2 | 0 | n.r. | n.r. | 0 | 0 | 0 | 0 |
C | 2.2 | 0 | n.r. | n.r. | 0 | 2.2 | 0 | 0 | |
Van Dijken et al. [41] | F | 8.8 | 3.5 | n.r. | n.r. | 0 | 8.8 | 0 | 0 |
C | 12.3 | 5.3 | n.r. | n.r. | 0 | 12.5 | 0 | 0 |
4.2. Used Composite Materials
4.3. Clinical Procedure
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lynch, C.D.; Opdam, N.J.; Hickel, R.; Brunton, P.A.; Gurgan, S.; Kakaboura, A.; Shearer, A.C.; Vanherle, G.; Wilson, N.H. Guidance on posterior resin composites: Academy of Operative Dentistry—European Section. J. Dent. 2014, 42, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Veloso, S.R.M.; Lemos, C.A.A.; de Moraes, S.L.D.; do Egito Vasconcelos, B.C.; Pellizzer, E.P.; de Melo Monteiro, G.Q. Clinical performance of bulk-fill and conventional resin composite restorations in posterior teeth: A systematic review and meta-analysis. Clin. Oral Investig. 2019, 23, 221–233. [Google Scholar] [CrossRef] [PubMed]
- Tennert, C.; Maliakal, C.; Suarèz Machado, L.; Jaeggi, T.; Meyer-Lueckel, H.; Wierichs Richard, J. Longevity of posterior direct versus indirect composite restorations: A systematic review and meta-analysis. Dent. Mater. 2024, 40, e95–e101. [Google Scholar] [CrossRef] [PubMed]
- Alvanforoush, N.; Palamara, J.; Wong, R.H.; Burrow, M.F. Comparison between published clinical success of direct resin composite restorations in vital posterior teeth in 1995–2005 and 2006–2016 periods. Aust. Dent. J. 2017, 62, 132–145. [Google Scholar] [CrossRef]
- Baltacioğlu, İ.H.; Demirel, G.; Öztürk, B.; Aydin, F.; Orhan, K. Marginal adaptation of bulk-fill resin composites with different viscosities in class II restorations: A micro-CT evaluation. BMC Oral Health 2024, 24, 228. [Google Scholar] [CrossRef]
- Aggarwal, V.; Singla, M.; Yadav, S.; Yadav, H. Effect of flowable composite liner and glass ionomer liner on class II gingival marginal adaptation of direct composite restorations with different bonding strategies. J. Dent. 2014, 42, 619–625. [Google Scholar] [CrossRef]
- Arora, R.; Kapur, R.; Sibal, N.; Juneja, S. Evaluation of Microleakage in Class II Cavities using Packable Composite Restorations with and without use of Liners. Int. J. Clin. Pediatr. Dent. 2012, 5, 178–184. [Google Scholar] [CrossRef]
- Fabianelli, A.; Goracci, C.; Ferrari, M. Sealing ability of packable resin composites in class II restorations. J. Adhes. Dent. 2003, 5, 217–223. [Google Scholar]
- Ambrosio, M.; Fahl, N.; Silva, A.; Lopes, R.T.; Rached, R.N.; Souza, E.M. Marginal and Internal Adaptation of Cervical Restorations Using Direct, Direct-indirect, and Indirect Techniques. Oper. Dent. 2022, 47, 630–639. [Google Scholar] [CrossRef]
- Borouziniat, A.; Khaki, H.; Majidinia, S. Retrospective evaluation of the clinical performance of direct composite restorations using the snow-plow technique: Up to 4 years follow-up. J. Clin. Exp. Dent. 2019, 11, e964–e968. [Google Scholar] [CrossRef]
- Boruziniat, A.; Gharaee, S.; Sarraf Shirazi, A.; Majidinia, S.; Vatanpour, M. Evaluation of the efficacy of flowable composite as lining material on microleakage of composite resin restorations: A systematic review and meta-analysis. Quintessence Int. 2016, 47, 93–101. [Google Scholar] [PubMed]
- Pawar, M.; Saleem Agwan, M.A.; Ghani, B.; Khatri, M.; Bopache, P.; Aziz, M.S. Evaluation of Class II Restoration Microleakage with Various Restorative Materials: A Comparative In vitro Study. J. Pharm. Bioallied Sci. 2021, 13, S1210–S1214. [Google Scholar] [CrossRef] [PubMed]
- Baroudi, K.; Rodrigues, J.C. Flowable Resin Composites: A Systematic Review and Clinical Considerations. J. Clin. Diagn. Res. 2015, 9, ZE18–ZE24. [Google Scholar] [CrossRef] [PubMed]
- Imai, A.; Takamizawa, T.; Sugimura, R.; Tsujimoto, A.; Ishii, R.; Kawazu, M.; Saito, T.; Miyazaki, M. Interrelation among the handling, mechanical, and wear properties of the newly developed flowable resin composites. J. Mech. Behav. Biomed. Mater. 2019, 89, 72–80. [Google Scholar] [CrossRef]
- Cavalheiro, C.P.; da Silva, C.L.; Leitune, V.C.B.; de Araujo, F.B.; Imparato, J.C.P.; Lenzi, T.L. Is use of flowable resin composite an option for occluso-proximal restorations in primary teeth? A fracture strength analysis. Int. J. Paediatr. Dent. 2024, 34, 1–8. [Google Scholar] [CrossRef]
- Kominami, N.; Shimada, Y.; Hosaka, K.; Luong, M.N.; Yoshiyama, M.; Sadr, A.; Sumi, Y.; Tagami, J. The effect of flowable composite lining and dentin location on microtensile bond strength and internal fracture formation. Dent. Mater. J. 2019, 38, 798–805. [Google Scholar] [CrossRef]
- Jager, S.; Balthazard, R.; Dahoun, A.; Mortier, E. Filler Content, Surface Microhardness, and Rheological Properties of Various Flowable Resin Composites. Oper. Dent. 2016, 41, 655–665. [Google Scholar] [CrossRef]
- Petrovic, L.M.; Zorica, D.M.; Stojanac, I.; Krstonosic, V.S.; Hadnadjev, M.S.; Atanackovic, T.M. A model of the viscoelastic behavior of flowable resin composites prior to setting. Dent. Mater. 2013, 29, 929–934. [Google Scholar] [CrossRef]
- Shaalan, O.O.; Abou-Auf, E.; El Zoghby, A.F. Clinical evaluation of flowable resin composite versus conventional resin composite in carious and noncarious lesions: Systematic review and meta-analysis. J. Conserv. Dent. 2017, 20, 380–385. [Google Scholar] [CrossRef]
- Kubo, S.; Yokota, H.; Yokota, H.; Hayashi, Y. Three-year clinical evaluation of a flowable and a hybrid resin composite in non-carious cervical lesions. J. Dent. 2010, 38, 191–200. [Google Scholar] [CrossRef]
- Seemann, R.; Pfefferkorn, F.; Hickel, R. Behaviour of general dental practitioners in Germany regarding posterior restorations with flowable composites. Int. Dent. J. 2011, 61, 252–256. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, M.; Lynch, C.D. The effect of flowable materials on the microleakage of Class II composite restorations that extend apical to the cemento-enamel junction. Oper. Dent. 2009, 34, 306–311. [Google Scholar] [CrossRef]
- Gernhardt, C.R.; Nguyen, A.D.; Michaelis, M.; Puetz, N. Clinical Outcome of Class I and II Restorations with and without an Intermediary Layer of a Flowable Composite after 24 Months: A Prospective, Randomized, Split-Mouth-Designed, Controlled and Single-Blinded Clinical Trial. Appl. Sci. 2023, 13, 4224. [Google Scholar] [CrossRef]
- Ozer, F.; Patel, R.; Yip, J.; Yakymiv, O.; Saleh, N.; Blatz, M.B. Five-year clinical performance of two fluoride-releasing giomer resin materials in occlusal restorations. J. Esthet. Restor. Dent. 2022, 34, 1213–1220. [Google Scholar] [CrossRef] [PubMed]
- Karaman, E.; Keskin, B.; Inan, U. Three-year clinical evaluation of class II posterior composite restorations placed with different techniques and flowable composite linings in endodontically treated teeth. Clin. Oral Investig. 2017, 21, 709–716. [Google Scholar] [CrossRef]
- Lindberg, A.; van Dijken, J.W.; Hörstedt, P. In vivo interfacial adaptation of class II resin composite restorations with and without a flowable resin composite liner. Clin. Oral Investig. 2005, 9, 77–83. [Google Scholar] [CrossRef]
- Reis, A.; Loguercio, A.D. A 24-month follow-up of flowable resin composite as an intermediate layer in non-carious cervical lesions. Oper. Dent. 2006, 31, 523–529. [Google Scholar] [CrossRef]
- Chuang, S.F.; Liu, J.K.; Chao, C.C.; Liao, F.P.; Chen, Y.H. Effects of flowable composite lining and operator experience on microleakage and internal voids in class II composite restorations. J. Prosthet. Dent. 2001, 85, 177–183. [Google Scholar] [CrossRef]
- Leevailoj, C.; Cochran, M.A.; Matis, B.A.; Moore, B.K.; Platt, J.A. Microleakage of posterior packable resin composites with and without flowable liners. Oper. Dent. 2001, 26, 302–307. [Google Scholar]
- Szesz, A.; Parreiras, S.; Reis, A.; Loguercio, A. Selective enamel etching in cervical lesions for self-etch adhesives: A systematic review and meta-analysis. J. Dent. 2016, 53, 1–11. [Google Scholar] [CrossRef]
- Rothmund, L.; Reichl, F.X.; Hickel, R.; Styllou, P.; Styllou, M.; Kehe, K.; Yang, Y.; Högg, C. Effect of layer thickness on the elution of bulk-fill composite components. Dent. Mater. 2017, 33, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chen, Y.; Meng, H.; Shen, J.; Liao, M.; Xie, H. Mechanical properties of bulk-fill resin composites with single increment up to 4 mm: A novel mechanical strength test. Am. J. Dent. 2023, 36, 101–108. [Google Scholar] [PubMed]
- Agarwal, P.M.; Taneja, S.; Kumar, M. To evaluate and compare the effect of different light-curing modes and different liners on cuspal deflection in premolar teeth restored with bulk filled or incrementally filled composite measured at different time intervals. J. Conserv. Dent. 2017, 20, 317–321. [Google Scholar] [CrossRef]
- Scepanovic, D.; Par, M.; Attin, T.; Tauböck, T.T. Marginal Adaptation of Flowable vs Sonically Activated or Preheated Resin Composites in Cervical Lesions. J. Adhes. Dent. 2022, 24, 247–257. [Google Scholar] [PubMed]
- Paolone, G.; Mandurino, M.; Scotti, N.; Cantatore, G.; Blatz, M.B. Color stability of bulk-fill compared to conventional resin-based composites: A scoping review. J. Esthet. Restor. Dent. 2023, 35, 657–676. [Google Scholar] [CrossRef]
- Boeckler, A.; Schaller, H.G.; Gernhardt, C.R. A prospective, double-blind, randomized clinical trial of a one-step, self-etch adhesive with and without an intermediary layer of a flowable composite: A 2-year evaluation. Quintessence Int. 2012, 43, 279–286. [Google Scholar]
- Efes, B.G.; Dörter, C.; Gömeç, Y.; Koray, F. Two-year clinical evaluation of ormocer and nanofill composite with and without a flowable liner. J. Adhes. Dent. 2006, 8, 119–126. [Google Scholar]
- Ernst, C.P.; Canbek, K.; Aksogan, K.; Willershausen, B. Two-year clinical performance of a packable posterior composite with and without a flowable composite liner. Clin. Oral Investig. 2003, 7, 129–134. [Google Scholar] [CrossRef]
- Stefanski, S.; van Dijken, J.W. Clinical performance of a nanofilled resin composite with and without an intermediary layer of flowable composite: A 2-year evaluation. Clin. Oral Investig. 2012, 16, 147–153. [Google Scholar] [CrossRef]
- Nguyen, A.D.; Pütz, N.; Michaelis, M.; Bitter, K.; Gernhardt, C.R. Influence of Cavity Lining on the 3-Year Clinical Outcome of Posterior Composite Restorations: A Randomized Controlled Clinical Trial. Dent. J. 2024, 12, 128. [Google Scholar] [CrossRef]
- van Dijken, J.W.; Pallesen, U. Clinical performance of a hybrid resin composite with and without an intermediate layer of flowable resin composite: A 7-year evaluation. Dent. Mater. 2011, 27, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Schmalz, G.; Ryge, G. Reprint of Criteria for the clinical evaluation of dental restorative materials. Clin. Oral Investig. 2005, 9, 215–232. [Google Scholar] [CrossRef]
- Zabor, E.C.; Kaizer, A.M.; Hobbs, B.P. Randomized Controlled Trials. Chest 2020, 158, S79–S87. [Google Scholar] [CrossRef] [PubMed]
- Jansen van Rensburg, K.; Kritzinger, D.; Arnold, S.; Buchanan, G.D. In Vitro comparison of the physical and mechanical properties of an ormocer with an ormocer-based composite and a nanocomposite restorative material. Clin. Exp. Dent. Res. 2023, 9, 820–831. [Google Scholar] [CrossRef]
- Klauer, E.; Belli, R.; Petschelt, A.; Lohbauer, U. Mechanical and hydrolytic degradation of an Ormocer®-based Bis-GMA-free resin composite. Clin. Oral Investig. 2019, 23, 2113–2121. [Google Scholar] [CrossRef]
- Megreisi, G.H.F.; Başaran, E.T.; Can, E. Flexural properties of resin composites with different viscosities. Int. Dent. J. 2024, 74, S141. [Google Scholar] [CrossRef]
- Ilie, N.; Hickel, R. Investigations on mechanical behaviour of dental composites. Clin. Oral Investig. 2009, 13, 427–438. [Google Scholar] [CrossRef]
- Ñaupari-Villasante, R.; Carpio-Salvatierra, B.; de Freitas, A.; de Paris Matos, T.; Nuñez, A.; Tarden, C.; Barceleiro, M.O.; Reis, A.; Loguercio, A. Influence of different viscosity and chemical composition of flowable composite resins: A 48-month split-mouth double-blind randomized clinical trial. Dent. Mater. 2024, 40, 1798–1807. [Google Scholar] [CrossRef]
- Torres, C.R.G.; Rêgo, H.M.; Perote, L.C.; Santos, L.F.; Kamozaki, M.B.; Gutierrez, N.C.; Di Nicoló, R.; Borges, A.B. A split-mouth randomized clinical trial of conventional and heavy flowable composites in class II restorations. J. Dent. 2014, 42, 793–799. [Google Scholar] [CrossRef]
- Chowdhury, A.; Islam, R.; Alam, A.; Matsumoto, M.; Yamauti, M.; Carvalho, R.M.; Sano, H. Variable Smear Layer and Adhesive Application: The Pursuit of Clinical Relevance in Bond Strength Testing. Int. J. Mol. Sci. 2019, 20, 5381. [Google Scholar] [CrossRef] [PubMed]
- Kasahara, Y.; Takamizawa, T.; Hirokane, E.; Tsujimoto, A.; Ishii, R.; Barkmeier, W.W.; Latta, M.A.; Miyazaki, M. Comparison of different etch-and-rinse adhesive systems based on shear fatigue dentin bond strength and morphological features the interface. Dent. Mater. 2021, 37, e109–e117. [Google Scholar] [CrossRef] [PubMed]
- Giannini, M.; Makishi, P.; Ayres, A.P.; Vermelho, P.M.; Fronza, B.M.; Nikaido, T.; Tagami, J. Self-etch adhesive systems: A literature review. Braz. Dent. J. 2015, 26, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Erickson, R.L.; Barkmeier, W.W.; Kimmes, N.S. Bond strength of self-etch adhesives to pre-etched enamel. Dent. Mater. 2009, 25, 1187–1194. [Google Scholar] [CrossRef]
- El Gedaily, M.; Attin, T.; Wiedemeier, D.B.; Tauböck, T.T. Impact of Different Etching Strategies on Margin Integrity of Conservative Composite Restorations in Demineralized Enamel. Materials 2020, 13, 4500. [Google Scholar] [CrossRef]
- Bekes, K.; Boeckler, L.; Gernhardt, C.R.; Schaller, H.G. Clinical performance of a self-etching and a total-etch adhesive system—2-year results. J. Oral Rehabil. 2007, 34, 855–861. [Google Scholar] [CrossRef]
- Boeckler, A.; Boeckler, L.; Eppendorf, K.; Schaller, H.G.; Gernhardt, C.R. A prospective, randomized clinical trial of a two-step self-etching vs two-step etch-and-rinse adhesive and SEM margin analysis: Four-year results. J. Adhes. Dent. 2012, 14, 585–592. [Google Scholar]
- Falacho, R.I.; Melo, E.A.; Marques, J.A.; Ramos, J.C.; Guerra, F.; Blatz, M.B. Clinical in-situ evaluation of the effect of rubber dam isolation on bond strength to enamel. J. Esthet. Restor. Dent. 2023, 35, 48–55. [Google Scholar] [CrossRef]
- Cajazeira, M.R.; De Sabóia, T.M.; Maia, L.C. Influence of the operatory field isolation technique on tooth-colored direct dental restorations. Am. J. Dent. 2014, 27, 155–159. [Google Scholar]
- Nair, M.; Gurunathan, D. Clinical and Radiographic Outcomes of Calcium Hydroxide vs Other Agents in Indirect Pulp Capping of Primary Teeth: A Systematic Review. Int. J. Clin. Pediatr. Dent. 2019, 12, 437–444. [Google Scholar] [CrossRef]
- Gyanendra, K.; Dhillon, J.K. Comparative evaluation of clinical outcome of indirect pulp treatment with calcium hydroxide, calcium silicate and Er,Cr:YSGG laser in permanent molars. Laser Ther. 2019, 28, 123–130. [Google Scholar]
- Chuang, S.F.; Jin, Y.T.; Liu, J.K.; Chang, C.H.; Shieh, D.B. Influence of flowable composite lining thickness on Class II composite restorations. Oper. Dent. 2004, 29, 301–308. [Google Scholar] [PubMed]
- Reddy, S.N.; Jayashankar, D.N.; Nainan, M.; Shivanna, V. The effect of flowable composite lining thickness with various curing techniques on microleakage in class II composite restorations: An in vitro study. J. Contemp. Dent. Pract. 2013, 14, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Cavalheiro, C.P.; Scherer, H.; Imparato, J.C.P.; Collares, F.M.; Lenzi, T.L. Use of flowable resin composite as an intermediate layer in class II restorations: A systematic review and meta-analysis. Clin. Oral Investig. 2021, 25, 5629–5639. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
|
|
| |
|
|
|
|
|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, A.D.; Bitter, K.; Gernhardt, C.R. Class-I and Class-II Restorations with the Application of a Flowable Composite as an Intermediate Layer—A Narrative Review of Clinical Trials. J. Funct. Biomater. 2025, 16, 111. https://doi.org/10.3390/jfb16030111
Nguyen AD, Bitter K, Gernhardt CR. Class-I and Class-II Restorations with the Application of a Flowable Composite as an Intermediate Layer—A Narrative Review of Clinical Trials. Journal of Functional Biomaterials. 2025; 16(3):111. https://doi.org/10.3390/jfb16030111
Chicago/Turabian StyleNguyen, Anh Duc, Kerstin Bitter, and Christian Ralf Gernhardt. 2025. "Class-I and Class-II Restorations with the Application of a Flowable Composite as an Intermediate Layer—A Narrative Review of Clinical Trials" Journal of Functional Biomaterials 16, no. 3: 111. https://doi.org/10.3390/jfb16030111
APA StyleNguyen, A. D., Bitter, K., & Gernhardt, C. R. (2025). Class-I and Class-II Restorations with the Application of a Flowable Composite as an Intermediate Layer—A Narrative Review of Clinical Trials. Journal of Functional Biomaterials, 16(3), 111. https://doi.org/10.3390/jfb16030111