Florfenicol Binding to Molecularly Imprinted Polymer Nanoparticles in Model and Real Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. MIPs and NIPs Synthesis
2.2. Surface Plasmon Resonance (SPR) Analysis of Florfenicol MIP and NIP Nanoparticles
2.3. Characterisation of NanoMIPs
2.4. Immobilization of MIPs onto the Surface of Microplate Wells and Assay Conditions
2.5. FF Binding to NanoMIPs in Milk and Fish Samples
2.6. Determination of MIP Shelf-Life
3. Results and Discussion
3.1. Synthesis and Characterization of NanoMIPs
3.2. SPR Analysis of NanoMIPs Affinity
3.3. Binding of FF to Immobilized NanoMIPs in ELISA-Type Assay
3.4. Competitive Binding of FF and HRP-FF in ELISA-Like Assay
3.5. Cross-Reactivity of NanoMIPs
3.6. HRP-FF Detection in Food Matrices
3.7. Detection of FF in Food Matrices
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gouvêa, R.; Dos Santos, F.F.; De Aquino, M.H.C. Fluoroquinolones in industrial poultry production, bacterial resistance and food residues: A review. Rev. Bras. Cienc. Avic. 2015, 17, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Speksnijder, D.C.; Jaarsma, A.D.; van der Gugten, A.C.; Verheij, T.J.; Wagenaar, J.A. Determinants Associated with Veterinary Antimicrobial Prescribing in Farm Animals in the Netherlands: A Qualitative Study. Zoonoses Public Health 2014, 62, 39–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlet, J. Antibiotic resistance: Protecting antibiotics-the declaration of the world alliance against antibiotic resistance. Indian J. Crit. Care Med. 2014, 18, 643–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández, M.; Granados-Chinchilla, F.; Rodríguez, C. A single exposure of sediment sulphate-reducing bacteria to oxytetracycline concentrations relevant to aquaculture enduringly disturbed their activity, abundance and community structure. J. Appl. Microbiol. 2015, 119, 354–364. [Google Scholar] [CrossRef] [PubMed]
- Barreto, F.; Ribeiro, C.; Hoff, R.B.; Costa, T.D. Determination of chloramphenicol, thiamphenicol, florfenicol and florfenicol amine in poultry, swine, bovine and fish by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2006, 1449, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Jia, B.-J.; Huang, J.; Liu, J.-X.; Wang, J.-P. Detection of chloramphenicol in chicken, pork and fish with a molecularly imprinted polymer-based microtiter chemiluminescence method. Food Addit. Contam. A 2019, 36, 74–83. [Google Scholar] [CrossRef]
- Wang, G.; Wang, B.; Zhao, X.; Xie, X.; Xie, K.; Wang, X.; Zhang, G.; Zhang, T.; Liu, X.; Dai, G. Determination of thiamphenicol, florfenicol and florfenicol amine residues in poultry meat and pork via ASE-UPLC-FLD. J. Food Compos. Anal. 2019, 81, 19–27. [Google Scholar] [CrossRef]
- Bitte, A.-F.; Nordkvist, E.; Törnkvist, A.; Wallgren, P.; Hoogenboom, R.; Berendsen, B.; Granelli, K. Distribution of chloramphenicol to tissues, plasma and urine in pigs after oral intake of low doses. Food Addit. Contam. A 2016, 33, 1411–1420. [Google Scholar] [CrossRef]
- Moudgil, P.; Bedi, J.S.; Aulakh, R.S.; Singh, J.P.; Kumar, A. Validation of HPLC Multi-residue Method for Determination of Fluoroquinolones, Tetracycline, Sulphonamides and Chloramphenicol Residues in Bovine Milk. Food Anal. Methods 2019, 12, 338. [Google Scholar] [CrossRef]
- Imran, M.; Habib, F.; Majeed, S.; Tawab, A.; Rauf, W.; Rahman, M.; Umer, M.; Iqbal, M. LC-MS/MS-based determination of chloramphenicol, thiamphenicol, florfenicol and florfenicol amine in poultry meat from the Punjab-Pakistan. Food Addit. Contam. 2008, 35, 1530–1542. [Google Scholar] [CrossRef]
- Chae, W.-S.; Yoo, C.-Y.; Tutkun, L.; Kim, S.; Lee, H.-J. Determination of florfenicol residues in swine tissues using high-performance liquid chromatography with ultraviolet photometric detector. Prev. Vet. Med. 2018, 42, 171–176. [Google Scholar] [CrossRef]
- Summa, S.; Lo Magro, S.; Armentano, A.; Muscarella, M. Development and validation of an HPLC/DAD method for the determination of 13 sulphonamides in eggs. Food Chem. 2015, 187, 477–484. [Google Scholar] [CrossRef]
- Norambuena, L.; Gras, N.; Contreras, S. Development and validation of a method for the simultaneous extraction and separate measurement of oxytetracycline, florfenicol, oxolinic acid and flumequine from marine sediments. Mar. Pollut. Bull. 2013, 73, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Son, S.; Zhanga, F.; Yan, J.; Li, Y.; Ding, H.; Ding, L. Rapid preparation of molecularly imprinted polymers by microwave-assisted emulsion polymerization for the extraction of florfenicol in milk. J. Chromatogr. B 2015, 983–984, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Gao, R.; He, X.; Chen, L.; Zhang, Y. Synthesis and characterization of the core–shell magnetic molecularly imprinted polymers (Fe3O4@MIPs) adsorbents for effective extraction and determination of sulfonamides in the poultry feed. J. Chromatogr. A 2012, 1245, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Song, R.; Rao, Z.; Wei, S.; Jia, Z.; Suo, D.; Fan, F. Development of a subcritical water extraction approach for traceanalysis of chloramphenicol, thiamphenicol, florfenicol, andflorfenicol amine in poultry tissues. J. Chromatogr. A 2015, 1418, 29–35. [Google Scholar] [CrossRef]
- Chang, K.C.; Tsai, C.E. Bioequivalence evaluation of Florfenicol pharmaceutics in pigs using liquid chromatography-tandem mass spectrometry. J. Liq. Chromatogr. Relat. Technol. 2018, 41, 445–450. [Google Scholar] [CrossRef]
- Tang, Y.; Lan, J.; Gao, X.; Liu, X.; Zhang, D.; Wei, L.; Gao, Z.; Li, J. Determination of clenbuterol in pork and potable water samples by molecularly imprinted polymer through the use of covalent imprinting method. Food Chem. 2016, 190, 952–959. [Google Scholar] [CrossRef]
- Zhang, T.; Tan, N.; Jia, X.; Wang, G.; Long, W.; Li, X.; Liao, S.; Hou, D. Synthesis, recognition characteristics and properties of l-3-n-butylphthalide molecularly imprinted polymers as sorbent for solid-phase extraction through precipitation polymerization. Mater. Sci. Eng. C 2015, 53, 166–174. [Google Scholar] [CrossRef]
- Speltini, A.; Scalabrini, A.; Maraschi, F.; Sturini, M.; Profumo, A. Newest applications of molecularly imprinted polymers for extraction of contaminants from environmental and food matrices: A review. Anal. Chim. Acta 2017, 974, 1–26. [Google Scholar] [CrossRef]
- Wackerlig, J.; Schirhagl, R. Applications of Molecularly Imprinted Polymer Nanoparticles and Their Advances toward Industrial Use. A Review. Anal. Chem. 2016, 88, 250–261. [Google Scholar] [CrossRef] [PubMed]
- Poma, A.; Turner, A.; Piletsky, P. Advances in the manufacture of MIP nanoparticles. Trends Biotechnol. 2010, 28, 629–637. [Google Scholar] [CrossRef]
- Martín-Esteban, A. Molecularly-imprinted polymers as a versatile, highly selective tool in sample preparation. Trends Anal. Chem. 2013, 45, 169–181. [Google Scholar] [CrossRef]
- Ebrahimzadeh, H.; Dehghani, Z.; Asgharinezhad, A.; Shekari, N.; Molaei, K. Determination of haloperidol in biological samples using molecular imprinted polymer nanoparticles followed by HPLC-DAD detection. Int. J. Pharm. 2013, 453, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Ashley, J.; Shahbazi, M.-A.; Kant, K.; Chidambara, V.A.; Wolff, A.; Bang, D.D.; Sun, Y. Molecularly imprinted polymers for sample preparation and biosensing in food analysis: Progress and perspectives. Biosens. Bioelectron. 2017, 91, 606–615. [Google Scholar] [CrossRef] [Green Version]
- Brüggemann, O.; Visnjevski, A.; Burch, R.; Patel, P. Selective extraction of Antioxidants with molecularly imprinted polymers. Anal. Chim. Acta. 2004, 504, 81–88. [Google Scholar] [CrossRef]
- Wackerlig, J.; Lieberzeit, P. Molecularly imprinted polymer nanoparticles in chemical sensing – Synthesis, characterisation and application. Sensor. Actuat. B-Chem. 2015, 207, 144–157. [Google Scholar] [CrossRef]
- Xia, W.Q.; Huang, J.; Wang, G.N.; Liu, J.; Wang, J.P. Molecularly imprinted polymer based microtiter chemiluminescence array for determination of phenothiazines and benzodiazepines in pork. Anal. Biochem. 2018, 554, 9–15. [Google Scholar] [CrossRef]
- Chianella, I.; Guerreiro, A.; Moczko, E.; Caygill, J.; Piletska, E.; Perez De Vargas Sansalvador, I.; Whitcombe, M.; Piletsky, S. Direct Replacement of Antibodies with Molecularly Imprinted Polymer Nanoparticles in ELISA-Development of a Novel Assay for Vancomycin. Anal. Chem. 2013, 85, 8462–8468. [Google Scholar] [CrossRef] [Green Version]
- González-Sálamo, J.; Socas-Rodríguez, B.; Hernández-Borges, J.; Del Mar Afonso, M.; Rodríguez-Delgado, M.Á. Evaluation of two molecularly imprinted polymers for the solid-phase extraction of natural, synthetic and mycoestrogens from environmental water samples before liquid chromatography with mass spectrometry. J. Sep. Sci. 2015, 38, 2692–2699. [Google Scholar] [CrossRef]
- Altintas, Z.; Guerreiro, A.; Piletsky, S.; Tothill, I. NanoMIP based optical sensor for pharmaceuticals monitoring. Sens. Actuat. B-Chem. 2015, 213, 305–313. [Google Scholar] [CrossRef]
- Guerreiro, A.; Soares, A.; Piletska, E.; Mattiasson, B.; Piletsky, S. Preliminary evaluation of new polymer matrix for solid-phase extraction of nonylphenol from water samples. Anal. Chim. Acta 2008, 612, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Cheng, Y.; Peng, R.; Cui, Q.; Luo, Y.; Li, L. Co-precipitation method to prepare molecularly imprinted fluorescent polymer nanoparticles for paracetamol sensing. Colloids Surf. A 2020, 124342. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, D.; Peng, J.; Cu, Y.; Shi, Y.; He, H. Magnetic hyperbranched molecularly imprinted polymers for selective enrichment and determination of zearalenone in wheat proceeded by HPLCDAD analysis. Talanta 2020, 209, 120555. [Google Scholar] [CrossRef] [PubMed]
- Mathew, M.; Krishnakumar, K.; Dineshkumar, B.; Nair, S. Antibiotics nanosuspension: A review. J. Drug Deliv. Ther. 2017, 7, 128–131. [Google Scholar] [CrossRef]
- Abdin, M.J.; Altintas, Z.; Tothill, I.E. In silico designed nanoMIP based optical sensor for endotoxins monitoring. Biosens. Bioelectron. 2015, 67, 177–183. [Google Scholar] [CrossRef]
- Kulkarni, S.A.; Feng, S.S. Effects of Particle Size and Surface Modification on Cellular Uptake and Biodistribution of Polymeric Nanoparticles for Drug Delivery. Pharm Res. 2013, 30, 2512. [Google Scholar] [CrossRef]
- Kubo, T.; Tachibana, K.; Naito, T.; Mukai, S.; Akiyoshi, K.; Balachandran, J.; Otsuka, K. Magnetic Field Stimuli-Sensitive Drug Release Using a Magnetic Thermal Seed Coated with Thermal-Responsive Molecularly Imprinted Polymer. ACS Biomater. Sci. Eng. 2019, 5, 759–767. [Google Scholar] [CrossRef]
- Ma, Y.; Dai, J.; Wang, L.; Yan, Y.; Gao, M. Fabrication of porous molecularly imprinted polymer using halloysite nanotube as template for selective recognition and separation of chloramphenicol. J. Iran. Chem. Soc. 2019. [Google Scholar] [CrossRef]
- Zhao, F.; She, Y.; Zhang, C.; Wang, S.; Du, X.; Jin, F.; Jin, M.; Shao, H.; Zheng, L.; Wang, J. Selective Determination of Chloramphenicol in Milk Samples by the Solid-Phase Extraction Based on Dummy Molecularly Imprinted Polymer. Food Anal. Methods 2017, 10, 2566. [Google Scholar] [CrossRef]
- Li, S.; Zhu, M.; Whitcombe, M.J.; Piletsky, S.A.; Turner, A.P.F. 1-Molecularly Imprinted Polymers for Enzyme-like Catalysis: Principle, Design, and Applications. Mol. Impr. Catal. 2016, 1–17. [Google Scholar] [CrossRef]
- Shrivastav, A.; Usha, S.; Gupta, B. Highly sensitive and selective erythromycin nanosensor employing fiber optic SPR/ERY imprinted nanostructure: Application in milk and honey. Biosens. Bioelectron. 2017, 90, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.F.; Holdsworth, C.I. Effect of Formulation on the Binding Efficiency and Selectivity of Precipitation Molecularly Imprinted Polymers. Molecules 2018, 23, 2996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horikawa, R.; Sunayama, H.; Kitayama, Y.; Takano, E.; Takeuchi, T. Programmable Signaling Molecular Recognition Nanocavity Prepared by Molecular Imprinting and Post-Imprinting Modifications. Angew. Chem. Int. Ed. 2016, 55, 13023. [Google Scholar] [CrossRef] [PubMed]
- Surugiu, I.; Danielsson, B.; Ye, L.; Mosbach, K.; Haupt, K. Chemiluminescence Imaging ELISA Using an Imprinted Polymer as the Recognition Element Instead of an Antibody. Anal. Chem. 2001, 73, 487–491. [Google Scholar] [CrossRef] [PubMed]
- Tothill, I.E.; Abdin, M.J. Nano Molecular Imprinted Polymers (NanoMIPs) for Food Diagnostics and Sensor; Prasad, R., Kumar, V., Kumar, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Xie, K.; Jia, L.; Yao, Y.; Xu, D.; Chen, S.; Xie, X.; Pei, Y.; Bao, W.; Dai, G.; Wang, J.; et al. Simultaneous determination of thiamphenicol, florfenicol and florfenicol amine in eggs by reversed-phase high-performance liquid chromatography with fluorescence detection. J. Chromatogr. B 2011, 879, 2351–2354. [Google Scholar] [CrossRef] [PubMed]
- Beltran, A.; Fontanals, N.; Marce, R.M.; Cormack, P.A.; Borrull, F. Molecularly imprinted solid-phase extraction of cephalexin from water-based matrices. J. Sep. Sci. 2009, 32, 3319–3326. [Google Scholar] [CrossRef]
- Boyd, B.; Björk, H.; Billing, J.; Shimelis, O.; Axelsson, S.; Leonora, M.; Yilmaz, E. Development of an improved method for trace analysis of chloramphenicol using molecularly imprinted polymers. J. Chromatogr. A 2007, 1174, 63–71. [Google Scholar] [CrossRef]
- Zou, Y.; Zhao, J.; Zhang, Z.; Wang, G.; Tang, B.; Li, L.; Zhang, X. Matrix effects in the simultaneous determination of fenicol antibiotics in swine muscle and cas-ings by ultra performance liquid chromatography–tandem mass spectrometry. Anal. Methods 2013, 5, 5662–5668. [Google Scholar] [CrossRef]
- Tang, S.P.; Canfarotta, F.; Smolinska-Kempisty, K.; Piletska, E.; Guerreiro, A.; Piletsky, S. A pseudo-ELISA based on molecularly imprinted nanoparticles for detection of gentamicin in real samples. Anal. Methods 2017, 9, 2853–2858. [Google Scholar] [CrossRef]
Sonicated Time (min) | Z-Average (nm) | PDI | Z-Potential (mV) |
---|---|---|---|
0 | 123.1 ± 2.4 a | 0.42 ± 0.0 a | −27.1 ± 0.3 a |
15 | 124.2 ± 3.3 a | 0.41 ± 0.0 b | −28.4 ± 0.9 b |
30 | 123.9 ± 1.9 a | 0.44 ± 0.1 c | −28.3 ± 0.9 b |
60 | 123.4 ± 2.6 a | 0.42 ± 0.0 a | −27.4 ± 1.9 a |
Spiked (ng/mL) | Measured Concentration (ng/mL) | Recovery % |
---|---|---|
300 | 269.64 ± 9.77 | 89.88 ± 3.99 |
250 | 237.91 ± 5.48 | 95.16 ± 2.68 |
200 | 179.47 ± 2.26 | 89.74 ± 1.39 |
150 | 135.81 ± 1.32 | 90.54 ± 1.08 |
100 | 91.23 ± 2.72 | 91.23 ± 3.33 |
90 | 82.29 ± 1.81 | 91.43 ± 2.47 |
80 | 76.38 ± 1.22 | 95.48 ± 1.87 |
70 | 67.15 ± 0.46 | 95.92 ± 0.81 |
60 | 56.55 ± 0.63 | 94.24 ± 1.29 |
50 | 41.77 ± 2.57 | 83.54 ± 3.31 |
40 | 32.46 ± 0.58 | 81.16 ± 1.78 |
30 | 25.04 ± 1.04 | 83.46 ± 2.28 |
20 | 15.62 ± 2.15 | 78.10 ± 3.18 |
Spiked (ng/mL) | Measured Concentration (ng/mL) | Recovery % |
---|---|---|
300 | 232.22 ± 8.03 | 77.4 ± 2.68 |
250 | 193.95 ± 5.22 | 77.6 ± 2.09 |
200 | 154.36 ± 6.77 | 77.2 ± 3.38 |
150 | 107.85 ± 5.16 | 71.9 ± 3.44 |
100 | 87.43 ± 1.44 | 87.4 ± 1.44 |
90 | 76.09 ± 3.29 | 84.5 ± 3.66 |
80 | 30.65 ± 3.27 | 38.3 ± 4.69 |
70 | 24.45 ± 1.18 | 34.9 ± 1.09 |
60 | 16.76 ± 2.43 | 27.9 ± 2.08 |
50 | 6.94 ± 0.57 | 13.9 ± 1.14 |
40 | undetermined | No recovery |
30 | undetermined | No recovery |
20 | undetermined | No recovery |
Storage Condition | ||||
---|---|---|---|---|
Room Temperature (RT1) | Refrigerated Temperature (RT2) | |||
Milk | Salmon | Milk | Salmon | |
Week | Recovery (%) | |||
0 | 85.84 ± 5.41 | 80.39 ± 4.28 | 80.71 ± 3.22 | 79.82 ± 6.22 |
1 | 85.12 ± 4.22 | 78.59 ± 3.54 | 80.82 ± 3.54 | 79.66 ± 3.65 |
2 | 83.37 ± 3.23 | 77.18 ± 4.65 | 80.71 ± 4.35 | 78.85 ± 3.34 |
3 | 84.03 ± 2.36 | 75.48 ± 4.12 | 80.41 ± 5.18 | 78.81 ± 4.12 |
4 | 83.28 ± 4.22 | 73.85 ± 4.22 | 79.80 ± 4.65 | 77.18 ± 3.23 |
5 | 81.94 ± 3.23 | 72.22 ± 6.11 | 78.55 ± 5.76 | 75.55 ± 4.65 |
6 | 80.34 ± 4.76 | 71.48 ± 4.12 | 78.34 ± 6.13 | 74.82 ± 3.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caro, N.; Bruna, T.; Guerreiro, A.; Alvarez-Tejos, P.; Garretón, V.; Piletsky, S.; González-Casanova, J.; Rojas-Gómez, D.; Ehrenfeld, N. Florfenicol Binding to Molecularly Imprinted Polymer Nanoparticles in Model and Real Samples. Nanomaterials 2020, 10, 306. https://doi.org/10.3390/nano10020306
Caro N, Bruna T, Guerreiro A, Alvarez-Tejos P, Garretón V, Piletsky S, González-Casanova J, Rojas-Gómez D, Ehrenfeld N. Florfenicol Binding to Molecularly Imprinted Polymer Nanoparticles in Model and Real Samples. Nanomaterials. 2020; 10(2):306. https://doi.org/10.3390/nano10020306
Chicago/Turabian StyleCaro, Nelson, Tamara Bruna, Antonio Guerreiro, Paola Alvarez-Tejos, Virginia Garretón, Sergey Piletsky, Jorge González-Casanova, Diana Rojas-Gómez, and Nicole Ehrenfeld. 2020. "Florfenicol Binding to Molecularly Imprinted Polymer Nanoparticles in Model and Real Samples" Nanomaterials 10, no. 2: 306. https://doi.org/10.3390/nano10020306
APA StyleCaro, N., Bruna, T., Guerreiro, A., Alvarez-Tejos, P., Garretón, V., Piletsky, S., González-Casanova, J., Rojas-Gómez, D., & Ehrenfeld, N. (2020). Florfenicol Binding to Molecularly Imprinted Polymer Nanoparticles in Model and Real Samples. Nanomaterials, 10(2), 306. https://doi.org/10.3390/nano10020306