Systolic Nanofabrication of Super-Resolved Photonics and Biomimetics
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Systolic Downsizing
3.2. Photonic and Biomimetic Architectures
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rho, J. Metasurfaces: Subwavelength nanostructure arrays for ultrathin flat optics and photonics. MRS Bull. 2020, 45, 180–187. [Google Scholar] [CrossRef]
- Zhao, H.; Lee, Y.; Han, M.; Sharma, B.K.; Chen, X.; Ahn, J.-H.; Rogers, J.A. Nanofabrication approaches for functional three-dimensional architectures. Nano Today 2020, 30, 100825. [Google Scholar] [CrossRef]
- Kistler, S.S. Coherent expanded aerogels. J. Phys. Chem. 1932, 36, 52–64. [Google Scholar] [CrossRef]
- Aegerter, M.A.; Leventis, N.; Koebel, M.M. (Eds.) Aerogels Handbook; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Akimov, Y.K. Fields of application of aerogels (Review). Instrum. Exp. Tech. 2003, 46, 287–299. [Google Scholar] [CrossRef]
- Vainos, N.A.; Karoutsos, V.; Mills, B.; Eason, R.W.; Prassas, M. Contractive scaling of 3-dimensional laser written microstructures via vitrification of silica aerogel monoliths. Opt. Mater. Express 2016, 6, 3814–3825. [Google Scholar] [CrossRef]
- Michaloudis, I.; Carroll, M.K.; Kupiec, S.; Cook, K.; Anderson, A.M. Facile method for surface etching of silica aerogel monoliths. J. Sol-Gel Sci. Technol. 2018, 87, 22–26. [Google Scholar] [CrossRef]
- Stanec, Α.Μ.; Anderson, A.M.; Avanessian, C.; Carroll, M.K. Analysis and characterization of etched silica aerogels. J. Sol-Gel Sci. Technol. 2020, 94, 406–415. [Google Scholar] [CrossRef]
- Michaloudis, I.; Dann, B. Aer( )sculpture: Inventing skies and micro-clouds into diaphanous sculptures made of the space technology nanomaterial silica aerogel. J. Sol-Gel Sci. Technol. 2017, 84, 535–542. [Google Scholar] [CrossRef]
- Kim, Y.; Baek, S.; Gupta, P. Air-like plasmonics with ultralow-refractive-index silica aerogels. Sci. Rep. 2019, 9, 2265. [Google Scholar] [CrossRef]
- Zhao, X.-M.; Xia, Y.; Schueller, O.J.A.; Qin, D.; Whitesides, G.M. Fabrication of microstructures using shrinkable polystyrene films. Sens. Actuators A Phys. 1998, 65, 209–217. [Google Scholar] [CrossRef]
- Juodkazis, S.; Yamasaki, K.; Matsuo, S.; Misawa, H. Glass transition-assisted microstructuring in polystyrene. Appl. Phys. Lett. 2004, 84, 514–516. [Google Scholar] [CrossRef]
- Balčytis, A.; Ryu, M.; Seniutinas, G.; Stoddart, P.R.; Al Mamun, M.A.; Morikawa, J.; Juodkazis, S. Nano-rescaling of gold films on polystyrene: Thermal management for SERS. Nanoscale 2017, 9, 690–695. [Google Scholar] [CrossRef] [PubMed]
- Moothanchery, M.; Naydenova, I.; Toal, V. Studies of shrinkage as a result of holographic recording in acrylamide-based photopolymer film. Appl. Phys. A 2011, 104, 899–902. [Google Scholar] [CrossRef]
- Santaniello, T.; Martello, F.; Tocchio, A.; Gassa, F.; Webb, P.; Milani, P.; Lenardi, C. Excimer laser micropatterning of freestanding thermo-responsive hydrogel layers for cells-on-chip applications. J. Micromech. Microeng. 2012, 22, 105033. [Google Scholar] [CrossRef]
- Le Goff, G.C.; Blum, L.J.; Marquette, C.A. Shrinking Hydrogel-DNA Spots Generates 3D Microdots Arrays: Shrinking Hydrogel-DNA Spots Generates 3D Microdots Arrays. Macromol. Biosci. 2013, 13, 227–233. [Google Scholar] [CrossRef]
- Cerda-Sumbarda, Y.D.; Domínguez-González, C.; Zizumbo-López, A.; Licea-Claverie, A. Thermoresponsive nanocomposite hydrogels with improved properties based on poly(N-vinylcaprolactam). Mater. Today Commun. 2020, 24, 101041. [Google Scholar] [CrossRef]
- Oran, D.; Rodriques, S.G.; Gao, R.; Asano, S.; Skylar-Scott, M.A.; Chen, F.; Tillberg, P.W.; Marblestone, A.H.; Boyden, E.S. 3D nanofabrication by volumetric deposition and controlled shrinkage of patterned scaffolds. Science 2018, 362, 1281–1285. [Google Scholar] [CrossRef]
- Xu, C.; Wu, Q.; L’Espérance, G.; Laberge Lebel, L.; Therriault, D. Environment-friendly and reusable ink for 3D printing of metallic structures. Mater. Des. 2018, 160, 262–269. [Google Scholar] [CrossRef]
- Bauer, J.; Schroer, A.; Schwaiger, R.; Kraft, O. Approaching theoretical strength in glassy carbon nanolattices. Nat. Mater. 2016, 15, 438–443. [Google Scholar]
- Gailevičius, D.; Padolskyte, V.; Mikoliunaite, L.; Sakirzanovas, S.; Juodkazis, S.; Malinauskas, M. Additive-manufacturing of 3D glass-ceramics down to nanoscale resolution. Nanoscale Horiz. 2019, 4, 647–651. [Google Scholar] [CrossRef]
- Papachristopoulou, K.; Karoutsos, V.; Papademetriou, A.; Vainos, N.A. Super-resolution fabrication of surface relief structures by contractive scaling of nanoporous monoliths. In Proceedings of the 45th International Conference on Micro & Nano Engineering, Rhodes, Greece, 23–26 September 2019. [Google Scholar]
- Teichner, S.J.; Nicolaon, G.A.; Vicarini, M.A.; Gardes, G.E.E. Inorganic oxide aerogels. Adv. Colloid Interface Sci. 1976, 5, 245–273. [Google Scholar] [CrossRef]
- Moner-Girona, M.; Roig, A.; Molins, E.; Libre, J. Sol-Gel Route to Direct Formation of Silica Aerogel Microparticles Using Supercritical Solvents. J. Sol-Gel Sci. Technol. 2003, 26, 645–649. [Google Scholar] [CrossRef]
- Wagh, P.B.; Ingale, S.V. Comparison of some physico-chemical properties of hydrophilic and hydrophobic silica aerogels. Ceram. Int. 2002, 28, 43–50. [Google Scholar] [CrossRef]
- Rao, A.P.; Rao, A.V.; Pajonk, G.M. Hydrophobic and physical properties of the ambient pressure dried silica aerogels with sodium silicate precursor using various surface modification agents. Appl. Surf. Sci. 2007, 253, 6032–6040. [Google Scholar] [CrossRef]
- Pajonk, G.M.; Rao, A.V.; Sawant, B.M.; Parvathy, N.N. Dependence of monolithicity and physical properties of TMOS silica aerogels on gel aging and drying conditions. J. Non-Cryst. Solids 1997, 209, 40–50. [Google Scholar] [CrossRef]
- Strøm, R.A.; Masmoudi, Y.; Rigacci, A.; Petermann, G.; Gullberg, L.; Chevalier, B.; Einarsrud, M.A. Strengthening and aging of wet silica gels for up-scaling of aerogel preparation. J. Sol-Gel Sci. Technol. 2007, 41, 291–298. [Google Scholar] [CrossRef]
- Vasileiou, M.; Mpatzaka, T.; Alexandropoulos, D.; Vainos, N.A. Biomimetic microstructures for photonic and fluidic synergies. Optofluid. Microfluid. Nanofluidics 2017, 4, 1–6. [Google Scholar] [CrossRef]
- Prassas, M. Synthese Des Gels Du Systeme SiO2-Na2O et Des Gels Monolithiques De Silice. Étude De Leur Conversion En Verre. Th.D. Ingénieur, Université de Montpellier, Montpelier, France, 1981. [Google Scholar]
- Woignier, T.; Phallippou, J.; Prassas, M. Glasses from aerogels Part 1: The synthesis of monolithic silica aerogels. J. Mater. Sci. 1990, 25, 3111–3117. [Google Scholar]
- Woignier, T.; Phallippou, J.; Prassas, M. Glasses from aerogels Part 2: The aerogel-glass transformation. J. Mater. Sci. 1990, 25, 3118–3126. [Google Scholar] [CrossRef]
- Zarzycki, J.W.; Prassas, M.; Phalippou, J.E.H. Preparation of Monolithic Silica Aerogels, the Aerogels Thus Obtained and Their Use for the Preparation of Silica Glass Articles and of Heat-Insulating Materials. Patent US 4,432,956, 21 February 1984. [Google Scholar]
- Frenkel, J. Viscous flow of crystalline bodies under the action of surface tension. J. Phys. 1945, 9, 385–391. [Google Scholar]
- Scherer, G.W. Sintering of Low-Density Glasses: I. Theory. J. Am. Ceram. Soc. 1977, 60, 5–6. [Google Scholar] [CrossRef]
- Rabinovich, E.M. Preparation of glass by sintering. J. Mater. Sci. 1985, 20, 4259–4297. [Google Scholar] [CrossRef]
- Brinker, C.G.; Scherer, G.W. Sol-Gel Science; Academic Press: San Diego, CA, USA, 2013. [Google Scholar]
- Vainos, N.A. (Ed.) Laser Growth and Processing of Photonic Structures; Woodhead Publishing: Cambridge, UK, 2012. [Google Scholar]
- Serrano, A.; de la Fuente, O.R.; García, M.A. Extended and localized surface plasmons in annealed Au films on glass substrates. J. Appl. Phys. 2010, 108, 074303. [Google Scholar] [CrossRef]
- Fabricius, J.C. Systema Entomologiae; Arkose Press: Flensburg/Leipzig, Germany, 1775. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papachristopoulou, K.; Vainos, N.A. Systolic Nanofabrication of Super-Resolved Photonics and Biomimetics. Nanomaterials 2020, 10, 2418. https://doi.org/10.3390/nano10122418
Papachristopoulou K, Vainos NA. Systolic Nanofabrication of Super-Resolved Photonics and Biomimetics. Nanomaterials. 2020; 10(12):2418. https://doi.org/10.3390/nano10122418
Chicago/Turabian StylePapachristopoulou, Konstantina, and Nikolaos A. Vainos. 2020. "Systolic Nanofabrication of Super-Resolved Photonics and Biomimetics" Nanomaterials 10, no. 12: 2418. https://doi.org/10.3390/nano10122418
APA StylePapachristopoulou, K., & Vainos, N. A. (2020). Systolic Nanofabrication of Super-Resolved Photonics and Biomimetics. Nanomaterials, 10(12), 2418. https://doi.org/10.3390/nano10122418