Treatment of Knee Osteoarthritis and Chondral Injury with Umbilical Cord/Wharton’s Jelly-Derived Mesenchymal Stem Cells: A Systematic Review of Safety and Efficacy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Method
2.2. Inclusion Criteria
2.3. Exclusion Criteria
2.4. Screening of Article for Eligibility
2.5. Data Extraction
3. Results
3.1. Study Design and Patient Demographics
3.2. hUC-MSC Preparation
3.3. Administration Method
3.4. Adverse Effects
3.5. Functional Outcome
3.6. Radiological Outcome
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abramson, S.B.; Attur, M. Developments in the scientific understanding of osteoarthritis. Arthritis Res. Ther. 2009, 11, 227. [Google Scholar] [CrossRef]
- Creamer, P.; Hochberg, M.C. Osteoarthritis. Lancet 1997, 350, 503–508. [Google Scholar] [CrossRef]
- Martel-Pelletier, J.; Barr, A.J.; Cicuttini, F.M.; Conaghan, P.G.; Cooper, C.; Goldring, M.B.; Goldring, S.R.; Jones, G.; Teichtahl, A.J.; Pelletier, J.P. Osteoarthritis. Nat. Rev. Dis. Primers 2016, 2, 16072. [Google Scholar] [CrossRef]
- Roseti, L.; Desando, G.; Cavallo, C.; Petretta, M.; Grigolo, B. Articular Cartilage Regeneration in Osteoarthritis. Cells 2019, 8, 1305. [Google Scholar] [CrossRef]
- Brophy, R.H.; Fillingham, Y.A. AAOS Clinical Practice Guideline Summary: Management of Osteoarthritis of the Knee (Nonarthroplasty), Third Edition. J. Am. Acad. Orthop. Surg. 2022, 30, e721–e729. [Google Scholar] [CrossRef]
- Mora, J.C.; Przkora, R.; Cruz-Almeida, Y. Knee osteoarthritis: Pathophysiology and current treatment modalities. J. Pain Res. 2018, 11, 2189–2196. [Google Scholar] [CrossRef]
- Wakitani, S.; Imoto, K.; Yamamoto, T.; Saito, M.; Murata, N.; Yoneda, M. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthr. Cartil. 2002, 10, 199–206. [Google Scholar] [CrossRef]
- Whittle, S.L.; Johnston, R.V.; McDonald, S.; Worthley, D.; Campbell, T.M.; Buchbinder, R. Stem cell injections for osteoarthritis of the knee. Cochrane Database Syst. Rev. 2019, 2019, CD013342. [Google Scholar] [CrossRef]
- Arutyunyan, I.; Elchaninov, A.; Makarov, A.; Fatkhudinov, T. Umbilical Cord as Prospective Source for Mesenchymal Stem Cell-Based Therapy. Stem Cells Int. 2016, 2016, 6901286. [Google Scholar] [CrossRef]
- Samara, O.; Jafar, H.; Hamdan, M.; Al-Ta’mari, A.; Rahmeh, R.; Hourani, B.; Mandalawi, N.; Awidi, A. Ultrasound-guided intra-articular injection of expanded umbilical cord mesenchymal stem cells in knee osteoarthritis: A safety/efficacy study with MRI data. Regen. Med. 2022, 17, 299–312. [Google Scholar] [CrossRef] [PubMed]
- Dilogo, I.H.; Canintika, A.F.; Hanitya, A.L.; Pawitan, J.A.; Liem, I.K.; Pandelaki, J. Umbilical cord-derived mesenchymal stem cells for treating osteoarthritis of the knee: A single-arm, open-label study. Eur. J. Orthop. Surg. Traumatol. 2020, 30, 799–807. [Google Scholar] [CrossRef]
- Günay, A.E.; Karaman, I.; Guney, A.; Karaman, Z.F.; Demirpolat, E.; Gonen, Z.B.; Dogan, S.; Yerer, M.B. Assessment of clinical, biochemical, and radiological outcomes following intra-articular injection of Wharton jelly-derived mesenchymal stromal cells in patients with knee osteoarthritis: A prospective clinical study. Medicine 2022, 101, e30628. [Google Scholar] [CrossRef]
- Ao, Y.; Duan, J.; Xiong, N.; Qian, N.; Zhang, R.; Yang, L.; Yu, S.; Wang, F. Repeated intra-articular injections of umbilical cord-derived mesenchymal stem cells for knee osteoarthritis: A phase I, single-arm study. BMC Musculoskelet. Disord. 2023, 24, 488. [Google Scholar] [CrossRef]
- Matas, J.; Orrego, M.; Amenabar, D.; Infante, C.; Tapia-Limonchi, R.; Cadiz, M.I.; Alcayaga-Miranda, F.; González, P.L.; Muse, E.; Khoury, M.; et al. Umbilical Cord-Derived Mesenchymal Stromal Cells (MSCs) for Knee Osteoarthritis: Repeated MSC Dosing Is Superior to a Single MSC Dose and to Hyaluronic Acid in a Controlled Randomized Phase I/II Trial. Stem Cells Transl. Med. 2019, 8, 215–224. [Google Scholar] [CrossRef]
- Khalifeh Soltani, S.; Forogh, B.; Ahmadbeigi, N.; Hadizadeh Kharazi, H.; Fallahzadeh, K.; Kashani, L.; Karami, M.; Kheyrollah, Y.; Vasei, M. Safety and efficacy of allogenic placental mesenchymal stem cells for treating knee osteoarthritis: A pilot study. Cytotherapy 2019, 21, 54–63. [Google Scholar] [CrossRef]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Mao, L.; Qiao, L.; Lei, X.; Zheng, Q.; Li, D. Efficacy and safety of mesenchymal stem cell injections for patients with osteoarthritis: A meta-analysis and review of RCTs. Arch. Orthop. Trauma Surg. 2021, 141, 1241–1251. [Google Scholar] [CrossRef] [PubMed]
- Jeyaraman, M.; Muthu, S.; Ganie, P.A. Does the Source of Mesenchymal Stem Cell Have an Effect in the Management of Osteoarthritis of the Knee? Meta-Analysis of Randomized Controlled Trials. Cartilage 2021, 13 (Suppl. 1), 1532S–1547S. [Google Scholar] [CrossRef]
- de Windt, T.S.; Vonk, L.A.; Slaper-Cortenbach, I.C.; van den Broek, M.P.; Nizak, R.; van Rijen, M.H.; de Weger, R.A.; Dhert, W.J.; Saris, D.B. Allogeneic Mesenchymal Stem Cells Stimulate Cartilage Regeneration and Are Safe for Single-Stage Cartilage Repair in Humans upon Mixture with Recycled Autologous Chondrons. Stem Cells 2017, 35, 256–264. [Google Scholar] [CrossRef]
- Qu, H.; Sun, S. Efficacy of mesenchymal stromal cells for the treatment of knee osteoarthritis: A meta-analysis of randomized controlled trials. J. Orthop. Surg. Res. 2021, 16, 11. [Google Scholar] [CrossRef]
- Lopa, S.; Colombini, A.; Moretti, M.; de Girolamo, L. Injective mesenchymal stem cell-based treatments for knee osteoarthritis: From mechanisms of action to current clinical evidences. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 2003–2020. [Google Scholar] [CrossRef]
- Wei, Z.J.; Wang, Q.Q.; Cui, Z.G.; Inadera, H.; Jiang, X.; Wu, C.A. Which is the most effective one in knee osteoarthritis treatment from mesenchymal stem cells obtained from different sources?—A systematic review with conventional and network meta-analyses of randomized controlled trials. Ann. Transl. Med. 2021, 9, 452. [Google Scholar] [CrossRef]
- Margiana, R.; Markov, A.; Zekiy, A.O.; Hamza, M.U.; Al-Dabbagh, K.A.; Al-Zubaidi, S.H.; Hameed, N.M.; Ahmad, I.; Sivaraman, R.; Kzar, H.H.; et al. Clinical application of mesenchymal stem cell in regenerative medicine: A narrative review. Stem Cell Res. Ther. 2022, 13, 366. [Google Scholar] [CrossRef]
- Caplan, A.I. Mesenchymal Stem Cells: Time to Change the Name! Stem Cells Transl. Med. 2017, 6, 1445–1451. [Google Scholar] [CrossRef]
Reference | Study Design | Subjects | Procedure/Dose |
---|---|---|---|
Samara et al. [10]. Date published: 2022 University of Jordan, Amman, Jordan | Phase I/II Non-randomized | Number of patients: 16 (6♂ and 10♀) Number of knees: 25 knees (13 left knees and 12 right knees) Age: 42–73 years KL grade: III: 13 IV: 3 Follow-up period: 48 months | Number of injections: 2 Interval of injections: 1 month apart Dose: 1.2 × 106 of hUC-MSCs per kg body weight Mean dose: 86.19 × 106 (in 2 injections) |
Reference | Study Design | Subjects | Procedure/Dose |
Matas et al. [14]. Date published: 2018 University of Los Andes Clinical Centre, Santiago, Chile | Phase I/II Randomized (triple blind) Patients divided into 3 groups (1:1:1 ratio) | Number of patients: 26 (10♂ and 16♀) Control: 8 MSC 1: 9 MSC 2: 9 Age: 40–65 years (mean age 56 years) KL grade: II: 18 III: 11 Follow-up period: 52 weeks | Number of injections: 2 Control: 2 HA injections MSC-1: 1 hUC-MSCs, 1 placebo MSC-2: 2 hUC-MSCs Interval injections: 6 months apart Dose: 20 × 106 of hUC-MSCs Placebo: 5% AB plasma in 3cc saline |
| |||
Reference | Study Design | Subjects | Procedure/Dose |
Soltani et al. [15]. Date published: 2018 Iran University of Medical Sciences, Tehran, Iran | Randomized (double-blind) 20 randomized into 2 groups (n = 10 in each group) | Number of patients: 20 Control: 10 MSC: 10 Age: - KL grade II–III: 18 IV: 2 Follow-up period: 24 weeks | Number of injections: 1 Dose: 50–60 × 106 of hUC-MSCs Placebo: 10cc normal saline |
Reference | Study Design | Subjects | Procedure/Dose |
Dilogo et al. [11]. Date published: 2020 Cipto Mangunkusumo Hospital, Jakarta, Indonesia | Non-randomized | Number of patients: 29 (17♂ and 12♀) Number of knees: 57 knees Age: 58.3 ± 9.68 years KL grade I–II: 33 III–IV: 24 Follow-up period: 12 months | Number of injections: 3 Interval: 1 week apart Dose: 10 × 106 of hUC-MSCs and 2 mL HA 2nd and 3rd week: 2 mL HA |
Reference | Study Design | Subjects | Procedure/Dose |
Gunay et al. [12]. Date published: 2022 Kayseri City Education and Research Hospital, Turkey | Non-randomized | Number of patients: 10 (3♂ and 7♀) Age: 58.2 ± 10.0 years KL grade: - Follow-up period: 12 months | Number of injections: 1 Dose: 1 × 108 of hUC-MSCs |
Reference | Study Design | Subjects | Procedure/Dose |
Ao et al. [13]. Date published: June 2023 Centre for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China | Phase 1 Non-randomized | Number of patients: 14 (4♂ and 10 ♀) Age: 58.29 years ± 8.99 KL grade: Grade 2: 10 Grade 3: 4 Follow-up period: 3 months | Number of injections: 4 Interval: 1 week apart Dose: 6 × 107 of hUC-MSCs (divided into 4 injections) |
Reference | Safety | Clinical | Radiological | ||
---|---|---|---|---|---|
Samara et al. [10]. Date published: 2022 University of Jordan, Amman, Jordan | No serious adverse events Mild Mild pain (grade 1–3): 7 Moderate pain (grade 4–5): 5 Knee effusion: 1 Superficial vein (right short saphenous vein) phlebitis: 1 All treated conservatively | Parameter (baseline, 6, 12, 48 months) | Timing: baseline, 6 and 12 months Parameter: 6 (cartilage loss, osteophytes, BM lesions, effusion, synovitis, subchondral sclerosis) into 4 groups (none, mild, moderate, severe) The severity of abnormal changes either disappeared or shifted to a milder form, which was statistically significant (p = 0.01); For subchondral sclerosis subtype, improvement was more significant (p = 0.0001) | ||
| |||||
Reference | Safety | Clinical | Radiological | ||
Matas et al. [14]. Date published: 2018 University of Los Andes Clinical Centre, Santiago, Chile | No serious adverse effects | Parameter (baseline, 6, 12 months) | Timing: baseline, 24 and 48 weeks Parameter: Whole-Organ Magnetic Resonance Imaging Score (WORMS) No significant change from baseline was noted (p = 0.15) | ||
|
| ||||
MSC-1 and MSC-2 (33%) compared to HA group (22%) (p = 0.99) MSC-2 2nd injection (44%) compared to HA group (37.5%) (p = 0.99) | In MSC-2 group (compared to HA and MSC-1) at 12 months | ||||
| |||||
| MSC-1 group: Improvement until month 9, then similar to control (HA group after second dose) MSC-2 group: Improvement until study endpoint | ||||
Reference | Safety | Clinical | Radiological | ||
Soltani et al. [15]. Date published: 2018 Iran University of Medical Sciences, Tehran, Iran | No serious adverse effects Four patients in the MSC group had increased local pain and mild effusion | Parameter (baseline, 2, 8, 24 weeks) | MRA at 0 and 24 weeks | ||
|
| ||||
In MSC group, significant increase in cartilage thickness in some area. | |||||
Reference | Safety | Clinical | Radiological | ||
Dilogo et al. [11]. Date published: 2020 Cipto Mangunkusumo Hospital, Jakarta, Indonesia. | No serious adverse effects | Parameter: (baseline, 6, 12 months) | MRI frequency: 3 (baseline, 6 and 12 months) Parameter: quantitative T2 mapping of medial and lateral cartilage of knee The result of T2 mapping showed a varied result with no statistically significant differences | ||
| |||||
Reference | Safety | Clinical | Radiological | ||
Gunay et al. [12]. Date published: 2022 Kayseri City Education and Research Hospital, Turkey | No allergic or adverse reaction was noted 3 patients showed mild effusion | Parameter: (baseline, Day 21, Day 42, 3rd month, 6th month, 12th month) Improvement in Month 12 assessment (compared to pre-injection) | MRI frequency: 2 (baseline, 12 months) Parameters: 1) T2 cartilage mapping and cartilage thickness (MRI osteoarthritis knee score (MOAKS) in 14 articular subregions) T2 values after injection decreased in 9 of 14 regions measured, with only 1 region significant For cartilage thickness, an increased value was observed in 10 of 14 regions but only significant in 5 regions | ||
| |||||
Reference | Safety | Clinical | Radiological | ||
Ao et al. [13]. Date published: June 2023 Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China | No serious adverse effects All adverse effects are transient |
| |||
Parameter: (baseline, 12 weeks) (all data are presented as median (interquartile range)) | |||||
Pre-operative | Post-operative | ||||
| VAS score | 6.0 (4.5, 8.3) | 3.5 (2.0, 5.0) | ||
WOMAC score | 26.0 (21.0, 37.0) | 8.5 (7.0, 12.75) | |||
SF-12 | 39.0 (35.8, 42.3) | 46.0 (44.0, 48.3) | |||
| |||||
Parameter: (baseline, 12 weeks) (all data were presented as median (interquartile range) | |||||
Pre-operative | Post-operative | ||||
MOCART score | 42.0 (34.0, 48.0) | 58.0 (49.0, 68.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishak-Samrin, M.; Naina-Mohamed, I.; Zulfarina, M.S.; Abdul Wahid, S.F.; Mohd Don, A.F.; Mohamad, N.; Ramlan, M.K.R.; Badrul, A.H.M.Y. Treatment of Knee Osteoarthritis and Chondral Injury with Umbilical Cord/Wharton’s Jelly-Derived Mesenchymal Stem Cells: A Systematic Review of Safety and Efficacy. J. Funct. Biomater. 2025, 16, 84. https://doi.org/10.3390/jfb16030084
Ishak-Samrin M, Naina-Mohamed I, Zulfarina MS, Abdul Wahid SF, Mohd Don AF, Mohamad N, Ramlan MKR, Badrul AHMY. Treatment of Knee Osteoarthritis and Chondral Injury with Umbilical Cord/Wharton’s Jelly-Derived Mesenchymal Stem Cells: A Systematic Review of Safety and Efficacy. Journal of Functional Biomaterials. 2025; 16(3):84. https://doi.org/10.3390/jfb16030084
Chicago/Turabian StyleIshak-Samrin, Mohd, Isa Naina-Mohamed, Mohamed S. Zulfarina, S. Fadilah Abdul Wahid, Ahmad Farihan Mohd Don, Norlelawati Mohamad, Muhamad Karbela Reza Ramlan, and Akmal Hisham Md Yusoff Badrul. 2025. "Treatment of Knee Osteoarthritis and Chondral Injury with Umbilical Cord/Wharton’s Jelly-Derived Mesenchymal Stem Cells: A Systematic Review of Safety and Efficacy" Journal of Functional Biomaterials 16, no. 3: 84. https://doi.org/10.3390/jfb16030084
APA StyleIshak-Samrin, M., Naina-Mohamed, I., Zulfarina, M. S., Abdul Wahid, S. F., Mohd Don, A. F., Mohamad, N., Ramlan, M. K. R., & Badrul, A. H. M. Y. (2025). Treatment of Knee Osteoarthritis and Chondral Injury with Umbilical Cord/Wharton’s Jelly-Derived Mesenchymal Stem Cells: A Systematic Review of Safety and Efficacy. Journal of Functional Biomaterials, 16(3), 84. https://doi.org/10.3390/jfb16030084