Peripheral Nerve Protection Strategies: Recent Advances and Potential Clinical Applications
Abstract
:1. Introduction
2. Nerve Protection Strategies: Biological vs. Synthetic Nerve Wraps/Protectors
3. Biological Nerve Protectors
3.1. Vein Wraps for Enhancement of Nerve Regeneration
3.2. Vascularized Fat Flaps for Nerve Protection
3.3. Human Amniotic Membrane as the Protective Barrier
3.4. Bioresorbable Collagen for Nerve Regeneration
3.5. Porcine-Derived Biomaterials for Nerve Regeneration
3.6. Chitosan-Based Nerve Protectors
3.7. Human Epineural Patch, a Novel Strategy for Nerve Protection
3.8. A New Perspective on Biological Nerve Protection
4. Synthetic Nerve Protectors
Polycaprolactone (PCL) Wraps for Nerve Protection
5. Hybrid Synthetic-Biological Wraps as the Protective Barrier
6. Limitations of Commercial Nerve Wraps
7. Future Perspectives
8. Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PNIs | Peripheral nerve injuries |
hAM | Human amniotic membrane |
PSIS | Porcine small intestinal submucosa |
PCL | Poly-ε-caprolactone |
VW | Vein wrapping |
bFGF | Basic fibroblast growth factor |
HO-1 | Heme oxygenase-1 |
IL-4 | Interleukin-4 |
IL-10 | Interleukin-10 |
ARG1 | Arginase-1 |
ADSCs | Adipose-derived stem cells |
HLA | Human leukocyte antigen |
ECM | Extracellular matrix |
VEGF | Vascular endothelial growth factor |
NGF | Nerve growth factor |
FDA | Food and Drug Administration |
PGA | Polyglycolic acid |
PLA | Polylactic acid |
PLGA | Poly(lactic-co-glycolic) acid |
TNF-α | Tumor necrosis factor-alpha |
hEP | Human Epineural Patch |
HA | Hyaluronic acid |
NGF | Nerve growth factor |
BDNF | Brain-derived neurotrophic factor |
VEGF | Vascular endothelial growth factor |
PDGF | Platelet-derived growth factor |
References
- Aman, M.; Zimmermann, K.S.; Thielen, M.; Thomas, B.; Daeschler, S.; Boecker, A.H.; Stolle, A.; Bigdeli, A.K.; Kneser, U.; Harhaus, L. An Epidemiological and Etiological Analysis of 5026 Peripheral Nerve Lesions from a European Level I Trauma Center. J. Pers. Med. 2022, 12, 1673. [Google Scholar] [CrossRef]
- Siemionow, M.; Brzezicki, G. Current techniques and concepts in peripheral nerve repair. Int. Rev. Neurobiol. 2009, 87, 141–172. [Google Scholar] [CrossRef] [PubMed]
- Bateman, E.A.; Pripotnev, S.; Larocerie-Salgado, J.; Ross, D.C.; Miller, T.A. Assessment, management, and rehabilitation of traumatic peripheral nerve injuries for non-surgeons. Muscle Nerve 2024, 71, 696–714. [Google Scholar] [CrossRef]
- Dellon, E.S.; Dellon, A.L. The first nerve graft, Vulpian, and the nineteenth-century neural regeneration controversy. J. Hand Surg. Am. 1993, 18, 369–372. [Google Scholar] [CrossRef]
- Thomson, S.E.; Ng, N.Y.; Riehle, M.O.; Kingham, P.J.; Dahlin, L.B.; Wiberg, M.; Hart, A.M. Bioengineered nerve conduits and wraps for peripheral nerve repair of the upper limb. Cochrane Database Syst. Rev. 2022, 12, CD012574. [Google Scholar] [CrossRef]
- Rath, S.; Green, C.J. Selectivity of distal reinnervation of regenerating mixed motor and sensory nerve fibers across muscle grafts in rats. Br. J. Plast. Surg. 1991, 44, 215–218. [Google Scholar] [CrossRef] [PubMed]
- Supra, R.; Agrawal, D.K. Peripheral nerve regeneration: Opportunities and challenges. J. Spine Res. Surg. 2023, 5, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Dy, C.J.; Aunins, B.; Brogan, D.M. Barriers to epineural scarring: Role in treatment of traumatic nerve injury and chronic compressive neuropathy. J. Hand Surg. Am. 2018, 43, 360–367. [Google Scholar] [CrossRef]
- Thakker, A.; Sharma, S.C.; Hussain, N.M.; Devani, P.; Lahiri, A. Nerve wrapping for recurrent compression neuropathy: A systematic review. J. Plast. Reconstr. Aesthetic Surg. 2021, 74, 549–559. [Google Scholar] [CrossRef]
- Masear, V. Venous wrapping of nerves to prevent scarring. In Proceedings of the 44th Annual Meeting of the American Society for Surgery of the Hand, Seattle, WA, USA, 9 September 1989. [Google Scholar]
- Mayrhofer-Schmid, M.; Klemm, T.T.; Aman, M.; Kneser, U.; Eberlin, K.R.; Harhaus, L.; Boecker, A.H. Shielding the Nerve: A Systematic Review of Nerve Wrapping to Prevent Adhesions in the Rat Sciatic Nerve Model. J. Pers. Med. 2023, 13, 1431. [Google Scholar] [CrossRef]
- Kehoe, S.; Zhang, X.F.; Boyd, D. FDA-approved guidance conduits and wraps for peripheral nerve injury: A review of materials and efficacy. Injury 2012, 43, 553–572. [Google Scholar] [CrossRef] [PubMed]
- Fakhr, M.J.; Kavakebian, F.; Ababzadeh, S.; Rezapour, A. Challenges and Advances in Peripheral Nerve Tissue Engineering Critical Factors Affecting Nerve Regeneration. J. Tissue Eng. Regen. Med. 2024, 2024, 8868411. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.S.; Haycock, J.W. Biomaterials and scaffolds for repair of the peripheral nervous system. In Peripheral Nerve Tissue Engineering and Regeneration; Phillips, J.B., Hercher, D., Hausner, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Fornasari, B.E.; Carta, G.; Gambarotta, G.; Raimondo, S. Natural-based biomaterials for peripheral nerve injury repair. Front. Bioeng. Biotechnol. 2020, 8, 554257. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Duan, X. Mechanisms and treatments of peripheral nerve injury. Ann. Plast. Surg. 2023, 91, 313–318. [Google Scholar] [CrossRef]
- Crabtree, J.R.; Mulenga, C.M.; Tran, K.; Feinberg, K.; Santerre, J.P.; Borschel, G.H. Biohacking Nerve Repair: Novel Biomaterials, Local Drug Delivery, Electrical Stimulation, and Allografts to Aid Surgical Repair. Bioengineering 2024, 11, 776. [Google Scholar] [CrossRef]
- Lam, T.C.; Leung, Y.Y. Innovations in peripheral nerve regeneration. Bioengineering 2024, 11, 444. [Google Scholar] [CrossRef]
- Arkansas Blue Cross Blue Shield. Peripheral Nerve Repair and Reconstruction. Available online: https://journals.lww.com/jbjsjournal/abstract/2013/12040/peripheral_nerve_repair_and_reconstruction.9.aspx (accessed on 19 March 2025).
- Mukai, M.; Uchida, K.; Hirosawa, N.; Murakami, K.; Inoue, G.; Miyagi, M.; Shiga, Y.; Sekiguchi, H.; Inage, K.; Orita, S.; et al. Frozen vein wrapping for chronic nerve constriction injury reduces sciatic nerve allodynia in a rat model. BMC Neurosci. 2022, 23, 1–6. [Google Scholar] [CrossRef]
- Papatheodorou, L.K.; Sotereanos, D.G. Vein wrapping of peripheral nerves: Surgical technique. In Compressive Neuropathies of the Upper Extremity; Sotereanos, D.G., Papatheodorou, L.K., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 247–252. [Google Scholar] [CrossRef]
- Hirosawa, N.; Uchida, K.; Kuniyoshi, K.; Murakami, K.; Inoue, G.; Miyagi, M.; Matsuura, Y.; Orita, S.; Inage, K.; Suzuki, T.; et al. Vein wrapping facilitates basic fibroblast growth factor-induced heme oxygenase-1 expression following chronic nerve constriction injury. J. Orthop. Res. 2017, 36, 898–905. [Google Scholar] [CrossRef]
- Mukai, M.; Uchida, K.; Hirosawa, N.; Murakami, K.; Kuniyoshi, K.; Inoue, G.; Miyagi, M.; Sekiguchi, H.; Shiga, Y.; Inage, K.; et al. Wrapping With Basic Fibroblast Growth Factor-Impregnated Collagen Sheet Reduces Rat Sciatic Nerve Allodynia. J. Orthop. Res. 2019, 37, 2258–2263. [Google Scholar] [CrossRef]
- Hirosawa, N.; Uchida, K.; Kuniyoshi, K.; Murakami, K.; Inoue, G.; Miyagi, M.; Matsuura, Y.; Orita, S.; Inage, K.; Suzuki, T.; et al. Vein wrapping promotes M2 macrophage polarization in a rat chronic constriction injury model. J. Orthop. Res. 2018, 36, 2210–2217. [Google Scholar] [CrossRef]
- Strickland, J.W.; Idler, R.S.; Lourie, G.M.; Plancher, K.D. The hypothenar fat pad flap for management of recalcitrant carpal tunnel syndrome. J. Hand Surg. 1996, 21, 840–848. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, A.C.; Randolph, M.A.; Bujold, K.E.; Kochevar, I.E.; Redmond, R.W.; Winograd, J.M. Photochemical Sealing Improves Outcome Following Peripheral Neurorrhaphy. J. Surg. Res. 2009, 151, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Kim, P.D.; Hayes, A.; Amin, F.; Akelina, Y.; Hays, A.P.; Rosenwasser, M.P. Collagen nerve protector in rat sciatic nerve repair: A morphometric and histological analysis. Microsurgery 2010, 30, 392–396. [Google Scholar] [CrossRef]
- Kokkalis, Z.T.; Pu, C.; Small, G.; Weiser, R.W.; Venouziou, A.; Sotereanos, D.G. Assessment of Processed Porcine Extracellular Matrix as a Protective Barrier in a Rabbit Nerve Wrap Model. J. Reconstr. Microsurg. 2010, 27, 019–028. [Google Scholar] [CrossRef]
- Hones, K.M.; Nichols, D.S.; Barker, H.; Cox, E.; Hones, J.A.; Chim, H. Outcomes following use of VersaWrap nerve protector in treatment of patients with recurrent compressive neuropathies. Front. Surg. 2023, 10, 1123375. [Google Scholar] [CrossRef]
- Sarhane, K.A.; Ibrahim, Z.; Martin, R.; Krick, K.; Cashman, C.R.; Tuffaha, S.H.; Broyles, J.M.; Prasad, N.; Yao, Z.-C.; Cooney, D.S.; et al. Macroporous nanofiber wraps promote axonal regeneration and functional recovery in nerve repair by limiting fibrosis. Acta Biomater. 2019, 88, 332–345. [Google Scholar] [CrossRef]
- Liu, C.; Liu, D.; Zhang, X.; Hui, L.; Zhao, L. Nanofibrous polycaprolactone/amniotic membrane facilitates peripheral nerve regeneration by promoting macrophage polarization and regulating inflammatory microenvironment. Int. Immunopharmacol. 2023, 121, 110507. [Google Scholar] [CrossRef] [PubMed]
- Langdell, H.C.; Zeng, S.L.; Pidgeon, T.S.; Mithani, S.K. Recalcitrant Neuropathies in the Upper Extremity. J. Hand Surg. Glob. Online 2023, 5, 503–509. [Google Scholar] [CrossRef]
- Oh, S.H.; Chung, J.I. Oblique axis hypothenar free flaps: Tips for harvesting larger flaps with minimal donor site morbidity. Arch. Plast. Surg. 2023, 50, 279–287. [Google Scholar] [CrossRef]
- Shin, A.; Saffari, T.; Saffari, S.; Vyas, K.; Mardini, S. Role of adipose tissue grafting and adipose-derived stem cells in peripheral nerve surgery. Neural Regen. Res. 2022, 17, 2179–2184. [Google Scholar] [CrossRef]
- Danoff, J.R.; Lombardi, J.M.; Rosenwasser, M.P. Use of a pedicled adipose flap as a sling for anterior subcutaneous transposition of the ulnar nerve. J. Hand Surg. Am. 2014, 39, 552–555. [Google Scholar] [CrossRef]
- Dibbs, R.P.; Ali, K.; Sarrami, S.M.; Koshy, J.C. Revision peripheral nerve surgery of the upper extremity. Semin. Plast. Surg. 2021, 35, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Kingham, P.J.; Kalbermatten, D.F.; Mahay, D.; Armstrong, S.J.; Wiberg, M.; Terenghi, G. Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp. Neurol. 2007, 207, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Ching, R.C.; Wiberg, M.; Kingham, P.J. Schwann cell-like differentiated adipose stem cells promote neurite outgrowth via secreted exosomes and RNA transfer. Stem Cell Res. Ther. 2018, 9, 266. [Google Scholar] [CrossRef] [PubMed]
- Riccio, M.; Gravina, P.; Pangrazi, P.P.; Cecconato, V.; Gigante, A.; De Francesco, F. Ulnar nerve anteposition with adipofascial flap, an alternative treatment for severe cubital syndrome. BMC Surg. 2023, 23, 268. [Google Scholar] [CrossRef]
- Mamede, A.M.A.; Botelho, A.C. Amniotic Membrane: Origin, Characterization, and Medical Applications; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Wolfe, E.M.; Mathis, S.A.; Muñoz, N.d.l.O.; Ovadia, S.A.; Panthaki, Z.J. Comparison of human amniotic membrane and collagen nerve wraps around sciatic nerve reverse autografts in a rat model. Biomater. Biosyst. 2022, 6, 100048. [Google Scholar] [CrossRef]
- Leal-Marin, S.; Kern, T.; Hofmann, N.; Pogozhykh, O.; Framme, C.; Börgel, M.; Figueiredo, C.; Glasmacher, B.; Gryshkov, O. Human Amniotic Membrane: A review on tissue engineering, application, and storage. J. Biomed. Mater. Res. Part B Appl. Biomater. 2020, 109, 1198–1215. [Google Scholar] [CrossRef]
- McClendon, D.C.; Su, J.; Smith, D.W. Human amniotic allograft in hand surgery. J. Hand Surg. Am. 2023, 48, 388–395. [Google Scholar] [CrossRef]
- Yu, L.-M.; Yu, C.-Y.; Zhang, Z.-Y.; Yang, J.; Fan, Z.-H.; Wang, D.-L.; Wang, Y.-Y.; Zhang, T. Fresh human amniotic membrane effectively promotes the repair of injured common peroneal nerve. Neural Regen. Res. 2019, 14, 2199–2208. [Google Scholar] [CrossRef]
- Mirzayan, R.; Russo, F.; Yang, S.-J.T.; Lowe, N.; Shean, C.J.; Harness, N.G. Human Amniotic Membrane Wrapping of the Ulnar Nerve During Cubital Tunnel Surgery Reduces Recurrence of Symptoms. Arch. Bone Jt. Surg. 2022, 10, 969–975. [Google Scholar] [CrossRef]
- Fénelon, M.; Catros, S.; Meyer, C.; Fricain, J.-C.; Obert, L.; Auber, F.; Louvrier, A.; Gindraux, F. Applications of Human Amniotic Membrane for Tissue Engineering. Membranes 2021, 11, 387. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, X.; Hao, M.; Wang, D.; Jiang, Z.; Sun, L.; Gao, Y.; Jin, Y.; Lei, P.; Zhuo, Y. The application of collagen in the repair of peripheral nerve defect. Front. Bioeng. Biotechnol. 2022, 10, 973301. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Chen, M.; Liu, N. Interactions between Schwann cell and extracellular matrix in peripheral nerve regeneration. Front. Neurol. 2024, 15, 1372168. [Google Scholar] [CrossRef] [PubMed]
- Hardin-Young, J.; Carr, R.M.; Downing, G.J.; Condon, K.D.; Termin, P.L. Modification of native collagen reduces antigenicity but preserves cell compatibility. Biotechnol. Bioeng. 2000, 49, 675–682. [Google Scholar] [CrossRef]
- Eleftheriadou, D.; Phillips, J.B. Collagen biomaterials for nerve tissue engineering. In Peripheral Nerve Tissue Engineering and Regeneration; Phillips, J.B., Hercher, D., Hausner, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Abedi, M.; Shafiee, M.; Afshari, F.; Mohammadi, H.; Ghasemi, Y. Collagen-Based Medical Devices for Regenerative Medicine and Tissue Engineering. Appl. Biochem. Biotechnol. 2023, 196, 5563–5603. [Google Scholar] [CrossRef]
- Chen, S.; Gao, Y.-B.; Liu, Z.-G.; Lin, G.-D.; Guo, Y.; Chen, L.; Huang, B.-T.; Yin, Y.-B.; Yang, C.; Sun, L.-Y.; et al. Safety and efficacy of a nerve matrix membrane as a collagen nerve wrapping: A randomized, single-blind, multicenter clinical trial. Neural Regen. Res. 2021, 16, 1652–1659. [Google Scholar] [CrossRef]
- Wong, G.C.; Chung, K.C. Bioengineered nerve conduits and wraps. Hand Clin. 2024, 40, 379–387. [Google Scholar] [CrossRef]
- Spielman, A.F.; Sankaranarayanan, S.; Skowronski, P.; Lessard, A.-S.; Panthaki, Z. Recurrent and persistent carpal tunnel syndrome: “Triple-therapy approach”. J. Orthop. 2020, 22, 431–435. [Google Scholar] [CrossRef]
- Integra LifeSciences Corporation. NeuraWrap™ Nerve Protector. Available online: https://www.integranerve.com/nerve-protector (accessed on 19 March 2025).
- Stryker Corporation. NeuroMend™ Wrap. Available online: https://www.stryker.com/us/en/trauma-and-extremities/products/neuromend.html (accessed on 19 March 2025).
- Downey, M.S. A guide to nerve wrapping for tarsal tunnel surgery. Podiatry Today 2015, 28, 32. [Google Scholar]
- Rault, I.; Frei, V.; Herbage, D.; Abdul-Malak, N.; Huc, A. Evaluation of different chemical methods for cros-linking collagen gel, films and sponges. J. Mater. Sci. Mater. Med. 1996, 7, 215–221. [Google Scholar] [CrossRef]
- Mariani, E.; Lisignoli, G.; Borzì, R.M.; Pulsatelli, L. Biomaterials: Foreign Bodies or Tuners for the Immune Response? Int. J. Mol. Sci. 2019, 20, 636. [Google Scholar] [CrossRef]
- Hanwright, P.J.; Rath, J.B.; von Guionneau, N.; Slavin, B.; Pinni, S.; Zlotolow, D.; Shores, J.; Dellon, A.L.; Tuffaha, S.H. The Effects of a Porcine Extracellular Matrix Nerve Wrap as an Adjunct to Primary Epineurial Repair. J. Hand Surg. 2021, 46, 813.e1–813.e8. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.-S.; Lee, H.-J.; Lee, H.-J.; Lee, I.-W.; Yang, J.-H. Rat Peripheral Nerve Regeneration Using Nerve Guidance Channel by Porcine Small Intestinal Submucosa. J. Korean Neurosurg. Soc. 2013, 53, 65–71. [Google Scholar] [CrossRef]
- Li, T.; Javed, R.; Ao, Q. Xenogeneic decellularized extracellular matrix-based biomaterials for peripheral nerve repair and regeneration. Curr. Neuropharmacol. 2021, 19, 2152–2163. [Google Scholar] [CrossRef]
- Grandizio, L.C.; Maschke, S.; Evans, P.J. The management of persistent and recurrent cubital tunnel syndrome. J. Hand Surg. Am. 2018, 43, 933–940. [Google Scholar] [CrossRef] [PubMed]
- Imran, R.; George, S.; Jose, R.; Shirley, C.; Power, D.M. Clinical outcomes following neurolysis and porcine collagen extracellular matrix wrapping of scarred nerves in revision carpal tunnel decompression. J. Plast. Reconstr. Aesthetic Surg. 2022, 75, 2802–2808. [Google Scholar] [CrossRef] [PubMed]
- Fones, L.; DePascal, M.; Ilyas, A.M. Use of nerve wraps in the upper extremity. SurgiColl 2024, 2. [Google Scholar] [CrossRef]
- Burahee, A.S.; Duraku, L.S.; Bosman, R.; Shirley, C.; van der Oest, M.J.; Zuidam, M.J.; Power, D.M. Porcine submucosal extracellular matrix wrapping of the ulnar nerve in revision cubital tunnel surgery. J. Plast. Reconstr. Aesthetic Surg. 2024, 98, 176–183. [Google Scholar] [CrossRef]
- Fujii, M.; Tanaka, R. Porcine Small Intestinal Submucosa Alters the Biochemical Properties of Wound Healing: A Narrative Review. Biomedicines 2022, 10, 2213. [Google Scholar] [CrossRef]
- Jordaan, P.; Uhiara, O.; Power, D. Management of the scarred nerve using porcine submucosa extracellular matrix nerve wraps. J. Musculoskelet. Surg. Res. 2019, 3, 128. [Google Scholar] [CrossRef]
- Eberlin, K.R.; Safa, B.; Buntic, R.; Rekant, M.S.; Richard, M.J.; Styron, J.F.; Bendale, G.; Isaacs, J. Usability of Nerve Tape: A Novel Sutureless Nerve Coaptation Device. J. Hand Surg. 2024, 49, 346–353. [Google Scholar] [CrossRef]
- Bendale, G.S.; Sonntag, M.; Clements, I.P.; Isaacs, J.E. Biomechanical Testing of a Novel Device for Sutureless Nerve Repair. Tissue Eng. Part C Methods 2022, 28, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Osterman, M.; Stern, P.J. Inflammatory reactions to xenogenic nerve wraps: A report of three cases. JBJS Case Connect. 2019, 9, e0302. [Google Scholar] [CrossRef]
- Zhang, M.; An, H.; Zhang, F.; Jiang, H.; Wan, T.; Wen, Y.; Han, N.; Zhang, P. Prospects of Using Chitosan-Based Biopolymers in the Treatment of Peripheral Nerve Injuries. Int. J. Mol. Sci. 2023, 24, 12956. [Google Scholar] [CrossRef] [PubMed]
- Yao, P.; Li, P.; Jiang, J.J.; Li, H.Y. Anastomotic stoma coated with chitosan film as a betamethasone dipropionate carrier for peripheral nerve regeneration. Neural Regen. Res. 2018, 13, 309–316. [Google Scholar] [CrossRef]
- Bąk, M.; Gutlowska, O.N.; Wagner, E.; Gosk, J. The role of chitin and chitosan in peripheral nerve reconstruction. Polym. Med. 2017, 47, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Kołodziejska, M.; Jankowska, K.; Klak, M.; Wszoła, M. Chitosan as an Underrated Polymer in Modern Tissue Engineering. Nanomaterials 2021, 11, 3019. [Google Scholar] [CrossRef]
- Ke, C.-L.; Deng, F.-S.; Chuang, C.-Y.; Lin, C.-H. Antimicrobial Actions and Applications of Chitosan. Polymers 2021, 13, 904. [Google Scholar] [CrossRef]
- Aranaz, I.; Alcántara, A.R.; Civera, M.C.; Arias, C.; Elorza, B.; Caballero, A.H.; Acosta, N. Chitosan: An Overview of Its Properties and Applications. Polymers 2021, 13, 3256. [Google Scholar] [CrossRef]
- Jain, N.; Murchinson, M.; Rounds, A.; Bourland, B. Hemoclip migration after revision carpal tunnel release: A case report. J. Surg. Case Rep. 2023, 2023, rjad548. [Google Scholar] [CrossRef]
- Siemionow, M.; Radecka, W.; Kozlowska, K.; Chambily, L.; Brodowska, S.; Kuc, D.; Filipek, G.; Budzynska, K. Protective Effect of the Human Epineural Patch Application after Sciatic Nerve Crush Injury Followed by Nerve Transection and End-to-End Repair. Arch. Immunol. Ther. Exp. 2025, 73. [Google Scholar] [CrossRef] [PubMed]
- Siemionow, M.; Uygur, S.; Madajka, M. Application of epineural sheath as a novel approach for fat volume maintenance. Ann Plast Surg. 2017, 79, 606–612. [Google Scholar] [CrossRef]
- Siemionow, M.; Cwykiel, J.; Uygur, S.; Kwiecien, G.; Oztürk, C.; Szopinski, J.; Madajka, M. Application of epineural sheath conduit for restoration of 6-cm long nerve defects in a sheep median nerve model. Microsurgery 2018, 39, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Siemionow, M.; Demir, Y.; Mukherjee, A.L. Repair of peripheral nerve defects with epineural sheath grafts. Ann. Plast. Surg. 2010, 65, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Siemionow, M.; Duggan, W.; Brzezicki, G.; Klimczak, A.; Grykien, C.; Gatherwright, J.; Nair, D. Peripheral Nerve Defect Repair With Epineural Tubes Supported With Bone Marrow Stromal Cells: A preliminary report. Ann. Plast. Surg. 2011, 67, 73–84. [Google Scholar] [CrossRef]
- Siemionow, M.; Strojny, M.M.; Kozlowska, K.; Brodowska, S.; Grau-Kazmierczak, W.; Cwykiel, J. Application of Human Epineural Conduit Supported with Human Mesenchymal Stem Cells as a Novel Therapy for Enhancement of Nerve Gap Regeneration. Stem Cell Rev. Rep. 2021, 18, 642–659. [Google Scholar] [CrossRef]
- Siemionow, M.; Tetik, C.; Ozer, K.; Ayhan, S.; Siemionow, K.; Browne, E. Epineural sleeve neurorrhaphy: Surgical technique and functional results—A preliminary report. Ann. Plast. Surg. 2002, 48, 281–285. [Google Scholar] [CrossRef]
- Wan, R.; Zhao, G.; Adam, E.A.; Selim, O.A.; Sarcon, A.K.; Reisdorf, R.L.; Meves, A.; Zhao, C.; Moran, S.L. Evaluating the Effectiveness of Commercially Available Antiadhesion Tendon Protector Sheets in Tendon Repair Surgery Versus Tendon Repair Surgery Alone: A Preclinical Model Study. J. Hand Surg. 2024. [Google Scholar] [CrossRef]
- Adu, Y.; Harder, J.; Cox, C.; Baum, G.; Hernandez, E.J.; MacKay, B.J. Evaluating the effect of VersaWrap tendon protector on functional outcomes in operative tendon repairs. Front. Surg. 2024, 11, 1447515. [Google Scholar] [CrossRef]
- Zhang, M.; Li, C.; Zhou, L.P.; Pi, W.; Zhang, P.X. Polymer scaffolds for biomedical applications in peripheral nerve reconstruction. Molecules 2021, 26, 2712. [Google Scholar] [CrossRef]
- Harley-Troxell, M.E.; Steiner, R.; Newby, S.D.; Bow, A.J.; Masi, T.J.; Millis, N.; Matavosian, A.A.; Crouch, D.; Stephenson, S.; Anderson, D.E.; et al. Electrospun PCL Nerve Wrap Coated with Graphene Oxide Supports Axonal Growth in a Rat Sciatic Nerve Injury Model. Pharmaceutics 2024, 16, 1254. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Tang, X.; Li, T.; Ling, J.; Yang, Y. The success of biomaterial-based tissue engineering strategies for peripheral nerve regeneration. Front. Bioeng. Biotechnol. 2022, 10, 1039777. [Google Scholar] [CrossRef] [PubMed]
- Dias, J.R.; Sousa, A.; Augusto, A.; Bártolo, P.J.; Granja, P.L. Electrospun Polycaprolactone (PCL) Degradation: An In Vitro and In Vivo Study. Polymers 2022, 14, 3397. [Google Scholar] [CrossRef]
- Lopez, J.; Xin, K.; Quan, A.; Xiang, S.; Barone, A.A.L.; Budihardjo, J.; Musavi, L.; Mulla, S.; Redett, R.; Martin, R.; et al. Poly(ε-Caprolactone) Nanofiber Wrap Improves Nerve Regeneration and Functional Outcomes after Delayed Nerve Repair. Plast. Reconstr. Surg. 2019, 144, 48e–57e. [Google Scholar] [CrossRef]
- Bai, J.; Liu, C.; Kong, L.; Tian, S.; Yu, K.; Tian, D. Electrospun Polycaprolactone (PCL)-Amnion Nanofibrous Membrane Promotes Nerve Regeneration and Prevents Fibrosis in a Rat Sciatic Nerve Transection Model. Front. Surg. 2022, 9, 842540. [Google Scholar] [CrossRef]
- Dong, R.; Tian, S.; Bai, J.; Yu, K.; Liu, C.; Liu, L.; Tian, D. Electrospun Polycaprolactone (PCL)-Amnion Nanofibrous Membrane Promotes Nerve Repair after Neurolysis. J. Biomater. Appl. 2022, 36, 1390–1399. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, C.F.; Corvi, J.J.; Zheng, Y.; Park, K.H.; Akelina, Y.; Engemann, A.; Strauch, R.J. Resorbable Nerve Wraps: Can They Be Overtightened? J. Reconstr. Microsurg. 2022, 38, 694–702. [Google Scholar] [CrossRef]
- Koenig, Z.A.; Burns, J.C.; Hayes, J.D. Necrotic granulomatous inflammation after use of small intestine submucosa matrix for recurrent compression neuropathy. Plast. Reconstr. Surg. Glob. Open. 2022, 10, e4378. [Google Scholar] [CrossRef]
Material | Success Rate | Biological Response | Immunogenicity | Resorption Rate | Clinical Applicability |
---|---|---|---|---|---|
Vein | Moderate | Promotes tissue regeneration, low scar formation | Low | N/A | Recurrent and persistent compressive neuropathies |
Hypothenar Fat Flap | Moderate | Supports regeneration, reduces scarring | Low | N/A | Recurrent and persistent compressive neuropathies |
Human Amniotic Membrane (hAM) | High | Strong regenerative properties, anti-inflammatory, antifibrotic, antibacterial | Low | 1–3 months | Recurrent and persistent compressive neuropathies |
Collagen Type I | Moderate | Supports cellular growth and collagen formation | Moderate | 4–8 months 36–48 months | Recurrent and persistent compressive neuropathies |
Porcine Small Intestinal Submucosa | High | Supports tissue regeneration, some risk of immune response | Moderate | 3 months | Recurrent and persistent compressive neuropathies |
Chitosan | Limited data | Biodegradable, supports tissue growth, low inflammation | Low | 3–18 months | Experimental/ preclinical stage |
Hyaluronic acid | High | Enhances tissue repair, anti-inflammatory | Low | 3–6 months | Recurrent and persistent compressive neuropathies |
Human Epineural Patch (hEP) | Limited data | Promotes tissue regeneration, low scar formation, low fibrosis, anti-inflammatory | Low | 12 months | Experimental/ preclinical stage |
Poly-ε-caprolactone (PCL) | Limited data | Biocompatible, supports cellular attachment | Moderate | 18–36 months | Experimental/ preclinical stage |
Poly-ε-caprolactone (PCL)/Amnion | Limited data | Anti-inflammatory, antifibrotic, anti-adhesion properties, promotion of nerve generation | Low | Limited data | Experimental/ preclinical stage |
510K Approval | Product Name | Material | Company | Address | FDA Approval Year |
---|---|---|---|---|---|
K041620 | NeuraWrap™ | Type I bovine collagen and chondroitin-6-sulfate | Integra LifeSciences, Corp. | Plainsboro, NJ, USA | 2004 |
K060952 | NeuroMend™ | Type I bovine collagen and chitosan | Styker, Corp. | Kalamazoo, MI, USA | 2006 |
K132660 | AxoGuard® Nerve Protector | Porcine small intestinal submucosa (SIS) extracellular collagen matrix (ECM) | Axogen, Inc. | Alachua, FL, USA | 2014 |
K190246 | NeuroShield™ | Chitosan | Checkpoint Surgical, Inc. | Cleveland, OH, USA | 2019 |
K210665 | Nerve Tape® | Porcine small intestinal submucosa (SIS) extracellular collagen matrix (ECM) | BioCircuit Technologies, Inc. | Atlanta, GA, USA | 2022 |
K223640 | Axoguard® HA+ Nerve Protector | Porcine small intestinal submucosa (SIS) extracellular collagen matrix (ECM), sodium hyaluronate, and sodium alginate | Axogen, Inc. | Alachua, FL, USA | 2023 |
K232029 | Versawrap nerve protector | Calcium alginate and hyaluronic acid | Alafair Biosciences, Inc. | Austin, TX, USA | 2023 |
Researcher | Year | Nerve Wrap Material | Animal |
---|---|---|---|
Biological Nerve Wraps | |||
Masear et al. [10] | 1989 | Vein | Rat |
Strickland JW et al. [25] | 1969 | Hypothenar Fat Flap | Rat |
O’ Neill AC et al. [26] | 2009 | Human Amniotic Membrane (hAM) | Rat |
Kim PD et al. [27] | 2010 | Collagen Type I | Rat |
Kokkalis ZT et al. [28] | 2011 | Porcine Small Intestinal Submucosa | Rat |
Hones KM [29] | 2023 | Hyaluronic acid | Rat |
Synthetic Nerve Wraps | |||
Sahrane et al. [30] | 2019 | Poly-ε-caprolactone (PCL) | Rat |
Hybrid Nerve Wraps | |||
Liu et al. [31] | 2023 | Poly-ε-caprolactone (PCL)/Amnion | Rat |
Material | Advantages | Disadvantages |
---|---|---|
Vein | Cost-effective; biologically inert | Donor site morbidity; limited mechanical strength; extended surgery time |
Hypothenar Fat Flap | Easy local application; well-vascularized | Donor site morbidity; extended surgery time; limited coverage |
Human Amniotic Membrane (hAM) | No donor site morbidity; anti-inflammatory and non-immunogenic properties; low incidence of reported complications; relatively affordable; available in various sizes and shapes | Potential risk of disease transmission; requires specific regulatory approvals; limited mechanical strength and handling properties, rapid degradation rate |
Collagen Type I | No donor site morbidity; off-the-shelf availability; reduces the risk of long-term foreign body response; selective permeability | Degradation rate can vary and might not match nerve regeneration timing; may elicit mild immune response depending on the source |
Porcine Small Intestinal Submucosa | No donor site morbidity; durable; flexible; easy application; full degradation within 4 months; non-immunogenic when decellularized | Ethical/religious concerns for some patients; may elicit mild immune responses depending on processing |
Chitosan | Transparency; flexibility and resistance to collapse | Variable degradation rate; low mechanical strength; limited clinical data; limited commercial availability |
Hyaluronic acid | No donor site morbidity | Rapid degradation rate |
Human Epineural Patch (hEP) | No donor site morbidity; neurogenic, vasculogenic, anti-inflammatory; non-immunogenic properties | Requires regulatory approval; lack of clinical data |
Poly-ε-caprolactone (PCL) | Excellent mechanical properties; easy production | Poor cell affinity; poor hydrophilicity; risk of inflammation; potential for immune rejection |
Poly-ε-caprolactone (PCL)/Amnion | Improved mechanical strength of AM through the incorporation of PCL nanofibers; high porosity; sustained release of exogenous growth factors | Poor cell affinity; poor hydrophilicity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radecka, W.; Nogalska, W.; Siemionow, M. Peripheral Nerve Protection Strategies: Recent Advances and Potential Clinical Applications. J. Funct. Biomater. 2025, 16, 153. https://doi.org/10.3390/jfb16050153
Radecka W, Nogalska W, Siemionow M. Peripheral Nerve Protection Strategies: Recent Advances and Potential Clinical Applications. Journal of Functional Biomaterials. 2025; 16(5):153. https://doi.org/10.3390/jfb16050153
Chicago/Turabian StyleRadecka, Weronika, Wiktoria Nogalska, and Maria Siemionow. 2025. "Peripheral Nerve Protection Strategies: Recent Advances and Potential Clinical Applications" Journal of Functional Biomaterials 16, no. 5: 153. https://doi.org/10.3390/jfb16050153
APA StyleRadecka, W., Nogalska, W., & Siemionow, M. (2025). Peripheral Nerve Protection Strategies: Recent Advances and Potential Clinical Applications. Journal of Functional Biomaterials, 16(5), 153. https://doi.org/10.3390/jfb16050153